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Abstract: The unmanned space flight software (FSW) domain contains a significant amount of variability within its 
required capabilities. Although all FSW execute commands from the ground station to control the 
spacecraft, there is significant amount of variability in the volume of commands that must be processed, the 
amount of control given to the ground station versus onboard autonomy, and the amount and type of 
hardware that requires controlling. This degree of architectural variability makes it difficult to develop a 
FSW software product line (SPL) architecture that covers the all possible variations. In order to address this 
challenge, this paper presents a SPL approach for FSW SPLs that manages variability at a higher level of 
granularity using software architectural design patterns and requires less modeling during the SPL 
engineering phase. Specifically it describes how variable design patterns can be interconnected to form 
FSW SPL software architectures. The design patterns are tailored to individual FSW applications during 
application engineering. The paper describes in detail the application and validation of this approach. 

1 INTRODUCTION 

The unmanned space flight software (FSW) domain 
is well-suited for applying software product line 
(SPL) modeling approaches due to its commonalities 
and variability. All FSW must be able to 
communicate with ground stations, to execute 
ground commands, and to control spacecraft 
attitude. However, within each of the capabilities 
there is a significant amount of variability, such as 
the volume of commands that must be processed, the 
amount of control that is given to the ground station 
versus onboard autonomy, and the amount and type 
of hardware that requires controlling. Choices made 
on this variability will affect the underlying software 
architectures and component interactions. This large 
amount of architectural variability makes it difficult 
to develop a FSW SPL architecture that covers all 
possible variability. This is because typical SPL 
approaches emphasize architectural variability at the 
subsystem, component, and connector levels during 
SPL engineering phase.  

This paper addresses the needs of FSW SPL 
architectures by reducing the amount of SPL 
engineering modeling through the incorporation of 

variable architectural design patterns and giving the 
application developer the capability of customizing 
the patterns to the needs of the application. Variable 
design patterns contain customizable components, 
connectors, and interactions rather than specific 
components, connectors, and interactions. Therefore 
several different combinations of specific 
components, connectors, and interactions are 
abstracted into one design pattern and do not need to 
be individually modeled. Thus less modeling is 
required during the SPL engineering phase. The 
trade-off is that the application engineering phase 
does require additional modeling since the 
application specific components, connectors, and 
interactions must be derived from the design 
patterns. However, guidance is provided to help 
assist the application engineer and ensure the SPL 
architecture is maintained. A key piece of this 
approach lies in the ability to interconnect design 
patterns to form software architectures. This paper 
specifically addresses how to systematically 
interconnect design patterns to create a FSW SPL 
software architecture. 

This paper is organized as follows. After 
surveying related work, it describes the overall 
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approach, including the interconnection of variable 
design patterns during SPL engineering and how this 
approach was applied to the FSW SPL. Then the 
application engineering process is described and 
illustrated using a real world case study. Next, 
discuss how this FSW SPL derived applications 
were validated. Finally, this paper includes a 
discussion on conclusions and areas of future work. 

2 RELATED WORKS 

There are many notable SPL approaches including 
(Clements and Northrop, 2002; Pohl et al., 2005; 
Gomaa, 2005; Weiss and Lai, 1999). Many existing 
SPL approaches typically focus on capturing all 
possible SPL variability in the SPL engineering 
phase. This becomes challenging in the FSW 
domain because all possible variability in 
components, connectors, and interactions must be 
individually modeled. On the other hand, other 
approaches focus on modeling the commonality of 
the SPL and define variation points where variability 
is permitted to be introduced during application 
engineering (Webber and Gomaa, 2004). However, 
this approach defers most development of variable 
components to application engineering. The 
approach described and applied in this paper takes 
an intermediate approach in between modeling all 
variability and limited variability by modeling SPL 
variability at the architectural design pattern level.  

Currently, there are very few works that discuss 
building FSW from software architectural design 
patterns (Herrmannn and Schöning, 2000; va 
Katwijk et al., 2001; Wilmot, 2005; Wilmot, 2006). 
These works describe the application a small number 
of design patterns to FSW, but do not provide an 
overall approach for building FSW from design 
patterns. 

