A Public-Key Cryptography Tool for Personal Use
A Real-world Implementation of ECC for Secure File Exchange

Luigi Maria Bottasso
R&T Department, AgustaWestland S.p.A., via Giovanni Agusta 520, Cascina Costa di Samarate (VA), Italy

Keywords:

Abstract:

Elliptic Curve Cryptography, Direct Embedding Schemes, Public Key Infrastructure, Social Networking.

A new library of modular arithmetic and cryptographic functions was coded, and then used for the development

of a crypto tool. We present the architecture and functionality of a hybrid ECC-AES cryptosystem which can
be quickly deployed even in absence of Public Key Infrastructures and associated Certification Authorities.
The tool was conceived for use in combination with readily available resources, e.g. email and possibly social
networks. It allows secure exchange of files with associated ECDSA digital signature, providing the user
with substantial flexibility and control of the security settings. Established protocols were used in an original
way, notably exploiting direct embedding of the AES session key into an elliptic curve. The code has been
developed in C++ entirely from scratch, with no use of pre-existing libraries. The implementation is associated
with a web site http://www.elcrypto.com, www.elcrypto.com aimed at promoting the benefits of Elliptic Curve

Cryptography.

1 INTRODUCTION

Businesses around the world rely on well-established
secure communication solutions, notably the concept
of Public Key Infrastructures applied to Virtual Pri-
vate Networks (VPNs). VPNs allow employees ac-
cess to their company’s intranet while being outside
of the office, preserving the security features of a pri-
vate intranet.

But what happens when a corporate computer
with a VPN certificate is not available? There are in-
deed circumstances where subjects need to communi-
cate securely but do not have a PKI available.

We perceive there is at least a niche need for a
quickly deployable form of public-key cryptography,
giving users more control and less dependence on
third parties. A very interesting concept is the one
suggested by Gruhn (V. Gruhn, 2007) where social
networks are described as a possible new vehicle for
the dissemination and authentication of public keys
associated with users.

If public keys can be somehow authenticated by
readily available web infrastructure (not complex and
maintenance-intensive ones like PKIs, VPNs etc.)
then an encryption tool can be used for personal ex-
change of information between any two subjects, just
by exchanging an encrypted document as an email
attachment or by loading it on the personal page of

194 Maria Bottasso L..

a social network. In this paper we describe the ba-
sic functionality and architecture of an Elliptic Curve
Cryptography (ECC) tool which we developed for the
above purpose.

In order to maximize the design flexibility a
choice was made to start from a blank sheet of pa-
per instead of making use of open source libraries.
We thus developed and implemented all basic build-
ing blocks, starting from big-number arithmetic func-
tions, modular arithmetic, primality tests, elliptic al-
gebra etc.

The same applies for the AES block cipher and
SHA-2 hashing libraries; the overall code diagram is
graphically illustrated in Figure 1.

A distinctive feature of the instrument is the ex-
tensive control provided to the user for the selection
of the security level and the associated curve parame-
ters. This should be seen in contrast to current prac-
tices which privilege transparency to the user.

At least certain categories of users may value a
closer involvement in the decision process. For exam-
ple, the tool offers the ability to define a custom ellip-
tic curve of prime order with (in principle) arbitrary
many bits of security, or to change it periodically; the
same applies to the private and public keys which can
be re-generated at will, e.g. if a risk is perceived.

Alternatively, users may just opt for one of the
standard NIST-recommended curves, associated with

A Public-Key Cryptography Tool for Personal Use - A Real-world Implementation of ECC for Secure File Exchange.

DOI: 10.5220/0005511801940201

In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 194-201

ISBN: 978-989-758-117-5

Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)

A Public-Key Cryptography Tool for Personal Use - A Real-world Implementation of ECC for Secure File Exchange

ECDSA ECC Embedding
Digital Signature Protocols

Primality] [Elliptic Curve

Test Arithmetic

Block
Ciphers

Big Number and
Modular Arithmetic

AES Advanced Encryption Standard

SHA Secure Hashing Algorithm

PRNG Pseudo Random Number Generator
ECDSA Elliptic Curve Digital Signature Algorithm

Figure 1: Code building blocks and their relations.

an adequate AES key length.

