
OCL for Rich Domain Models Implementation
An Incremental Aspect based Solution

Alberto-Manuel Fernández-Álvarez, Daniel Fernández-Lanvin and Manuel Quintela-Pumares
Computing Science Department, University of Oviedo, Oviedo, Asturias, Spain

Keywords: Constraint, Invariant, Incremental Checking, Domain Model, Object Orientation, OCL, AspectJ.

Abstract: Object Constraint Language (OCL) can be used to express domain model constraints. Those related to a
single object are easy to implement. However, when a constraint depends on the state of more than one
object (domain and class constraints) the problem turns much more complicated. Developers must deal with
several difficulties: how to write the invariant check, when to execute the constraint verification, over what
objects and what to do in case of a constraint violation. Things are harder if we add feasible performance as
requirement. We propose a tool that combines incremental OCL processing, with translation into aspect
code and execution inside an atomicity execution context. The output is aspect code, ready to be integrated
with business code that checks all the invariants efficiently at the end of the atomic operation.

1 INTRODUCTION

Domain modelling is a well-known practice to
capture the essential semantic of a rich domain. The
advantages of this approach have been widely
discussed in the software engineering literature
(Evans, 2003; Fowler, 2003; Olivé, 2005). The most
popular tool to model both static and dynamic
aspects of the domain model during the development
is UML. Even though UML is proven as an effective
and powerful resource, it is lacking in mechanisms
to represent efficiently some aspects of the system
under design. For instance, some complex domain
constraints cannot be easily graphically expressed in
UML.

Those constraints can be expressed in natural
language or by means of OCL expressions that
complement the UML models. Afterwards, the
developer will transform these OCL expressions into
source code.

Although the use of OCL fills the gap of UML
limitations, the subsequent implementation of these
constraints usually involves some difficulties that
can complicate the work of the programmers: (1)
how to write the invariant check, (2) when to execute
the constraint verification, (3) over what objects
should be executed and (4) what-to-do in case of a
constraint violation.

Constraints that affect only to one attribute or set
of attributes on the same object can be easily

checked (how), as invariants or post-conditions in a
Design by Contract (DbC) way. However, those that
affect to more than one object of the domain
(domain constraints) are determined by the state and
relationships of every concerned object. As changes
in any of the involved objects state can be produced
by different method calls it is difficult to know
where to place the constraint checking code. If we
apply DbC, these invariants will only be checked if
any public method of the invariant’s declaring class
object is executed, but modifications to the other
involved objects will not be detected (this is a
known limitation of DbC, referred as the framework
problem (Meyer, 2015)). The developer may then try
to scatter the constraint over several methods, even
in different classes. That will lead to code scattering,
code tangling and thigh coupling (Cachopo, 2007).

Regarding the “when” problem, in case of
domain constraints, immediate checking after every
single method call could simply not be possible as
low-level method calls may produce transient illegal
states that, eventually, will evolve to a final legal
state. That means the checking must be delayed until
the higher-level method finishes. Again, it may be
difficult to foresee at programming time whether a
high-level method is being called by another higher-
level call or not.

The third issue (over what objects) developers
must solve is to delimit the scope of the checking. A
complete checking of every constraint after any
modification would involve unfeasible performance

121Fernández-Álvarez A., Fernández-Lanvin D. and Quintela-Pumares M..
OCL for Rich Domain Models Implementation - An Incremental Aspect based Solution.
DOI: 10.5220/0005517201210129
In Proceedings of the 10th International Conference on Software Paradigm Trends (ICSOFT-PT-2015), pages 121-129
ISBN: 978-989-758-115-1
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

rates. Ideally the programmer must keep track of
those constraints that might be compromised and the
affected objects and then, at the end of the high-level
method, check as few constraints, over as few
objects, as possible.

Finally, developers must guarantee the
consistence of the model in case a domain constraint
violation happens. There are many works on this
topic. Some applies backward error recovery
techniques (BER) that provide Atomicity, that is the
case of Reconstructors (Fernández Lanvin et al.,
2010). With that property in place, programmers can
assume that modifications are done in an all-or-
nothing way.