A second set of related works describe 
approaches to build real-time and embedded 
software architectures from design patterns (Gomaa, 
2005; Selic 2004; Douglass, 2003; Bellebia and 
Douin 2006; Fliege and Geraldy 2005) and software 
architectural design patterns (Gamaa et al., 1995; 
Buschmann et al., 2007; Pettit and Gomaa 2006; 
Kalinsky, 2002; Dupire and Gernandez, 2001). 
While these approaches identify several useful 
patterns for this domain, they only provide high 
level guidance on their application to develop 
variable software architectures. In particular, they do 
not explicitly capture SPL variability in the patterns 
to assist with selection of SPL members.  

This paper builds on the authors’ previous work 

in as follows. The PLUS method (Gomaa, 2005) 
provides our overall design approach for product 
lines and (Fant et al., 2013) extends this for 
executable patterns. In (Fant et al., 2011), executable 
design patterns were used to build FSW 
architectures for single systems. This paper extends 
these works by addressing variability in the FSW 
domain and describing how variable design patterns 
are interconnected to form SPL and SPL member 
architectures. In (Fant, 2011), the concept of a 
design pattern based SPL was addressed at a very 
high level and did not include the specific details 
about the approach. This paper extends the previous 
works to describe the details of how variable design 
patterns are interconnected to form SPL 
architectures and relates this information to the 
validation. 

3 INTEGRATING DESIGN 
PATTERNS DURING FSW SPL 
ENGINEERING 

Our approach is based on SPL design patterns, in 
which variable design patterns are systematically 
integrated to form SPL architectures. The main steps 
include: (1) Build a set of variable distributed real-
time and embedded (DRE) architectural design 
patterns that can be leveraged as a starting point, (2) 
Develop a set of use cases and features that are used 
to define SPL, (3) Perform use case activity 
modeling to precisely capture the sequencing in use 
cases, (4) Create a feature to design pattern 
mapping, (5) Customize the variable DRE design 
patterns to become variable SPL specific design 
patterns, (6) Define the design pattern sequencing 
and interconnection. The subsections below 
describes each of the main steps in more detail and 
describes the application to the FSW SPL’s 
command and data handling (C&DH) subsystem.  

3.1 Variable DRE Design Patterns 

The first step in our approach is to create variable 
DRE architectural and executable design patterns, 
which serve as the foundation for SPLs built using 
our approach. Each variable DRE architectural 
pattern contains several UML views including 
collaboration diagrams, interaction diagrams, and 
component diagrams. Variable design patterns are 
modeled at the DRE level so that they can be reused 
and customized across multiple domains. Each 
variable DRE design pattern is supplemented by an 
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executable design pattern that consists of interacting 
objects that execute state machines. The purpose of 
the executable version of the design pattern is to 
specify the internal behavior of a representative set 
of the pattern’s objects and to facilitate validation of 
the pattern. Each executable design pattern is 
individually simulated and validated using Harel’s 
approach of executable object modeling with 
statecharts (Harel, 1997). We created a total 21 DRE 
design patterns (Fant et al., 2011; 2013) using this 
approach, including the centralized control, 
distributed control, hierarchical control and layers 
design patterns. The approach enables architectures 
produced by interconnecting these design patterns to 
be fully executable and validated, as described in 
Section 5.  

3.2 Use Case and Feature Modeling 

Next, SPL use cases are developed applying the 
PLUS method (Gomaa, 2005). This involves 
identifying the use cases and variability within the 
use cases through variation points, optional and 
alternative use cases. From the use case variability, 
an initial feature model can be developed (Gomaa, 
2005). Features represent common and variable 
characteristics or requirements of the SPL. Features 
are analyzed and categorized as common, optional, 
or alternative. Related features can be grouped into 
feature groups, which constrain how features are 
used by a SPL member (Gomaa, 2005).  

When use case modeling was applied to the FSW 
SPL C&DH subsystem, three kernel use cases with 
internal variability were identified. Within these use 
cases, numerous variation points were identified. 
These variation points resulted in identifying 52 
features. A subset of the FSW C&DH feature model 
is shown in Fig. 1. This feature model contains an 
<<exactly-one-of feature group>> called Command 
Execution that is based on the Command Execution 
use case’s Command Volume variation point. This 
feature group has three <<alternative>> features. 
The Low Volume Command Execution feature is 
used when a small amount of commands needs 
processing, the High Volume Command Execution 
feature is used when a large amount of commands 
needs processing, and Time Triggered Command 
Execution is used when commands must be executed 
with strict temporal predictability. There is also a 
significant amount of variability in the amount and 
type of hardware that must be commanded, which 
are captured in variation points.  