Elliptic Curve Cryptography was chosen mainly
due to its historically higher resilience to attacks com-
pared to RSA. This feature ensures that the recom-
mended key lengths will suffice for the foreseeable fu-
ture, without the need for periodical adjustments and
updates.

The other major advantage of ECC, i.e. its high
security per bit and the resulting short keys, is indeed
a practical feature even in the present implementa-
tion but does not necessarily translate into significant
speed benefits. This is because the bulk encryption is
performed with AES and ECC is only used to encrypt
relatively small amounts of keying material.

In the following, we take the opportunity to de-
scribe some relevant features and design choices
which were implemented in the tool.

2 SYSTEM FUNCTIONALITY

The functionality is based on a hybrid public/private
key approach, whereby bulk data encryption is pro-
vided through a block cipher (AES 128, 192 or 256
bit) while the private session key is encrypted through
ECC. The encrypted data bytes are hashed through
SHA-512 (NIST, 2002) and signed with ECDSA.

Figures 2 and 3 show the flow diagrams for both
the encryption and the decryption processes.

Complementary data (keys, signature, padding)
are appended to the encrypted file bytes, thus form-
ing a single payload.

A visual “touch” is added by transforming the re-
sulting object into a picture (bitmap); this is done
through the addition of the BMP header bytes and
some padding at the end. The latter may be required
because a BMP file shall have a rectangular shape

with rows of equal length.

Figure 4 illustrates the byte structure of the en-
crypted payload. We found convenient to store the
size of the padding into byte positions 6 to 9 of the
BMP header, which are not normally used, as shown

in Figure 5.
st) S un [eons|

Original
file

PRNG session

key generation
AES file

encryption and
ECC direct

embedding of
session key

Payload assembly
(encrypted file + 1 byte for n. of
padding bytes + digital signature +
sender public key +
encrypted session key)

Insertion of
bmp header +
padding

Complete
encrypted
package
(bmp file)

Figure 2: Process flow diagram for encryption.

Complete
encrypted
package
(bmp file)

Removal of bmp Payload parsing, extraction of
header + padding session key, ECC decryption

Digital signature AES
parameters, session
sender public key key

Encrypted
file bytes

AES decryption
of file bytes

SHA-512 file Desrypied
hashing file

Figure 3: Process flow diagram for decryption.

ECDSA signature
verification

N,, = number of bytes of p. the prime defining the curve finite field 7,

N, = number of bytes of the AES key

k=IN. /N,

EN I I N I I I S S L ..\..\..\..}T

\,..\..\..\..\..\..\..\..\..\..\..\..\..\..\..\..\..\..\..\.. e |
L..\,.\..\..\,.\..\..\..\..\..\..\.,\..\..\..\..\,.\..\..\.. Tl |

ﬂ_/ \ AN N J
Y Y Y
AES-encrypted Digital signature Sender public key ECC-encrypted
file (n bytes incl. (2 x N, bytes) (2 x N, bytes) session key
padding) (4 x N, x k bytes)

n. of padding bytes
(1 byte)

Figure 4: Encrypted file: assembled structure.

Figures 6, 7, 8 show respectively: how a 500 KB
PowerPoint file appears when viewed as a bitmap,
the resulting image of the encrypted file and the
key/signature data payload embedded into the picture.

Note that the key and signature data appear in the
top right corner of the image in Figure 8 because the
bitmap file bytes are shown in reverse order.

195

SECRYPT 2015 - International Conference on Security and Cryptography

Bytes 6 to 9 are used to store Ny, k]il\]/]fliiif?r [()5(3) Eff:q?
L =] l
P S 730 = P e s v e P s e re e mmEm
L|..\..\..|..\..\..\..\..\..|..|
N J
Y
BMP padding

(Nipaq bytes)

Figure 5: BMP headers and padding added to the encrypted
payload.

Figure 6: How a 500 KB pptx file looks like when viewed
as a bitmap.

Figure 7: The same file of Figure 6, now in encrypted for-
mat and visualized as a bitmap.