Although all these issues could be solved by
manual implementation, their high complexity
makes its development and maintenance an error
prone task that supposes a potential source of issues.

This paper describes the implementation of a tool
that (1) translates invariants code (OCL) into
executable code (AspectJ), (2) optimizes the
constraints by generating simpler (incremental)
versions regarding the events that affect the
constraint, (3) delays the execution of those
constraints until the close of the atomic context or a
high-level operation, (4) is easy to integrate with
atomic contexts such as Reconstructors, JPA
transactions (Bauer et al., 2014) or STM (Harris et
al., 2005) and (5) generates non-invasive code
(aspect code).

The remaining of this paper is organized as
follows: the second chapter summarizes the
proposal, the third presents a running example, the
tool is deep detailed in chapter four, chapter five
shows some results, chapter six comments related
work and chapter seven presents the conclusions.

2 PROPOSAL

We think that all the aforementioned difficulties
could be avoided and automatized by means of
appropriate consistency checking mechanisms that
complement atomicity contexts. Checking all
pending constraints when the atomic context is about
to close solves the when difficulty (2). What-to-do
(4) in case of failure is then solved due to the
atomicity property of the context. The other two,
how (1) and over what-object (3), can be solved
applying OCL analysis techniques and code
generation. Those techniques are able to convert the
original constraints into new incremental versions
(how) optimized for the events and objects affected

(what object). Consequently, programmers’ effort
would be reduced.

Developers must implement the domain model
classes as Plain Old Java Objects (POJO), and
provide all constraints expressed in OCL in a
separate unit.

Figure 1: A tool to generate invariants code.

The tool (Figure 1) analyzes the model
implementation and the OCL constraints. The
constraint engine generates the code implementing
an incremental checking of the given constraints.
The output is the AspectJ code to be weaved with
the programmer’s code.

The programmer must also delimit the context of
the business operations, in the same way he/she
delimits transactions. At the end of the context every
check will be done. If any constraint is violated, an
exception will be raised indicating a constraint
violation in the business operation.

 Context ctx = Context.createContext();
 try {
 <business operations here>
 ctx.close();
 } catch (…) {
 ctx.dispose();
 }

Listing 1: Execution of business code inside a context.

Ideally this consistence integrity checking will be
done in combination with some kind of atomicity
handling context able to restore the model to its
previous state. The tool currently integrates with
Reconstructors (Fernández Lanvin et al., 2010), and
with the Hibernate ORM (Bauer et al., 2014). The
design would easily integrate also software
transactional memory solutions (Harris et al., 2008;
Dice et al., 2006).

3 RUNNING EXAMPLE

In order to illustrate different stages of the

Java code Invariants
processor

OCL invariants

Incremental
Aspect code

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

122

constraints processing we will use a running
example based on the well-known Royal&Loyal
model proposed by Jos Warmer and Anneke Kleppe
(Warmer and Kleppe, 2003). We show a reduced
version of the Royal&Loyal system in Figure 2.

Figure 2: Reduced version of Royal&Loyal model.

Consider the following example restrictions
expressed as OCL invariants over this domain
model:
-- I1 Owner’s card must be an adult
context CustomerCard inv I1:
 validFrom.diffYears(owner.dateOfBirth)
 >= 18
-- I2 Every senior citizen's card must
have a positive credit in all his
transactions
context Customer inv I2:
 self.age() >= 65
implies
 self.cards
 ->forAll(c | c.transactions
 ->collect(t | t.points)
 ->sum() >= 0)

4 THE TOOL

The tool makes use of Dresden OCL ToolKit (DOT)
(Claas Wilke and Michael Thiele, 2010). It provides
a set of tools to parse and evaluate OCL constraints
on various models like UML, EMF and Java and is
also able to generate Java equivalent code. We take
advantage of the model loading feature to build a
representation of the domain model from Java
classes. The OCL parsing capabilities are also used
to build an AST representation of every OCL
constraint.

Over the AST representation of the constraint we
apply the algorithms proposed by (Cabot and
Teniente 2009), a transformation method of OCL
constraints into incremental and simpler versions.
That is, if the system is currently in a valid state and

we apply some modification over it, we do not need
to check all constraints over all instances (that would
be extremely inefficient), but just over the instances
affected and only those constraints that could
possibly be violated. Their algorithm transforms the
original constraints into an equivalent set of simpler
and optimized constraints according to the type of
modification (event type).