3.3 Use Case Activity Modeling 

The next step is to create variable use case activity 
models (Fant, 2011; Fant et al., 2013) Use case 
activity models are activity diagrams that make the 
sequencing of interactions between actor(s) and 
system in a use case description more precise. In 
variable use case activity diagrams (Fant, 2011), 
SPL variability is captured in two ways. First, 
feature based conditions are used when the flow in 
activity is associated with SPL features. Feature 
based conditions, such as [CommandExecution = 
“LowVolume”], are modeled as branches from 
decision nodes. Second, steps with variability, which 
are denoted using the <<adaptable>> stereotype, can 
be successively refined in separate sub-activity 
diagrams. Our approach only refines adaptable steps 
when they are impacted by a small number of 
variation points. If an adaptable step has a 
significant amount of variation points, then 
modeling is deferred until application engineering 
phase.  

Use case activity modeling was performed on 
three uses cases of the FSW SPL’s C&DH 
subsystem. The FSW SPL’s Execute Commands use 
case involves executing commands from the ground 
station to ensure the spacecraft is not put into an 
unsafe state and the actions taken are appropriate for 
the spacecraft’s mode. This use case is impacted by 
the Command Execution feature condition as it 
influences which steps are performed. Thus the path 
taken through the Execute Commands use case 
activity diagram (see Fig. 2) is heavily impacted by 
Command Execution feature condition. 

As seen in Fig. 2, several variation points 
including modes and spacecraft IO devices (listed in 
parentheses after the step’s description) influence 
the adaptable steps in the use case activity diagram. 
The Spacecraft IO device variation point specifies 
variations in the optional and alternative I/O devices. 
These devices include antennas, antenna gimbals, 
memory storage devices, power appendages, power 
devices, attitude control devices, attitude 
determination devices, payload devices, thrusters, 
heaters, louvers, and temperature sensors. Since all 
adaptable steps in this use case have significant 
amount of variability as seen by the multitude of 
variation points, more detailed activity modeling 
was deferred to application engineering. 

3.4 Feature to Design Pattern Mapping 

The next step is to create a feature to design pattern 
mapping. The purpose of the feature to design
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Figure 1: Subset of FSW C&DH feature model. 

 

Figure 2: Execute Commands use case activity model. 

pattern mapping is to determine which variable 
design patterns could be mapped to SPL features. To 
accomplish this goal, a dynamic SPL interaction 
model (Gomaa, 2005) is created for each feature, 
which captures the objects and object interactions 
that realize each feature. Then the dynamic 
interaction models are analyzed to identify where 
variable design patterns can be applied in the SPL 

and then relates these patterns back to the SPL 
features. Features that are mapped to variable design 
patterns are called pattern specific features. Pattern 
specific features are coarse grained features that 
relate to a design pattern and differentiate among 
other related features. Pattern variability features 
are fine grained features, which influence the 
variability within a pattern specific feature. 
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The feature to design pattern mapping is 
demonstrated using the Low Volume Command 
Execution feature. The interaction model for the 
Low Volume Command Execution alternative 
feature is shown in Fig. 3. Since this feature is 
typically associated with small spacecraft, only the 
kernel input, output, and IO devices are modeled. 
The objects and interaction sequence supporting this 
feature are consistent with the Centralized Control 
design pattern (Fliege et al., 2005; Gamaa et al., 
1995). Thus the Low Volume Command Execution 
feature is categorized as a pattern specific feature 
and is mapped to the Centralized Control design 
pattern. 

3.5 Executable Design Patterns 

The next step is to derive the variable SPL 
architectural and executable design patterns from the 
variable DRE architectural and executable design 
patterns for each of the pattern specific features. The 
purpose of the variable SPL design patterns is to add 
domain specific knowledge to the design patterns so 
they can be systematically incorporated into SPL 
architectures. This process involves systematically 
updating the components, interactions, and 
component behavior to reflect the SPL specific 
components and variability based on the SPL 
features. While all the architectural views are 
important, this paper is primarily focused on the 
dynamic interaction view, since interaction diagrams 
will be heavily used when interconnecting design 
patterns and validating design pattern 
interconnections.  