3 ECCPRINCIPLES

ECC is based on the mathematical group defined by
the points of elliptic curves over a suitable field F. In
the current implementation, as is common practice,
the choice is a prime field F = F, for prime p, asso-
ciated with the following typical Weierstrass form in
affine coordinates:

y2=x3+ax+b (1)

196

Digital Sender
signature public key

ECC-encrypted BMP
session key padding

Figure 8: Embedding data into the encrypted file bitmap.

Elliptic curve cryptosystems exploit the Elliptic
Discrete Logarithm (EDL) problem, which consists
in finding the value of the integer k given the points
P, Q 2 E and Q = kP, where E is an elliptic curve.
The EDL problem has no known sub-exponential so-
lution.

This characteristic makes the EDL problem harder
than 'integer factorization, allowing for shorter keys
which do not need to be upgraded over time as with
RSA.

Optimization techniques were used to speed-up
the elliptic curve computations. One of these con-
sists in using Jacobian projective coordinates. We
observed that this translates into roughly a three-fold
speed-up compared to affine coordinates.

4 MAIN DESIGN FEATURES

4.1 Key Exchange Protocol

4.1.1 Diffie-Hellman Key Exchange for Elliptic
Curves

We present a recap of the Elliptic Curve Diffie-
Hellman (ECDH) key agreement protocol in order to
explain why it was not considered suitable for this ap-
plication.

ECDH allows two parties, each having an elliptic
curve public-private key pair, to establish a shared se-
cret over an insecure channel. The shared secret may
be directly used as a key for a subsequent symmet-
ric cipher, e.g. AES (the Advanced Encryption Stan-
dard).

ECDH works as follows: initially, the domain pa-
rameters (field prime p, curve coefficients and public
point G) must be agreed upon. Each party must have
a key pair consisting of a private key k (a randomly
selected integer in the interval [2; p 2]) and a public

A Public-Key Cryptography Tool for Personal Use - A Real-world Implementation of ECC for Secure File Exchange

key Q where
Q=kG @

Let Alice’s key pair be (ka; Qa) and Bob’s key pair
be (ks;Qg). Each party must know the other party’s
public key, thus an exchange must occur. Alice com-
putes a curve point given by the product of her private
key (a number) and Bob’s public key (a point)

(Xk;Yi) = kaQs 3)

The elliptic multiplication obfuscates the private
key. Bob then computes the same point as

(Xk;Yk) = ksQa (4)

The shared secret is Xy (the x coordinate of the
point), which can be used as the key of a symmetric
block cipher.

A desirable security feature of an encryption tool
consists in the ability to generate a different symmet-
ric cipher key (session key) for each message encryp-
tion.

However, the scheme above forces two users to
interact twice for every exchange: first to share the
public keys and then the actual encrypted message.

This would be impractical in a personal encryp-
tion system, and could potentially become a vulnera-
bility. In-fact, in absence of strong identity authenti-
cation through certification authorities, each new pub-
lic key sharing could in theory open the door to a man-
in-the-middle attack.

4.1.2 Original Direct Embedding Scheme

In order to avoid the drawbacks of ECDH, a solution
consists in the unilateral generation of the AES ses-
sion key by the sending party, and its subsequent di-
rect embedding into the elliptic curve.

The idea stems from the Elgamal scheme il-
lustrated by Crandall and Pomerance (R. Crandall,
2005). There, the goal was to describe how to per-
form encryption and decryption of plaintext using just
elliptic algebra.

Here we simply extend the concept by applying
the method to the AES session key rather than to the
whole message. Hereafter we summarize the original
algorithm.

Alice and Bob have agreed upon a public curve
E(Fp), its twist curve E’, and the respective public
points P, P’. Bob has generated respective public keys

PB = kBP
Py = kgP"

Alice wishes to send an encrypted parcel X 2

1. Alice embeds plaintext X: Alice determines for
which of the two curves E or E' X is a valid
x-coordinate and determines the associated y co-
ordinate thus defining the message point (X;Y).
Alice choses the relevant public point and Bob’s
public key:

d=0 or 1 (bit for curve identification)
Q=P or P

QB=PB or P|03

2. Alice then chooses a random r 2 [2;p 2] and
performs an elliptic add to obfuscate the message,
and computes a clue which will be used for de-
cryption

U =rQg+(X;Y) ()

C=rQ (6)

3. Alice can now send a message parcel to Bob as
the combination of (U;C;d).

4. Bob decrypts the encrypted message to recover
the plaintext X: Bob knows which curve to use
based on d, then performs an elliptic subtract and
recovers the plaintext as the x-coordinate X.