4.1 Processing Every Constraint

The processing, applied over every constraint AST,
consists of several stages as depicted in Figure 3.

Figure 3: Constraint processing.

4.1.1 Constraint Transformation

During the first stage OCL expressions are
simplified by translating them into a canonical form.
During this step some logical equivalences are
applied. An extensive relationship of this
equivalences can be found in (Cabot and Teniente,
2007). The process uses here a rule engine that
recursively applies every matching rule over the
AST until no more rules can be applied.

The second stage computes all possible structural
events that can affect a constraint. For this we follow
the process explained in (Cabot and Teniente, 2009).
Our implementation can detect five different types
of events:

• Insert: the creation of a new entity (call to new
operator)

• Delete: the deletion of an entity. There are some
extra difficulties here as in Java we cannot
delete an object. More on this later.

• Link: indicates the linking of two objects over
an association.

• Unlink: signals the unlinking of two objects.
• UpdAtt: indicates a change in the value of an

attribute (update attribute).

The third stage computes for each constraint-
event pair a new alternative equivalent to the first
but probably simpler and with fewer entities

OCL�for�Rich�Domain�Models�Implementation�-�An�Incremental�Aspect�based�Solution

123

involved. This new constraint is specialized for that
specific type of event.

After this transformation the simplification rule
engine is executed again with the addition of some
new rules (Cabot and Teniente 2009).

As a result of this process we end up with some
simpler constraints regarding every event for each
constraint. These new constraints will be simpler
and consequently, more efficient in execution.

Consider again the invariant example I1, it is
affected by the events UpdAtt(
CustomerCard.validFrom), Link(Holds), Insert(
CustomerCard) and UpdAtt(Customer.dateOfBirth).
Being the two last events better checked by the
redefinition I1-2 of the original invariant.

context Customer inv I1-2:
 self.cards->forAll(v |
 v.validFrom.diffYears(
 v.owner.dateOfBirth)>= 18)

The invariant I2 is affected by the events
Link(Accumulates), Unlink(Accumulates),
Link(Holds) and UpdAtt(Transaction.points). For all
those events the I2-2 redefinition is better focused
then the original.

context CustomerCard inv I2-2:
 not (self.customer.age() >= 65
 or self.transactions->
 collect(t | t.points)->sum() >= 0

4.2 Code Generation for Event
Detection

The output of the previous processing is a set of
classes, with the events and the invariants that
should be checked. The tool generates aspect code to
detect those events over the objects that form the
domain graph.

4.2.1 Attribute Modification

To detect this type of modification we create
pointcuts following this pattern:

protected pointcut <att>Set(<cl> obj):
 set(* <cl>.<att>) && this(obj);

Where <cl> and <att> are placeholders for the
class name and the attribute name. We advise that
pointcut with a block of code as shown in Listing 2.
after(<cl> obj): <att>Set(obj) {
if (!ContextFactory.hasActiveContext())
 return;
Method method = getInvariantMethod(
 <cl>.class, "<invariant_name>");
ContextFactory

 .getCurrentContext()
 .add(new Invariant(obj, method));}

Listing 2: Insertion into the context of an invariant checker
method after an event detection.

That code creates and registers an object in
charge of checking and invariant when invoked (new
Invariant(…)). This object will receive as argument
the affected object and the reflective representation
of the checking method to be executed. It is then
stacked on the context waiting for context close()
operation to be executed.

4.2.2 Linkage of Objects

We need to distinguish between linking to unique
association ends and many association ends. The
former are represented in Java by a reference to an
object, while the latter are usually supported by a
collection. One-side linking is detected with the
same pattern as for attribute modification detection.

