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Abstract: This paper presents a multivariable inferential active disturbance rejection control (ADRC) method for 
product composition control in distillation columns. The proposed control strategy integrates ADRC with 
inferential feedback control. In order to overcome long time delay of gas chromatography in measuring 
product compositions, static and dynamic estimators for product compositions have been developed. The 
top and bottom product compositions are estimated using multiple tray temperatures. In order to overcome 
the colinearity issue in tray temperatures, principal component regression is used to build the estimator. The 
proposed technique is applied to a simulated methanol-water separation column. It is shown that the 
proposed control strategy gives good setpoint tracking and disturbance rejection control performance.

1 INTRODUCTION 

Distillation is the most common and important 
operation for purification and separation in industry. 
According to Humphrey (1995) the United States 
has around 40,000 distillation columns in operation 
that handle more than 90% of purification and 
separation processes. The capital investment for 
these distillation systems is estimated to be around 8 
billion US dollars. Referring to the data by Mix et al. 
(1978), Soave and Feliu (2002) state that distillation 
columns accounts approximately 3% of the total 
world energy consumption which is equivalent to 
about 2.87×1018 J of energy per year. Unfortunately, 
this enormous amount of energy is consumed in 
providing heat to convert liquid to vapour and 
condense the vapour back to the liquid at the 
condenser. 

With the growing environmental concern and 
rising energy awareness, there is a need to reduce 
the energy consumption in manufacturing industries. 
Reducing the energy consumption of distillation 
systems can be very effective in product cost 
reduction because distillation can produce more than 
50% of both capital and plant operating costs in a 
typical chemical plant which can have a significant 
impact on the overall plant profitability (Kiss and 
Bildea, 2011). Therefore, extensive studies have 
been carried out in recent years through the overall 

system integration and new distillation design with 
high energy efficiency. A suitable integration of 
distillation columns with the total process leads to 
substantial energy savings but the scope for this is 
usually limited (Linnhoff, 1988). Therefore, 
synthesis and design of new energy efficient 
distillation systems and development of advanced 
distillation control systems are both significant to 
improve distillation technologies. As a result, 
advanced and efficient control techniques are 
required to reduce the energy consumption and to 
meet the product compositions specifications. Strong 
loop interactions exist between composition loops 
that make distillation product composition control a 
difficult task. Likewise, composition analyzers 
usually introduce long time delay which affects the 
achievable control performance.  

In order to address these issues in distillation 
column control, this paper presents an inferential 
active disturbance rejection control (ADRC) method 
which integrates ADRC with inferential control. 
Multiple tray temperatures are used to estimate the 
top and bottom product compositions. Since tray 
temperatures are typically highly correlated, 
multiple linear regressions would in this case not be 
effective due to ill conditioning of the regression 
data matrix. In order to overcome the colinearity 
issue among tray temperatures, principal component 
regression (PCR) is used to build the estimator 
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models. Both static and dynamic PCR models are 
developed. In dynamic PCR models, tray 
temperature measurements at the current and past 
sampling times are used as model inputs in order to 
account for dynamic relationship between tray 
temperatures and product compositions. To the 
authors’ knowledge, the integration of ADRC and 
dynamic inferential control has not been reported in 
the literature.  

This paper is organised in five sections. Section 
2 presents an overview of ADRC and inferential 
control. Section 3 presents the development of static 
and dynamic estimator using PCR.  The inferential 
feedback control of distillation compositions based 
on these software sensors is represented in Section 4. 
Finally, the last section draws some concluding 
remarks.  

2 OVERVIEW OF ADRC AND 
INFERENTIAL CONTROL 

Disturbances and uncertainties are the main issues in 
control system synthesis especially in engineering 
applications. Dealing with disturbances and 
uncertainties has attracted the attention of engineers 
and scientists. There have been many control 
methods suggested for dealing with uncertainties 
such as adaptive control, robust control, variable 
structure control, intelligent control,  etc. However, 
due to their dependence and complexity on advanced 
analytical methodologies, these methods have 
certain limitations in engineering applications. 

PID control is still widely used in process control 
because of its simplicity and robustness. The main 
limitations of PID control are the error computation, 
noise degradation due to the derivative control, 
oversimplification and the loss of performance in the 
control law in the form of linear weighted sum and 
complication associated to the integral control.  

2.1 Overview of ADRC 

ADRC, derived the essence from PID control and 
observer, was pioneered over ten years ago by 
Jingqing Han (Han, 2009). The basic principle of 
ADRC is that it uses the extended state observer 
(ESO) to estimate the existing total disturbances, 
and cancel it or remove it from the system. The main 
advantage of ADRC is the disturbance rejection 
(Gao et al, 2011). Fig. 1 shows the structure of 
ADRC, which consists of three main components: 
transient profile generator (TPG), non-linear 
weighted sum (NWS), and ESO.  