(X;Y)=U kgC (7

The above algorithm requires both a curve and its
twist to be specified, because it is based on the plain-
text embedding theorem (R. Crandall, 2005).

The theorem states that given prime p > 3, an
elliptic curve E : y? = x3 +ax + b defined over Fp,
and given X 2 [0;p 1], then X is either a valid x-
coordinate of some point on E, or on its twist curve
E" where E': gy? = x3 + ax + b for some g with the
Legendre symbol

=1 ®)

Therefore the above embedding solution involves
the added burden of defining two curves and sharing
between the parties the extra piece of information re-
lated to the curve-identification bit.

4.1.3 Modified Direct-Embedding Scheme
Applied to Key Exchange

In order to avoid the above problem, the tool adopts a
probabilistic embedding of the AES key through the
algorithm suggested by Koblitz (D. Hankerson, 2004;
Koblitz, 1994), in lieu of the deterministic direct-
embedding theorem.

Let E be an elliptic curve defined over the field Fy
for prime p

E: y2=f(x)=x+ax+b 9)

197

SECRYPT 2015 - International Conference on Security and Cryptography

We want plaintext message m to be embedded in
point Pm = (Xm;Ym) on E. In this case m is a random
number generated by Alice and used as a session key
to encrypt a message for Bob.

set 30 k 50 (10)
The probability that a random integer p is a
valid x-coordinate of the elliptic curve E is 50%,

thus the range of values for k is set to guarantee that a
suitable xp, is found with very high probability (failure
probability x).

The message parcel m shall satisfy the following
conditions

0 m M, p > Mk (12)
We define xn, as
Xm = mk+ j; 0<j k (12)

Alice cycles j until a square root of f(xy) is
found, meaning that Xy, is a legitimate coordinate and
thus m can be embedded into point P

m ¥ P(Xm;Ym) (13)
Plaintext can be recovered by Bob as:
m=b(xn 1)=kc (14)

4.2 Encryption and Decryption Process

Based on the above algorithms, Alice can now gen-
erate a random AES session key, use it to encrypt a
message for Bob using standard AES cipher (NIST,
2001a), embed the key as a point into an elliptic curve
and send it to Bob together with the AES-encrypted
message.

Bob decrypts the AES key with the probabilistic
algorithm and recovers the message.

The following is a simplified description of the
system set-up and encryption / decryption procedures
between Alice and Bob:

1. Security Level Selection: Alice chooses a num-
ber n of bits for the key length, which will be the
number of bits of the prime number p of the finite
field Fp.

2. Alice computes a random prime p of n-bits of
length, this is done through a combination of Fer-
mat’s Little Theorem and Miller-Rabin primality
test.

3. Parameter choice: Alice uses Atkin-Morain CM
(Complex Multiplication) method (R. Crandall,
2005) for generating curves and orders to iden-
tify a prime curve order q and the associated co-
efficients a; b of an elliptic curve defined over the

198

10.

11.

12.

13.

field Fp. Alice then computes a random public
point P(x;y) on the curve.

. Alternatively Alice can choose one of the standard

NIST curves (NIST, 2009) and associated security
levels (192, 224, 256, 384, 521 bit). These curves
have prime moduli of special form allowing very
fast modular reduction.

Alice shares with Bob the parameters p;q;a;b;P;
this can be done by sending a parameter file.

Alice and Bob choose respective private keys as
random integers ka; ks 2 [2;p 2] and calculate
public keys:

Qa =kaP

Qs = kgP
Note: steps 1 to 6 above are repeated only when a
key change is desired.

. Alice generates a random session key k through

an AES-based PRNG (Pseudo Random Number
Generator) and encrypts with it a message for
Bob; then embeds the key as x-coordinate(s) Xk
of a point Py = (Xx;Yk) on the elliptic curve. This
is done by means of the probabilistic algorithm
described above.