In case of a many side, we need to detect
additions and removals to the underlying collection.
The tool introduces a proxy for the collection to
generate callbacks when a modification to the
underlying collection is done. That proxy must be
configured with the event types it has to notify
(additions or deletions). It is injected after the
assignment of the collection to the object’s field
during construction time. The pointcut we use here
follows a pattern like this:

pointcut <att>ColSetter(<cl> obj):
 set(Set <att>)
 && within(<cl>)
 && target(obj);

With and after advise for that pointcut the proxy
is inserted:
after(<cl> obj) : <cl>ColSetter(obj){
Field field =
 getField(<cl>.class, "<att>");
IncContainer ic = newProxy(obj, field);
applyValueToField(obj, field, ic);

ContainerEvent[] events;
Method method;
method = reflectivelyGetMethod(
 <cl>.class, "<invariant>");
events = new ContainerEvent[]{<evnts>};
InvariantBuilder builder =
 new InvariantBuilder(obj, method);
ic.registerInvariantBuilderForEvents(
 builder, events);
}

Listing 3: After advise pattern for many side linking and
unlinking

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

124

The last line of code configures the proxy with
the events it must notify and an invariant builder
object whose mission is to create and insert into the
context an invariant checker (new Invariant(…))
whenever one of the specified events occurs.

4.3 Creation and Deletion of Objects.
Extent of a Class

Those OCL constraints that involve an allInstances
expression are especially difficult to compute due to
the fact that not all created objects are valid objects.
Just by detecting the construction of an object (with
a pointcut on the constructor execution) will not be
enough. Some objects could be created just as
temporal values (variables in methods) and others
could be unreferenced objects waiting for the
garbage collector to be removed. Several questions
comes to the fore here: Which objects are valid
objects? When does an object become invalid (i.e. it
is no longer used)? Where is the collection of valid
objects?

In our understanding, the objects that must be
considered valid are those in the domain object
graph. More precisely, those objects that are
reachable from the graph. In that way we can detect
the addition of a new object when it is linked to
another object already in the graph. Conversely an
object deletion will be produced after the removal of
all links that maintain the object linked to the graph.

We consider an object to be in-the-graph when it
is reachable though “any” link of “any” association
type its class can have. Using another aspect we
crosscut the domain entity classes with two
collections, one for forward references, and another
for the backward ones.

privileged aspect GraphNodeAspect {
 boolean GraphNode.isInRepository;
 List<GraphNode> GraphNode.forward;
 List<GraphNode> GraphNode.backward;
 …
}

When an insertion or deletion (Insert or Delete
events) is detected the affected object is then added
or removed to/from the corresponding allInstances
collection.

void GraphNode.removeFromAllInstances(){
 Extents.get(this.getClass())
 .remove(this);
 for(GraphNode entity: forward) {
 if (! entity.isInGraph()) {
 entity.removeFromAllInstances();
 }}}

We already know how to detect when two
objects are linked or unlinked. Now we need to
augment the body of the previous after advise
pattern (Listing 3) to check the reachability of both
objects after the link/unlink operation.

after(<cl> obj) : <cl>ColSetter(obj){
 // same code as Listing 3

 // extra code to detect Insert
 events = new ContainerEvent[]{Insert};
 method = getInvariantCheckerMethod(
 <cl>.class, "<invariant>");
}

The system maintains a collection for every
domain class. The contents of these collections are
updated after the additions and removals.

There is one remaining question. A graph is a set
of interrelated objects, but there could be many
independent graphs. What is the real graph? In our
conception the graph must have some root nodes
(objects) to which other objects are connected after.
Those root nodes are usually well localized in the
design and stored in some type of collection
(Repository pattern in (Evans, 2003)). With that in
place we can state the condition an object must meet
to be considered in-the-graph: An object will be in
the graph if it is directly stored in a repository or is
reachable from another object that is already in the
graph.

public boolean GraphNode.isInGraph() {
 return isInRepository
 || anyRelatedIsInGraph();}
boolean GraphNode.anyRelatedIsInGraph()
{
 for(GraphNode n: backward) {
 if (n.isInGraph()
 && n.forward.contains(this)) {
 return true;}
 }
 return false;}

In this tool we use an annotation (@Repository)
to mark those collections that act as repositories.

Finally, by proxying those collections with and
aspect advise we are able to detect additions or
removals of root objects. Whenever a new object is
added its inRepository attribute is set to true, and the
opposite when it is removed. Consequently, all
objects reachable from this object will acquire or
lose their in-the-graph condition by reachability
(and will fire the respective Insert/Delete event).