 

Figure 1: Structure of ADRC. 

A. Transient Profile Generator  
The control signal with TPG can rapidly track the 
setpoint signal without overshoot with strong 
adaptability and robustness (Wang and Miao, 2010). 
TPG can smooth out sudden changes in setpoints. 
 
B. Non-linear Weighted Sum of Control Errors  
Over-simplification of PID control law is the major 
limitation of the conventional PID controller that 
consists of present, predictive and accumulative 
errors. This over-simplification ignores other 
complex parameters that can make the PID control 
performance more robust to the error signal. As a 
result, Han (2009) presented an alternative non-
linear function which depends on the magnitude of 
error signal to produce the control signal. 
  
C. Extended State Observer  
The main idea of ESO is to online estimate the 
variables that are usually inapproachable 
instrumentation-wise such as internal non-linear 
dynamics, external disturbance and model errors. 
Then, the undesired disturbances are then effectively 
compensated in the control effort. ADRC can 
successfully drive the controlled output signal to its 
required value if the ESO has a precise estimation 
for the internal non-linear dynamics, external 
disturbances and model error of the plant (Xia et al, 
2007).  

2.2 Overview of Inferential Control 

In the product composition control in distillation 
columns, it is really challenging to get reliable and 
accurate product composition measurements without 
long time delay in the sampling and analysis 
process.  Numerous composition analysers such as 
gas chromatography regularly introduce significant 
time delays. The overall time delay in composition 
measurements normally between 10 to 20 minutes 
(Mejdell and Skogested, 1991). Such amount of time 
delay substantially reduces the achievable 
performance of composition controllers. Moreover, 
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the reliability of the composition analysers is usually 
quit low and incurs high maintenance cost. 
Therefore, in distillation composition control, it is a 
usual practice to indirectly control product 
compositions by controlling tray temperatures or 
utilize the secondary tray temperature measurements 
to estimate and control the product compositions. 
Compared with composition measurements, 
temperature measurements are more economic, 
reliable and virtually without any measurements 
time delays.  

The estimator based inferential feedback control 
structure for product composition control in a binary 
distillation column is depicted in Fig. 2. The 
estimated variable is used instead of the measured 
variable to overcome the long measurement delay. 
The manipulated variables for composition control 
are the reflux rate (L) and steam flow rate to the 
reboiler (V). A sample of variable X (tray 
temperature) is taken continuously and sent it to 
estimator to estimate the output Y(s) (product 
composition) and generate signal YM as a feedback 
signal. The feedback controller can be any such as a 
multi-loop controller or a multivariable controller.  

 

Figure 2: Inferential feedback control. 

3 PCR MODEL BASED 
SOFTWARE SENSORS 

The distillation columns presented in this paper is 
comprehensive non-linear simulation of a methanol-
water separation column. A non-linear tray by tray 
mechanistic model has been developed using mass 
and energy balances. The following assumptions are 
made: constant liquid holdup, negligible vapour 
holdup and perfect mixing in each stage. The 
nominal operation data for this specific column are 
given in Table 1.  

The nominal operating point considered in this 
study is the top composition at 93% and the bottom 
composition at 7%. To generate data for building 

PCR inferential estimation models, series of random 
disturbances were added. Fig. 3 shows the top and 
bottom product compositions in the generated data. 
Fig. 4 shows the corresponding tray temperature 
data. It can be realized that correlation exists among 
tray temperature measurements.  

Table 1: Nominal distillation column operation data. 

Variables Nominal values 
Top concentration (y1) 93 % methanol 
Bottom concentration (y2) 7 % methanol 
Top product rate (D) 9.13 g/s 
Bottom product rate (B) 9.1 g/s 
Reflux flow rate (u1) 10.108 g/s 
Steam flow rate (u2) 13.814 g/s 
Feed concentration (d1) 50.12 % 
Feed flow rate (d2) 18.23 g/s 
No. of trays 10 

3.1 Static PCR Model 

In the static model, the product compositions at time 
t are estimated from tray temperatures at time t. The 
model can be defined in the following form: 
 

)()()()( 10102211 tTtTtTty θθθ +++=  (1) 
 

where y represents the product compositions, T1 
to T10 denote the tray temperatures from tray 1 to 
tray 10 respectively, θ1 to θ10 are model parameters 
corresponding to tray temperatures, and t indicates 
the discrete time.  

The data were scaled to zero mean and unit 
variance before model building to allow data with 
different ranges to be used within the same model. 
Then, the data is divided into training data set 
(samples 1 to 1189) and the testing data set (samples 
1190 to 1982). PCR models with different numbers 
of principal components were developed on the 
training data and tested on the testing data.   
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Figure 3: Top and Bottom product compositions. 
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Fig. 5 represents the sum of squared errors (SSE) of 
PCR models with different number of principal 
components on the training and testing data. The 
number of principal components is determined based 
on the minimum value of SSE on the testing data. 
The PCR model with the lowest SSE on the testing 
data is considered as having the appropriate number 
of principal components. 
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Figure 4: Tray temperatures. 