. Alice chooses random r 2 [2;p 2] (again, this is

done through a random number generator). Alice
then obfuscates the key with an elliptic add, essen-
tially following a simpler version of the direct em-
bedding algorithm previously described (R. Cran-
dall, 2005)

U =rQg + (Xk;Yk) (15)

Alice then prepares the clue for recovering the
message

C=rP (16)
Alice sends to Bob U and C together with the
AES-encrypted message.

Bob then recovers the coordinate(s) x in the ses-
sion key point(s) by means of a point subtraction

(X;yk) =U kgC (7)

The recovery of the encoded key k from the co-
ordinate xi is done as already mentioned in the
probabilistic algorithm described before.

Bob can now use the session key k to decrypt the
message.

A Public-Key Cryptography Tool for Personal Use - A Real-world Implementation of ECC for Secure File Exchange

4.3 Atkin-Morain Method for Curve
Order

As we mentioned, the tool offers the possibility to use
custom curves of a given security level, as an extra
option besides the NIST-recommended curves.

A cryptographically secure curve suitable for our
purposes shall be defined on a prime field F, and have
a prime order g. The algorithm used to search a curve
with such features is based on a simplified version of
the Atkin-Morain method (R. Crandall, 2005).

A first goal is to seek primes p with special form

4p = u? +jDjv? (18)

for which it is straightforward to compute the as-
sociated possible orders, then the resulting curve co-
efficients can be easily calculated.

The idea is that by trying repeatedly to find values
of p which satisfy the special form above, one can
then check the resulting orders until a prime order is
found.

In order to simplify the algorithm (possibly at the
expense of some efficiency), we decided to run the
checkonly forD= 3and D= 4 whose associated
orders are:

D= 4 ¥ 4orders:

p+1 u, p+1 2v (19)
D= 3 ¥ 6orders:

pr1 v pr1 2)

4.4 AES Implementation Features

The tool implements the CBC (Cipher Block Chain-
ing) operation mode, as recommended in (NIST,
2001b). CBC combines each plaintext block with the
previous ciphertext block by XORing; thus any given
plaintext block always gets encrypted to a different
ciphertext block, as shown in Figure 9. The cipher is
therefore more secure than in an electronic codebook
mode because no patterns can be discerned.

The initialization vector (IV) XORed with the first
block was considered not necessary in our tool; this is
because in the current implementation a new AES key
is generated at each encryption.

In fact the purpose of the IV (as recommended by
NIST in (NIST, 2001b)) is to ensure that the cipher is
different for repeated encryptions of the same plain-
text, but this is already ensured in the tool by having
different session keys for each encryption. The result-
ing simplified CBC scheme is illustrated in Figure 10.

Plaintext Plaintext
] [] []

—

Plaintext

[
Initialization Vector (IV)

BLOCK CIPHER BLOCK CIPHER BLOCK CIPHER
Key | encrypTION Key | encrypTiON Key 1 ENCRYPTION
[] [] [L]
Ciphertext Ciphertext Ciphertext

Figure 9: The AES Cipher Block Chaining mode of opera-
tion.

Plaintext Plaintext Plaintext

[| B I |

qg ¥ ¥
Session _ [BLOCK CIPHER Session _ [BLOCK CIPHER Session _ [BLOCK CIPHER
Key | ENCRYPTION Key | ENCRYPTION Key | ENCRYPTION
[i]] []]
- = - -
Ciphertext Ciphertext Ciphertext

Figure 10: The modified Cipher Block Chaining mode
without Initialization Vector but with an ever changing ses-
sion key.

4.5 Primality Test

A combination of Fermat’s Little Theorem (FLT) and
Miller Rabin Primality Test (MRPT) has been imple-
mented to optimize speed and probability of prime de-
tection.

Random numbers are generated with an AES-
based PRNG and then checked for primality with
FLT.

If a candidate number passes the test it is then ver-
ified with MRPT which is slower but safer, being able
to detect Carmichael numbers which pass FLT test
though not being prime.