4.4 Code Generation of Invariants

Once the invariants have been transformed in their

OCL�for�Rich�Domain�Models�Implementation�-�An�Incremental�Aspect�based�Solution

125

incremental versions they can be translated into
Java. For this step we use again the Dresden OCL
Toolkit. The output DOT code generator is a list of
strings, being the last one the final Boolean
expression used to raise and exception in case it
evaluates to false. The invariant checker method will
follow this pattern:

public void <inv_name>(<class> obj) {
 <DOT generated lines>
 if (! <DOT generated last line>) {
 throw new ConstraintException(…);}}

4.5 Execution Context

All business operations must be executed within a
context (similar idea as a transaction). This
functionality is represented by the Context interface.

public interface Context {
 public void add(Invariant i);
 public void close() throws …
 public void dispose() throws …
}

The developer must invoke the business
operations within an opened context as shown in
Listing 1. Explicitly context handling can be avoided
by annotating the business methods with @Context.
The tool put the context handling code behind the
scenes.

@Context public void doBusiness(…){…}

Context objects are obtained from a context
factory class that maintains the context object linked
to the current running thread. The add() method is
invoked from the event detectors to insert the
corresponding invariant checker method that, along
with other pending invariants, must be checked at
the end of the context (when the close() method is
called).

4.5.1 Event Simplification

During the execution of the business operation some
events may arise, and consequently the event
handler inserts an invariant checker method to verify
the corresponding constraint. The context stores
every checker object classified by its origin object,
event type and invariant method to call. With this
information in place there are some optimizations
that can be done to improve efficiency.

• In the case of UpdAtt events repeated over the
same object attribute, the context just store one.
If there is a previous Insert event then the
UpdAtt is irrelevant, as all invariant checkings

related to UpdAtt events are always verified by
an Insert event.

• With Delete events we must delete all previous
invariants for the same instance. Besides, if
there already an Insert event for the same entity
we do not even need to store the Delete event.

• The case of Unlink event is similar to the
previous one, if there already is a Link event for
the same association and object in the context
the Link event must be deleted. And if Link and
Unlink are in the same context, none of them
deserve to be checked.

• Finally, as different events could raise the same
invariant checking, the context object should
avoid registering the same object-invariant more
than once.

4.5.2 Final Execution

When the business operation is finished, the context
is closed and every pending check is executed. The
context catches and stucks every possible violation.
After that, all the accumulated exceptions are
gathered together in one final exception raised with
all that information in place. That way the
programmer can obtain information about every
broken constraint in one single shot.

5 RESULTS

We have tested our tool with the full version of the
Royal&Loyal model already presented (Warmer &
Kleppe, 2003). For that purpose we take the
invariant definitions available as example in the
Dresden Toolkit (Claas Wilke et al., 2009). The full
domain model consists of 11 entity classes and 2
extra types. It also has 20 OCL invariants of which 6
are of attribute or object type, 12 are of domain type
and 2 of class type.

Consider a use case in which a Customer
consumes a Service offered by a Program Partner of
a Loyalty Program to which both are associated and
is paid with the points accumulated on the Loyalty
Account by the previous customer’s Transactions.
During the operation the system has to register a
new Burning transaction for a number of points
specified by the service. Listing 4 shows the
involved invariants.
(1) context Burning
inv burningAsTransaction: points =
 oclAsType(Transaction).points
(2) context ProgramPartner
inv totalPointsEarning:

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

126

 self.services.transactions
 ->select(t| t.oclIsTypeOf(Earning))
 ->collect(tt | tt.points)
 ->sum() < 10000
(3) context ProgramPartner
inv totalPoints:
 self.services.transactions
 ->collect(t | t.points)
 ->sum() < 10000
(4) context LoyaltyAccount
inv oneOwner:
 self.transactions.card.owner->size()=1
(5) context LoyaltyAccount
inv transactionsWithPoints:
 self.points <= 0
 or self.transactions
 ->select(t | t.points > 0)
 ->size() > 0

Listing 4: Invariants generated.