First, the interaction diagrams capture the object 
interactions within a design pattern. If the precise 
sequence of object interactions is known, then it 
should be modeled. However, in design patterns 
where there is variability in the object interactions, 
then only a subset of object interactions is modelled, 
as shown in Fig. 3. Detailed interaction modelling, 
in which other application specific I/O objects and 
interactions might be added to the pattern, is 
deferred to the application engineering phase. For 
the FSW SPL’s C&DH subsystem, 24 interaction 
diagrams were created, one for each of the pattern 
specific features. As an example, Fig. 3 shows an 
interaction diagram for the FSW Centralized Control 
design pattern that is mapped to the specific feature. 

This feature captures the FSW processing and 
execution for a set of ground commands, which 
involves invoking actions on the input, output, and 
IO components. The type and amount of input, 
output, and IO components in the FSW Centralized 

Control design pattern is influenced by several 
pattern variability features. For example, the 
optional Heater pattern variability feature captures 
whether or not the spacecraft has heaters. This 
results in an optional Heater superclass component, 
as seen in Fig. 3. The specific Heater subclasses are 
not modeled until the application engineering phase. 

 

 

Figure 3: Interaction diagram for the Low Volume 
Command Execution pattern. 

Secondly, state machines (Buschmann et al., 
2007) capture the internal behavior of each active 
component in the design pattern. For the FSW SPL’s 
C&DH subsystem, a state machine was created for 
each active component in the FSW SPL’s 24 
patterns. A subset of the state machine for the CDH 
Centralized Controller from the Centralized Control 
Design pattern is illustrated in Fig. 4. Other common 
modes including launch mode and safe mode are 
also modeled, but not depicted in Fig. 4. The states 
comprising the modes and controlling logic are 
based on the SPL pattern specific feature. The 
actions within the states, which are not depicted in 
Fig. 4, are determined from the pattern specific and 
pattern variability features. 

3.6 Design Pattern Interconnection 

The next step is to capture how the variable design 
patterns are integrated together to form software 
architectures. A use case scenario driven approach is 
used to interconnect variable design patterns to 
achieve the SPL functionality. For each use case 
scenario, an interaction overview diagram is created 
based on the use case activity diagram. This is 
accomplished by using the same control flow in the 
use case activity diagrams but replacing each 
activity with a reference to the variable SPL design 
pattern’s interaction diagram that supports that step. 
On feature based condition paths, the variable design 
pattern used to achieve one or more of the steps 
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along the path can be determined from the feature to 
design pattern mapping. 

After an interaction overview diagram is created, 
the design pattern interconnections are determined. 
When the interaction diagrams for two design 
patterns appear sequentially, they must communicate 
with each other and must be interconnected. 
Interaction modeling and the design pattern 
integration process is illustrated using the FSW SPL 
Execute Commands use case. An interaction 
overview diagram is created using the same control 
flow in the use case activity diagram. For instance, 
since the Execute Commands use case activity 
diagram (Fig. 2) begins with a feature based 
decision, the Execute Commands interaction 
overview diagram (Fig. 5) also begins with this same 
decision point. Each of the steps in the use case 
activity diagram in Fig. 2 is updated to reflect the 
supporting variable design pattern’s interaction 
diagram using the feature to design pattern mapping 
table, as depicted in Fig. 5. For example, Step 1 on 
Fig. 2 involves sending a time update. This step is 
supported by the Spacecraft Clock pattern specific 
feature, which is mapped to the FSW Spacecraft 
Clock Multicast executable design pattern. 
Therefore the FSW Spacecraft Clock Multicast’s 
interaction diagram is referenced on Fig. 5. Step 2 
on Fig. 2 involves executing a small number of 
commands. This feature is supported by the Low 
Volume Command Execution feature, which is 
mapped to the FSW Centralized Control interaction 
diagram, as shown in Fig. 5.  

After all the FSW SPL interaction overview 
diagrams were created, they were analyzed. If there 
are two sequential variable design patterns, then 
these design patterns must be interconnected. For 
instance, in Fig. 5, the FSW Spacecraft Clock 
Multicast executable design pattern interconnects 
with the FSW Centralized Control and FSW 
Hierarchical Control executable design patterns. 
Patterns are interconnected using connectors. The 
last interacting component (client or producer) of 
one pattern sends a message to the receiving 
component (consumer or server) of the other pattern. 
The appropriate provided and required interfaces are 
specified during architectural design.  