 

 
Figure 5: SSE of different PCR models. 

It can be seen from Fig. 5 that 6 principal 
components offers the best performance for the top 
composition on the testing data and 10 principal 
components give the best performance for the 
bottom composition. Hence, the suitable numbers of 
principal components for the top and bottom 
compositions were specified as 6 and 10 
respectively. The SSE on the testing data is 0.34 for 
the top composition and 1.943 for the bottom 
composition.  

3.2 Dynamic PCR Model 

The accuracy of inferential estimation could be 
further enhanced and improved if a dynamic PCR 
module is developed. Seven dynamic models with 
different orders were developed. As an example, the 
first order dynamic PCR model is of the following 
form: 

)1()()1(

)()1()()(

102.10101.1022.2

21.222.111.1

−++−
++−+=

tTtTtT

tTtTtTty

θθθ
θθθ


(2)

Data partition and data scaling are the same as in 
building the static PCR model. By taking the least 
SSE, the appropriate numbers of principal 
components can be determined.  Table 2 presents the 
numbers of principal components and the SSE on 
the testing data of these dynamic PCR models.  

Table 2: Number of principal components and SSE on 
testing data of different dynamic PCR models. 

Model 
orders 

 SSE 
No. of 

principal 
components 

1 
Top composition 0.662 11 
Bot composition 13.04 11 

2 
Top composition 0.361 14 
Bot composition 9.958 7 

3 
Top composition 0.045 32 
Bot composition 2.970 7 

4 
Top composition 0.140 50 
Bot composition 2.542 7 

5 
Top composition 0.122 17 
Bot composition 1.323 7 

6 
Top composition 0.145 42 
Bot composition 4.722 8 

7 
Top composition 0.141 54 
Bot composition 3.958 8 

It can be realized that the dynamic PCR models 
substantially improve the estimation accuracy over 
the static PCR especially the third order, fourth order 
and fifth order models. All these three models has 
been compared and discussed. The difference 
between these three models is not significant. Thus 
the fifth order dynamic PCR model is used. Fig. 6 
and Fig. 7 show, respectively, the predictions of the 
static PCR model and the 5th order dynamic PCR 
model. In these figures, the solid lines represent the 
actual measured compositions response while the 
dashed lines represent the corresponding model 
estimations predictions. Fig. 8 shows the estimation 
errors. It can be realized that the 5th order dynamic 
PCR model gives better performance and more 
accurate predictions or estimation than the static 
model.  

It can be seen from Table 2 that the dynamic 
PCR models quite significantly enhance the 
estimation accuracy over the static PCR model, 
especially the fourth order and fifth order models. 
The fifth order dynamic PCR model is given in the 
appendix.     
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Figure 6: Model predictions of the static PCR model. 
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Figure 7: Model predictions the 5th order dynamic PCR 
model. 
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Figure 8: Error signal between the actual and estimated 
signal. 

4 INFERENTIAL ADRC OF 
DISTILLATION 
COMPOSITION BASED ON 
PCR MODELS  

The ADRC scheme and inferential control are 
integrated together to control the top and bottom 
compositions in the distillation column. The 
integrated inferential ADRC is shown in Fig. 9. 

 
Figure 9: ADRC integrated with the inferential control. 

Eight inferential feedback control schemes with 
eight different software sensors (static and the first 
to the seventh order dynamic PCR models) were 
designed and developed.  

To investigate the performance of both static and 
dynamic order models, the following disturbance 
were added to the simulated distillation column. The 
feed rate was increased by 15% at the 200th minutes 
and the 1200th minutes, the feed composition was 
increased by 15% at the 1400th minutes. 
Furthermore, series setpoints changes are applied to 
both top and bottom product compositions.  Table 3 
shows the SSE (the difference between actual and 
estimated) of different schemes under the distur-
bances. It can be seen that the dynamic PCR 
schemes gives better performance than static PCR 
model especially the 3rd and 5th order dynamic PCR 
model based schemes.    

Fig. 10 and Fig. 11 demonstrate respectively the 
responses of static inferential ADRC scheme and 
dynamic inferential ADRC across a wide range of 
setpoint changes, feed composition and feed flow 
rate disturbances. The setpoint signal was smoothed 
by TPG. It can be seen that both compositions are 
well controlled and dynamic inferential ADRC gives 
better performance than the static inferential ADRC 
despite of large static control errors exist for the 
bottom product composition. This static control error 
generated due to the PCR model errors, which can 
be large when operating condition changes such as 
setpoint changes and/or disturbance changes.  