As discussed before, in case of using a DbC
approach the object’s invariants would only be
checked due to object’s methods executions, and
thus the invariant’s affected object could be unware
of possible invariants violations due to changes in
other linked objects. As shown in Table 3, just one
invariant is of attribute or object type, therefore the
other invariants will not be checked (unless some
other methods of the related ProgramPartner and
LoyaltyAccount objects are executed).

Alternatively we can use an OCL interpreter,
widely used in some scenarios such as model to
model transformations. An interpreter checks all the
constraints against all objects in the model instance.
We can use the amount of objects visited as an
indicator for comparing the three approaches
mentioned.

After executing the tool we get 36 new invariants
related to 25 affecting events and 11 new AspectJ
files ready to be weaved with the entities1.

During the execution of the use case, several
affecting events will be produced indicating a
potential violation of their related constraints.

Table 1: Events raised by the use case execution.

Ev id Ev type Over entity type
1 Insert Transaction (base class of Burning)
2 Insert Burning
3 Link Transaction and Service
4 Link Transaction and CustomerCard
5 Link Transaction and LoyaltyAccount
6 UpdAtt LoyaltyAccount.points

1 The tool and the all related code for this testing can be
downloaded from http://www.di.uniovi.es/~alberto_mfa/
constraints.proto.zip

Table 2: Invariants stacked onto the context due to the
previous events (Id column relates with the id column of
Table 1).

Ev Id Context Invariant
2 Burning burningAsTransaction
3 ProgramPartner totalPointsEarning
3 ProgramPartner totalPoints
4 LoyaltyAccount oneOwner
5 LoyaltyAccount oneOwner
6 LoyaltyAccount transactionsWithPoints-19

In the Table 2 we can observe that event 1 has no
invariant associated, while event 3 has two of them.
Besides, the oneOwner-24 invariant is raised by two
different events. Thanks to context optimization
those repetitions are avoided and eventually only 5
invariants require to be checked.

Table 3: Type of each invariant and number of objects
accessed by each one (id refers to Listing 4). The symbol
(.) indicates the formula in the “Proposed Tool” column.

Inv Id Inv Type Proposed Tool OCL intrpr.
1 Attribute 1 NB * (.)
2 Domain 1 + SPP * (1 + TS) NPP * (.)
3 Domain 1 + SPP * (1 + TS) NPP * (.)
4 Domain 1 + (3 * TLA) NLA * (.)
5 Domain 1 || 1 + TLA NLA * (.)

Table 3 relates the invariant, the type and
number of objects accessed for its verification. The
third column indicates the number of objects using
the proposed tool while the fourth do the same for an
OCL interpreter. Here SPP stands for the average
number of Service objects linked to a
ProgramPartner object, TS represents the average
number of Transactions linked to a Service, and TLA
means the average number of Transactions linked to
a LoyaltyAccount.

The OCL interpreter must execute each invariant
for every context class object in the system. That is
represented in the right column where NB stands for
the total number of Burning transactions in the
system; NPP represents the total number of
ProgramPartners and NLA the total of
LoyaltyAccounts.

6 RELATED WORK

This idea of objects having to satisfy a set of
invariants traces back to the work of Hoare (Hoare,
1972). Later Meyer continued the idea with his
Design by Contract (DbC) methodology (Meyer,
1992). Nowadays this idea was also applied to many
other languages such as JML for Java (Leavens &

OCL�for�Rich�Domain�Models�Implementation�-�An�Incremental�Aspect�based�Solution

127

Cheon, 2005), Spec# for C# (Barnett et al., 2004),
etc.

Design by Contract is based on the principle of
an object being responsible for its own consistency.
This rule is practical for single objects not associated
with others (attribute and object constraints in our
classification), or just having references to its owned
objects (composition), but does not match with class
and domain constraints. Therefore, DbC is enough
for attribute and object constraints, but is not
practical for class and domain constraints.

There are also many works using OCL based
contracts. Some tools translate them into Java,
AspectJ (Cheon et al., 2008; Gopinathan &
Rajamani, 2008; Dzidek et al., 2006; Rebêlo et al.,
2008) or other contract languages such as JML
(Avila et al., 2008; Hamie, 2004) or CleanJava
(Cheon & Avila, 2010). All this works differ from
our approach in their adherence to DbC (attribute
and object constraints only). However, those that
generate AspectJ suggest techniques and templates.
In (Froihofer et al., 2007) the authors offers a
complete report and comparison of those techniques.
We take the idea of using proxies for them.