4 APPLICATION ENGINEERING 

After the development of the FSW SPL architecture 
and components, applications are derived from 
them. This is accomplished by first selecting the 
appropriate FSW SPL features based on the 

application’s requirements. From the feature to 
design pattern mapping, the appropriate FSW SPL 
executable design patterns are then determined and 
customized to create the application executable 
design patterns. This approach is illustrated with the 
case studies described in the next section. 

5 CASE STUDIES 

This section describes case studies of the application 
engineering process, where FSW applications are 
derived from the FSW SPL assets. The process is 
applied to the Student Nitric Oxide Explorer 
(SNOE) and Solar TErrestrial RElations 
Observatory (STEREO) application case studies, 
which are real-world space programs (SNOE,, 2010; 
STEREO, 2010). SNOE mission involves using a 
small spin stabilized spacecraft in a low earth orbit 
to measure thermospheric nitric oxide and its 
variability. SNOE is a low earth orbit and relies 
heavily on the ground station to control the 
spacecraft’s small amount of hardware. STEREO 
mission involves using two nearly identical three-
axis stabilized spacecraft orbiting around the sun to 
study the nature of coronal mass ejections. Since 
STEREO is not in constant communication with the 
ground station, it relies on a significant amount of 
autonomy and stored ground commands to control 
the spacecraft. These case studies were selected 
because they cover a wide variety of spacecraft in 
the FSW domain.  

5.1 Feature Selection 

SPL pattern specific and pattern variability features 
are selected based on the application’s requirements. 
For SNOE’s C&DH subsystem derivation from the 
FSW SPL, a total of seven pattern specific features 
and seven pattern variability features were chosen. 
Because SNOE is only required to process a low 
volume of ground commands, the Low Volume 
Command Execution alternative feature was selected 
from the Command Execution pattern specific 
feature group. Since this feature depends on the 
Spacecraft Clock pattern specific feature, SNOE 
must also select this feature. 

For STEREO’s C&DH subsystem’s derivation 
from the FSW SPL, a total of 10 pattern specific 
features and 15 pattern variability features were 
chosen. Because STEREO must store and process a 
large number of commands from the ground station, 
the High Volume Command Execution alternative 
feature was selected from the Command Execution
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Figure 4: State machine subset for centralized controller. 

 

Figure 5: Execute Commands interaction overview diagram. 

pattern specific feature group. Some pattern 
variability features are also selected. Because 
STEREO is required to have onboard active thermal 
control, the optional Heater pattern variability 
feature is selected.  

5.2 Design Pattern Customization 

The next step in application engineering process is 
to determine the design patterns that an application 
utilizes. This information is derived from the SPL 
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feature to design pattern mapping and the 
application’s selected features.  

When this step is applied to SNOE, seven 
variable design patterns were selected based on 
SNOE’s seven pattern specific features. STEREO 
selected a total of 10 variable design patterns based 
on its pattern specific features selection. For 
example, SNOE selected the FSW Centralized 
Control design pattern since it is mapped to its Low 
Volume Command Execution pattern specific 
feature, as shown in Figure 6. This figure depicts the 
CDH Centralized Controller connected to several 
input objects and output objects, some of which are 
kernel objects, while others are optional and variant 
SNOE specific objects. In contrast, STEREO 
selected the FSW Hierarchical Control design 
pattern since it is mapped to the High Volume 
Command Execution pattern specific feature.  

Next, the application’s executable design 
patterns are derived from the variable SPL 
executable design patterns. This involves 
systematically customizing the variable SPL design 

pattern specification and executable pattern based on 
the application’s features. As part of this process, if 
an SPL design pattern’s interaction diagram only 
contained a representative set of interactions, then 
the interaction diagram must be updated to reflect 
the precise sequence of interactions.  

5.3 Design Pattern Interconnection 

The application’s design pattern interconnections are 
determined based on the application feature 
selection. The interaction overview diagrams from 
the FSW SPL’s C&DH subsystem were customized 
for each application. As SNOE selected to use the 
Low Volume Command Execution feature, therefore 
only the feature based conditions corresponding to 
this feature are selected for SNOE. This includes the 
FSW Spacecraft Time Multicast interaction diagram 
and the FSW Centralized Control interaction 
diagram. 