The pseudo algorithm goes as follows:
findprime:;

AES_PRNG(randnum); // generates random number

While (CheckPrimeFLT(randnum) = nopass) {
randnum = randnum + 2;

}
if (CheckPrimeMRPT(randnum) = nopass) {
goto findprime;

4.6 Pseudo Random Number
Generation

All random number generation in the tool is based on
cryptographically secure algorithms. PRNGs are used
in tasks such as session key generation, prime number
search and testing, prime order curves search etc.

The protocol that we used in the tool is an im-
plementation of the ANSI X9.31 algorithm recom-
mended in (NIST, 2007; NIST, 2005), based on the
AES used in a Counter Mode.

199

SECRYPT 2015 - International Conference on Security and Cryptography

Let AESk(Y) represent the AES encryption of Y
under the key K.

Let K be a key used only for the generation of
pseudo-random numbers (it can be 128, 192 or 256
bit long).

LetV be a 128-bit seed value which is kept secret,
and be the exclusive-or operator.

Let DT be a date/time vector which is updated on
each iteration, while I is an intermediate value.

A vector R is generated as follows (DT, I, and R
are 128-bits each):

| =AESK(DT) ; R=AESk(l V) (21

A new V is generated by

V =AESk(R 1) (22)

5 SCREENSHOTS

Figures 11, 12, 13, 14 illustrate the graphical design
of the tool’s interface, showing how the various oper-
ations described above are actually conducted by the
user in a seamless, rather intuitive way.

] Alice -oEl
Encrypt /Decoypt || Securty Setting
EcC AES

NIST 152 . .
NIST 224 AES 128

D NIST 256 AES 192
® NIST 384 Confim ® AES 256 ‘Corfim
Custom

Bpot
] Public key

] Custom curve parameters
[] Configuration directory
Img
. Public key

Compute keys from ext.fie

Curent Seting
NIST Curve P-384 AES256

My Usemame License Key User Manual

=3
Figure 11: Security setting panel: loading a public key.

< Horizon 2.4 wsicnsto con

Table 1: Tool performance test results.

CPU Intel Core i7 @ 2.40 GHz, 12 MB RAM
Security: NIST curve 384 bit, AES 256 bit
File size (MB) | Time to encrypt (decrypt) (s)
10 1
100 8
700 60

200

oEN|

® A
File.xyz
Encrypting .. ‘
Bob v D
o

File.xyz.ecrypt.bmp

\meyn Decypt | Securty Setting

Select Fie

My Usemame License Key User Manual

=3
Figure 12: File encryption.

E;‘cw Deayu Securty Setting
.
| Filexyz.ecrypt. bmp
Decrypting .. j -
Bob | ’

I o B

/
#uo< Horizon 2.4 s cengiocon

File.xyz

Select Fie

My Usemame License Key User Manual
< Horizon 2.4 m
Figure 13: File decryption.

Alice ==

Enciypt / Decoypt | | Securty Setting

ECC AES

NIST 152 o me
NIST 224 AES 128

NIST 256 AES 192

® Custom

=
[Public key

[Custom curve parameters Compute Curve Parameters -

[Configuration drectory

n
Import security bits 450 2) Find Curve.

Compute keys from ext. file 3) Find Public Point and Generate Keys

® Computing curve ..

Curent Setting
Random Curve AES256

My Usemame License Key User Manual

o< Horizon 24 wmsetocn | cose |
Figure 14: Panel for the calculation of prime order curve.

6 SYSTEM PERFORMANCE

Table 1 presents some performance data, showing that
the tool is of practical use for most common file sizes.
Multiple file encryption is possible by loading files in
a folder, creating a zipped folder and encrypting it.

A Public-Key Cryptography Tool for Personal Use - A Real-world Implementation of ECC for Secure File Exchange

7 CONCLUSIONS

A new library of modular arithmetic and crypto-
graphic functions was developed and then used for a
specific implementation: a user-friendly file encryp-
tion tool aimed at quick deployment of secure com-
munication capability even in absence of a PKI.

In its current configuration the system is mainly
targeted to relatively small groups of users who have
already established communication links able to pro-
vide some form of identity validation. This could take
the form of a standard email system or possibly even
social networks, which could play the role of certifi-
cation authorities in the near future.