Table 3: SSE of different control schemes. 

Control schemes 
SSE in Top 

comp 
SSE in 

Bottom comp
Static PCR module 1.6889 1.8309 

1st order dynamic PCR model 0.2152 4.7203 
2nd order dynamic PCR model 0.8406 11.0903
3rd order dynamic PCR model 0.2118 0.7080 
4th order dynamic PCR model 2.6854 1.5137 
5th order dynamic PCR model 0.1856 0.1551 
6th order dynamic PCR model 1.2277 1.3307 
7th order dynamic PCR model 0.4868 0.2600 
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Figure 10: Responses of actual and estimated product 
compositions of static inferential ADRC (without mean 
updating). 
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Figure 11: Responses of actual and estimated product 
compositions of 5th dynamic inferential ADRC (without 
mean updating). 

To overcome the static control off-sets issues due to 
the continuous changes in process operating 
conditions, mean updating strategy proposed by 
Zhang (2006) is implemented here to eliminate 
control off-set and static estimation. The main idea 
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Figure 12: Responses of actual and estimated product 
compositions of static inferential ADRC (with mean 
updating). 

of mean updating strategy is that when a new steady 
state is detected, the process variable means are 
updated. Hence model predictions will be updated. It 
should be noted here that only occasional product 
composition measurements are required. Fig. 12 and 
Fig. 13 indicate the control performance with mean 
updating technique. It can be shown from these 
figures that, by using the mean updating technique, 
the static control offsets are eliminated. 
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Figure 13: Responses of actual and estimated product 
compositions of 5th dynamic inferential ADRC (with mean 
updating). 

Table 4: SSE of different control schemes. 

Control schemes 
Top 

Comp 
Bottom 
Comp 

Static PCR 
model 

Without mean updating 54542 6946.9
With mean updating 1.6889 1.8309

5th order 
dynamic PCR 
model 

Without mean updating 165.52 219.59

With mean updating 0.1856 0.1551

It can be seen from above figures that the resulting 
control off-sets and steady state model estimation 
bias have been eliminated through the mean 
updating technique. Moreover, it can be noticed 
from Table 4 that the dynamic PCR model has much 
smaller estimation off-sets than the static PCR 
model when the operating condition changed. This 
leads to a result that the dynamic PCR model is 
more robust than the static PCR model to process 
operating condition variations.  

5 CONCLUSIONS 

Static and dynamic inferential ADRC control 
schemes are proposed for product composition 
control in distillation columns. Inferential estimation 
models for product compositions are developed from 
process operational data using PCR. The estimated 
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product compositions are used as the controlled 
variables in the ADRC controller. Mean updating 
technique is used to eliminate the steady state model 
estimation bias and the resulting control off-sets. 
The proposed control method is applied to a 
simulated methanol-water separation column. 
Simulation results indicate the effectiveness and 
success of the proposed dynamic inferential ADRC 
control method over the static inferential ADRC 
control method.  
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APPENDIX 

Model parameters of the 5th order dynamic model 

Table 5: Top composition parameters. 

 t t-1 t-2 t-3 t-4 t-5 
T1 -0.037 0.006 0.077 0.0914 0.0385 -0.151 
T2 0.0121 -0.039 -0.030 -0.061 0.031 -0.001 
T3 0.115 0.059 0.031 -0.021 -0.002 -0.030 
T4 0.0513 0.014 -0.003 -0.035 -0.009 -0.020 
T5 0.0464 -0.022 -0.021 -0.044 -0.052 -0.016 
T6 -0.083 -0.045 0.056 0.068 0.065 0.016 
T7 -0.138 -0.069 0.020 0.044 0.071 0.055 
T8 -0.171 -0.110 -0.042 -0.023 0.004 0.007 
T9 -0.175 -0.103 -0.015 0.013 0.068 0.100 
T10 -0.219 -0.146 -0.088 -0.071 -0.047 -0.017 

Table 6: Bottom composition parameters. 

 t t-1 t-2 t-3 t-4 t-5 
T1 -0.569 -0.453 -0.307 -0.140 0.032 0.191 
T2 -0.122 -0.084 -0.037 0.0419 0.154 0.261 
T3 0.0559 0.052 0.0471 0.0596 0.0997 0.142 
T4 0.0191 -0.004 -0.041 -0.076 -0.093 -0.097 
T5 0.083 0.059 0.020 -0.033 -0.084 -0.122 
T6 0.113 0.065 0.016 -0.028 -0.005 -0.062 
T7 0.002 -0.027 -0.047 -0.053 -0.041 -0.015 
T8 0.032 0.014 0.004 0.007 0.026 0.055 
T9 -0.008 -0.033 -0.048 -0.048 -0.027 0.0079 
T10 0.017 0.001 -0.004 0.0026 0.028 0.0669 
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