 

Figure 6: SNOE specific Centralized Control collaboration diagram. 

Table 1: Subset of Design Patterns Validation. 

FSW SPL Design Patterns SNOE Design Patterns STEREO Design Patterns 
FSW Hierarchical Control  STEREO Hierarchical Control 
FSW Distributed Control   
FSW Centralized Control SNOE Centralized Control  
FSW Hierarchical Control with Command Dispatcher   
FSW Centralized Control with Command Dispatcher   
FSW Distributed Control with Command Dispatcher   
FSW Telemetry Storage and Retrieval Compound Commit  STEREO Telemetry Storage and Retrieval Compound Commit 

FSW Telemetry Storage and Retrieval Client Server 
SNOE Telemetry Storage and Retrieval Client 
Server 

 

FSW Telemetry Formation Master Slave with Pipes and Filters   
FSW Telemetry Formation Master Slave with Pipes and Filters 
& Strategy 

  

FSW Telemetry Formation Pipes and Filters SNOE Telemetry Formation Pipes and Filters  
FSW Telemetry Formation Pipes and Filters with Strategy  STEREO Telemetry Formation Pipes and Filters with Strategy 
FSW Telemetry Formation Reliability Protected Single Channel   
FSW Telemetry Formation Reliability Sanity Check  STEREO Telemetry Formation Reliability Sanity Check 
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Table 2: FSW SPL Execute Commands Decision Table. 

Test Specifications 
«adaptable»  
LV Cmd Exe. 

«adaptable»  
HV Cmd Exe. 

«adaptable» 
TT Cmd Exe. 

Feature Conditions 
CommandExecution = LowVolume T   
CommandExecution = HighVolume  T  
CommandExecution = TimeTriggered   T 
SpacecraftClock T T F 

Preconditions :Ground Commands Received 

Actions 
1 <<adaptable internal step>> Send spacecraft time update (Command Volume) X X  

2 
<<adaptable internal step>> Execute a low volume of commands that is appropriate for spacecraft mode (Modes and 
Spacecraft IO Devices) 

X   

3 
<<adaptable output step>> Execute a high volume of commands that is appropriate for spacecraft mode (Modes and 
Spacecraft IO Devices) 

 X  

4 
<<adaptable output step>> Execute commands with strict temporal predictability & in manner that is appropriate for 
spacecraft mode (Modes and Spacecraft IO Devices) 

  X 

Post Conditions: Commands Executed  

 

STEREO’s interaction overview modeling 
follows the same customization process. However, 
STEREO selected the High Volume Command 
Execution feature, therefore only the feature-based 
conditions corresponding to this feature are selected. 
This includes the FSW Spacecraft Time Multicast 
interaction diagram and the FSW Hierarchical 
Control interaction diagram. 

6 VALIDATION 

The approach to validate the DRE patterns, the FSW 
product line, and the SNOE and STEREO 
application case studies involved several validation 
steps throughout the development. First, the 
individual DRE design patterns were validated by 
ensuring functional correctness of the individual 
executable design patterns. This was accomplished 
by creating test cases to cover all states, transitions, 
and actions for the state machines of all the 
components in the DRE executable design pattern. 
Input data to the test cases included source states and 
event sequences that trigger a test case and output 
data including the expected destination states and 
actions. 

Second, the FSW SPL individual design patterns 
were also validated for functional correctness. 
Again, test cases were created that covered all states, 
transitions, and actions for the state machines of all 
the components. Then the expected results of the test 
cases were compared with the actual behavior of the 
state machines. Table 1 shows a subset of the FSW 
SPL design patterns that were validated using this 
approach.  

Thirdly, the SNOE and STEREO design patterns 
were individually validated. Again, test cases were 
created to cover all states, actions, and transitions for 
the design patterns. However, test cases are different 
from the FSW SPL test cases because they must test 

all of the application customizations, including data, 
logic, and additional states. Then the test cases were 
compared with the actual behavior of the state 
machines.  