Henrique Rebêlo et al. (Leavens et al., 2014),
propose a JML to AspectJ compiler able to solve one
the problems addressed with our proposal, the
scattering of the contract specification among
different methods that may violate it. Their work
avoids contract scattering by centralizing the
contract specification in a common advice
complemented with JML. Our approach also avoids
scattering and promotes the invariants specification
as documentation by centralizing all invariants in
one single file.

Dzidel et al. (Dzidek et al., 2006) present another
OCL-contract to AspectJ tool, but leave as future
work some problems we try to solve with our
proposal: (1) the challenge of translating the OCL
allInstances expression into target code, and (2) the
runtime overhead of checking OCL collection
expressions as forAll, collect, etc. We have proposed
a possible solution to the allInstances problem using
the idea on being in-the-graph.

Another type of OCL tools are the interpreters
(Chimiak-Opoka et al., 2011). They are aimed to
check a model instance against its model and
constraints. That may seem a solution but they work
in a one shot fashion: they check every constraint
against the whole model instance. This solution is
practical for those situations in which the whole
model instance is created at once, for example in
model transformations (MDA). But this strategy will
lead to unfeasible performance rates for a domain

model being incrementally updated by business
logic method executions.

A common point in all these DbC and OCL tools
is that they do not perform any analysis of
constraints, thus the generated code is not
incremental. Although some of them can generate
code able to detect plain attribute modifications,
they insert the checking right after the modification
(Claas Wilke et al., 2009) or allow the programmer
to call the checking method later, leading to the
programmer the responsibility to explicitly decide
when and what method to call. They help with the
how difficulty, partially with the over-what object,
but neither with the when nor with the what-to-do
difficulties.

7 CONCLUSIONS

The proposed tool aids developers with the four
discussed difficulties. The generated code is able to
detect those potentially affecting events (what
object) which combined with the delayed checking
(when) and the transformed invariants translated to
executable code (how) is a key difference with all
DbC-like implementations for the specific case of
programs built around the domain model pattern.
The integration with atomicity contexts such as
Reconstructors (Fernández Lanvin et al., 2010) or
Hibernate (Bauer et al., 2014) solves the problem of
restoring the model to a previous state (what-to-do),
although that integration is not mandatory; the
generated code could work without that capability.

As we can conclude from results section the
efficiency is quite good. Due to the incremental
approach followed, every constraint is executed over
as few objects as necessary and the context
simplification process may reduce the number of
constraint checkings.

The tool also gives a possible implementation for
the allInstances problem, a classical problem when
translating OCL to Java code.

Finally, by maintaining all invariants in a single
source file it also helps with the problem of invariant
scattering while it preserves the invariants as
documentation for programmers.

ACKNOWLEDGEMENTS

This work has been funded by the European Union,
through the European Regional Development Funds
(ERDF); and the Principality of Asturias, through its

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

128

Science, Technology and Innovation Plan (grant
GRUPIN14-100).

REFERENCES

Avila, C., Flores, G. & Cheon, Y., 2008. A library-based
approach to translating OCL constraints to JML
assertions for runtime checking. In International
Conference on Software Engineering Research and
Practice, July 14-17, 2008, Las Vegas, Nevada.
Citeseer, pp. 403–408.

Barnett, M., Leino, K.R.M. & Schulte, W., 2004. The
Spec\# Programming System: An Overview. In
International Conference in Construction and Analysis
of Safe, Secure and Interoperable Smart Devices
(CASSIS ’04). Springer, pp. 49–69.

Bauer, C., King, G. & Gregory, G., 2014. Java Persistence
with Hibernate Manning Publications Co., ed.,
Manning Publications Co.

Cabot, J. & Teniente, E., 2009. Incremental integrity
checking of UML/OCL conceptual schemas. Journal
of Systems and Software, 82(9), pp.1459–1478.