There are some features that distinguish the tool
from other personal encryption systems, notably PGP.
In our case the intention was to deploy a very light
system, i.e. with virtually no learning curve for the
user, but without sacrificing security.

Simplicity here means limiting the choice of cryp-
tographic algorithms to only those which are rele-
vant, thus avoiding the inclusion of a wide selection
of older ciphers or public key protocols with limited
added value. AES ad ECC represent the current state
of the art, therefore the idea was to stick to those
and simply offer different key lengths associated with
proven, standard elliptic curves. Another feature is
the ability to choose a random curve, thus creating a
unique set of parameters for extra security guarantee.

As opposed to PGP, the tool here presented is a
stand-alone system which is not designed to interface
with email through the use of plug-ins. These features
add sophistication but at the cost of complexity and
compatibility issues.

We aimed at privileging the most critical use
cases, typically associated with the occasional need
to protect specific files rather than the systematic en-
cryption of the whole email traffic. The adopted ap-
proach possibly sacrifices some elegance and integra-
tion in favor of enhanced simplicity.

In its current implementation the tool is not de-
signed to encrypt emails, rather it can selectively en-
crypt files for a specific recipient. Then the files can
be attached to an email addressed to the recipient who
can download and decrypt.

Additionally, the tool can be used to encrypt files
for secure storage on shared folders or in the Cloud.

Standard email systems are provided with some
level of security, however the content of messages can
in principle be altered because encryption takes place
between individual SMTP (Simple Mail Transfer Pro-
tocol) relays and not between sender and recipient.
Furthermore users normally have no control over this
feature. Trust in external bodies is therefore implicitly

required.

The proposed tool does not rely on centralized
infrastructures for the set-up of the security level,
key distribution and management of the encryp-
tion/decryption and signature functions. Full owner-
ship of the functionality reduces chances of external
interference.

In order to establish the system’s initial set-up,
one of the users shall first generate the curve param-
eters associated with a security level of choice and
then communicate the chosen parameters to the other
users. The security level can be changed by following
the above procedure if required.

The tool represents a readily deployable solution,
useful in absence of sophisticated PKIs.

Possible future developments may involve the
addition of Supersingular Isogeny Diffie-Hellman
Key Exchange (SIDH) which would provide post-
quantum resilience, as suggested in (L. De Feo,
2011). The already available elliptic arithmetic li-
brary would make this extension not too complex.

REFERENCES

D. Hankerson, A. J. Menezes, S. V. (2004). Guide to Elliptic
Curve Cryptography. Springer-Verlag.

Koblitz, N. (1994). A Course in Number Theory and Cryp-
tography. Springer-Verlag.

L. De Feo, D. Jao, J. P. (2011). Towards quantum-resistant
cryptosystems from supersingular elliptic curve isoge-
nies. In PQCrypto Proceedings. Springer.

NIST (2001a). FIPS PUB 197, Announcing the Advanced
Encryption Standard (AES). Federal Information Pro-
cessing Standard.

NIST (2001b). Special Publication 800-38A, Recommen-
dation for Block Cipher Modes of Operation, Methods
and Techniques. NIST Publication.

NIST (2002). FIPS 180-2, Announcing the Secure Hash
Standard. Federal Information Processing Standard.

NIST (2005). NIST-Recommended Random Number Gen-
erator Based on ANSI X9.31, Appendix A.2.4: Using
the 3-Key Triple DES and AES Algorithms. NIST Pub-
lication.

NIST (2007). Special Publication 800-90, Recommenda-
tion for Random Number Generation Using Determin-
istic Random Bit Generators (Revised). NIST Publi-
cation.

NIST (2009). FIPS PUB 186-3, Digital Signature Standard
(DSS). Federal Information Processing Standard.

R. Crandall, C. P. (2005). Prime Numbers, A Computational
Perspective. Springer.

V. Gruhn, M. Hulder, V. W.-M. (2007). Utilizing social
networking platforms to support public key infrastruc-
tures. In SECRYPT 2007 Proceedings. SCITEPRESS.

201