A subset of the design patterns that were 
validated for SNOE and STEREO are listed in Table 
1. The design patterns are listed next to the FSW 
SPL design patterns they were derived from, in order 
to show which SPL patterns are reused in SNOE and 
STEREO. Finally, the entire SNOE and STEREO 
architectures, including the design pattern 
interconnections, were validated. To achieve this, a 
feature based validation approach based on CADeT 
(Olimpiew and Gomaa, 2009) was applied. This 
approach helps to reduce the overall validation effort 
by created reusable SPL test cases that can be 
customized for SPL applications. The validation is 
described below in more detail.  

The first step was to create a decision table of 
reusable test specifications for each SPL use case 
activity diagram and sub-activity diagram. This step 
is demonstrated using the Execute Commands’ 
activity diagram from Fig. 2. Each unique path 
through the use case activity diagram is given a test 
specification column in the decision table, as seen in 
Table 2. The <<adaptable>> stereotype on the test 
specifications implies it contains adaptable steps. 
The feature condition rows indicate under what 
feature selections this test specification applies. The 
action rows indicate what steps are executed for the 
test specification.  

The second step is to customize the FSW SPL 
test specifications for SNOE and STEREO. This is 
accomplished by updating the decision tables to 
include just the test specifications that are applicable 
to the application. For example, in FSW SPL the 
Execute Command decision table in Table 2 
contains three test specifications. SNOE only uses 
the Low Volume Command Execution feature, thus 
adaptable test specification LV Exe. Cmd. (column 2 
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in Table 2) is the only applicable test specification 
for SNOE. STEREO uses the High Volume 
Command Execution feature, thus adaptable test 
specification HV Exe. Cmd. (column 3 in Table 2) is 
the only applicable test specification for STEREO.  
 The next step in the validation process is to refine 
the adaptable steps in the test specifications to the 
application. This involves refining each adaptable 
test specification into non-adaptable steps based on 
the application’s feature selection and populating the 
steps. Steps are made into non-adaptable steps by 
using the application’s specific variants, such as 
replacing the Antenna superclass with the Low Gain 
Antenna variant and listing the application specific 
actions, such as turn on Low Gain Antenna.  

Next, the test specifications input data, steps, and 
output data are populated with the state, transitions, 
and actions from the design pattern component state 
machines. Creating this level of test specifications 
detail ensures that integration testing of individual 
design patterns is performed at application testing, 
as well as testing interconnected design patterns.  

The final step in the functional validation is to 
execute the tests against the software architecture, 
which consists of concurrent executable state 
machines. This testing is different from validation of 
the individual design patterns because it not only 
tests the design patterns, but also how the design 
patterns are integrated together. A total of 22 
feature-based test specifications were created and 
passed for SNOE and 32 feature-based test 
specifications were created and passed for STEREO. 

7 CONCLUSIONS 

This paper has described the application of a design 
pattern based SPL approach for building FSW SPL. 
This approach is useful in the FSW domain because 
architectural variability is captured at a larger degree 
of granularity using software architectural design 
patterns, thus less modeling is required during the 
SPL engineering phase. The trade-off with this 
approach is that additional modeling is required 
during the application engineering phases. This 
trade-off is acceptable in domains such as FSW, 
where modeling all possible variations during the 
SPL engineering phase can be time consuming and 
may not always be known in advance.  

Using the design pattern based approach for the 
FSW SPL required significantly less component 
modeling during SPL Engineering than a 
component/connector based SPLE approach. In the 
FSW SPL, during the SPL Engineering phase, the 

design pattern based approach required modeling 
only 29 components containing representative SPL 
behavior, while the component/connector based 
SPLE approach required 53 components containing 
parameterized or specialized behavior for all the 
different SPL variants. As previously discussed, the 
trade-off is that additional modeling is required 
during the application engineering phases. During 
the application engineering of SNOE, 10 FSW SPL 
components were customized to the application and 
in STEREO 22 FSW SPL components were 
customized.  

Furthermore, this paper has described a 
systematic model driven approach to determine how 
design patterns are interconnected to form software 
architectures. Additionally, an approach to 
validating the executable software architectures at 
design time is also described.  

Several avenues of future investigation could be 
pursued. First, this work should be extended to 
address model-driven software performance 
validation since meeting performance requirements 
is as important as meeting functional requirements in 
DRE systems. Additionally, this approach can be 
applied to other distributed real-time application 
domains to illustrate its applicability across other 
domains. Finally, future work should address 
additional automation to increase the practicality of 
this work. 
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