Cabot, J. & Teniente, E., 2007. Transformation techniques
for OCL constraints. Science of Computer
Programming, 68(3), pp.179–195.

Cachopo, J.M.P., 2007. Development of Rich Domain
Models with Atomic Actions. UNIVERSIDADE
TÉCNICA DE LISBOA.

Cheon, Y. et al., 2008. An aspect-based approach to
checking design constraints at run-time. In pp. 223–
228.

Cheon, Y. & Avila, C., 2010. Automating Java program
testing using OCL and AspectJ. In ITNG2010 - 7th
International Conference on Information Technology:
New Generations. pp. 1020–1025.

Chimiak-Opoka, J. et al., 2011. OCL Tools Report based
on the IDE4OCL Feature Model. Eceasst, 44.

Claas Wilke, Dr.-Ing. Birgit Demuth & Prof. Dr. rer. nat.
habil. Uwe Aÿmann, 2009. Java Code Generation for
Dresden OCL2 for Eclipse.

Claas wilke & michael thiele, 2010. DRESDEN ocl2 for
eclipse Manual for Installation, use and Development.

Dice, D., Shalev, O. & Shavit, N., 2006. Transactional
Locking II. Distributed Computing, 4167, pp.194–208.

Dzidek, W.J., Briand, L.C. & Labiche, Y., 2006. Lessons
learned from developing a dynamic OCL constraint
enforcement tool for java. Lecture Notes in Computer
Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), 3844 LNCS, pp.10–19.

Evans, E., 2003. Domain-Driven Design: Tackling
Complexity in the Heart of Software, Addison-Wesley
Professional.

Fernández Lanvin, D. et al., 2010. Extending object-
oriented languages with backward error recovery
integrated support. Computer Languages, Systems &
Structures, 36(2), pp.123–141.

Fowler, M., 2003. Patterns of Enterprise Application
Architecture I. Addison-Wesley Longman Publishing
Co., ed., Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.

Froihofer, L. et al., 2007. Overview and evaluation of
constraint validation approaches in Java. In
Proceedings - International Conference on Software
Engineering. IEEE, pp. 313–322.

Gopinathan, M. & Rajamani, S.K., 2008. Runtime
monitoring of object invariants with guarantee.
Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 5289 LNCS,
pp.158–172.

Hamie, A., 2004. Translating the Object Constraint
Language into the Java Modelling Language.
Proceedings of the 2004 ACM symposium on Applied
computing - SAC ’04, p.1531.

Harris, T. et al., 2005. Composable memory transactions.
In Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel
programming - PPoPP ’05. New York, New York,
USA: ACM Press, p. 48.

Harris, T. et al., 2008. Composable memory transactions.
Communications of the ACM, 51(Section 2), p.91.

Hoare, C.A.R., 1972. Proof of correctness of data
representations. Acta Informatica, 1(4), pp.271–281.

Leavens, G.T. et al., 2014. AspectJML : Modular
Specification and Runtime Checking for Crosscutting
Contracts. In Proceedings of the 13th International
Conference on Modularity. Lugano, Switzerland:
ACM, pp. 157–168.

Leavens, G.T. & Cheon, Y., 2005. Design by Contract
with JML. Draft, available from jmlspecs. org, 1, p.4.

Meyer, B., 1992. Applying `design by contract’.
Computer, 25(10), pp.40–51.

Meyer, B., 2015. Framing The Frame. NATO Science for
Peace and Security, (Series D: Information and
Communication Security), pp.174–185.

Olivé, A., 2005. Conceptual Schema-Centric
Development: A Grand Challenge for Information
Systems Research. In O. Pastor & J. Falcão e Cunha,
eds. Advanced Information Systems Engineering.
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, pp. 1–15.

Rebêlo, H. et al., 2008. Implementing Java Modeling
Language contracts with AspectJ. SAC ’08:
Proceedings of the 2008 ACM symposium on Applied
computing, pp.228–233.

Warmer, J. & Kleppe, A., 2003. The Object Constraint
Language: Getting Your Models Ready for MDA 2nd
ed., Addison-Wesley Professional.

OCL�for�Rich�Domain�Models�Implementation�-�An�Incremental�Aspect�based�Solution

129

