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Abstract: Sample size determination (SSD) for integrated test of missile hit accuracy is addressed in this paper. 
Bayesian approach to SSD gives test designer the possibility of taking into account of prior information and 
uncertainty on unknown parameters of interest. This fact offers the advantage of removing or mitigating 
typical drawbacks of classical methods, which might lead to serious miscalculation of the sample size. 
However, standard power prior based Bayesian SSD method cannot cope with integrated SSD for both 
simulation test and field test, as large numbers of simulation samples would cause contradiction between 
design prior and average posterior variance criterion (APVC). In allusion to this problem, we propose a test 
design effect equivalent method for equivalent sample size (ESS) calculation, which combined simulation 
credibility, sample size, and power prior exponent to get a rational design prior for subsequent field test. 
Average posterior variance (APV) of interested parameters is deduced by simulation credibility, sample 
sizes of two kinds of test, and prior distribution parameters. Thus, we get optimal design equations of 
integrated test scheme under both test cost constraints and required posterior precision constraint, whose 
effectiveness are illustrated with two examples. 

1 INTRODUCTION 

Hit accuracy is a key technical performance index in 
missile weapon system, which is traditionally 
testified through live field firing test. As its 
extremely high expenditure in field test, we can only 
get very limited test samples as a basis for type 
approval to reach a low precision assessment result. 
Thus, in order to solve this problem, integrated test 
and evaluation with combined use of simulation test 
and field test was put forward in 1990s (Kraft 1995; 
Kushman and Briski 1992), and by now, it has 
become the development direction of test and 
evaluation (Claxton et al., 2012; Schwartz, 2010; 
Waters, 2004). In the design stage of integrated test, 
sample size allocation (SSA) for simulation test and 
field test is a vital problem. Standard frequentist 
sample size formulae generally determine a specific 
sample size through precision requirement of 
parameter estimation (Adcock, 1997) or statistical 
power analysis of Hypnosis test (Murphy et al., 
2009), as used in design of integrated test, SSA ratio 

become a problem, and also the equal treatment of 
simulation test sample and field test sample is 
widely questioned. 

Generally, simulation test samples are strongly 
correlated with field test samples, but they don’t 
necessarily take on the same distribution parameters. 
Verification validation and accreditation (VV&A) of 
simulation system (Balci 1997, 2013; Rebba et al., 
2006) are made to get some indexes (such as 
simulation credibility) for description of this 
difference. Bayesian sample size determination 
(SSD) (Clarke and Yuan, 2006; De Santis, 2007; 
Joseph and Belisle, 1997; Nassar et al., 2011) makes 
use of prior information to get the minimal sample 
size through pre-posterior estimated performance 
criteria of parameter of interest. While it is used in 
SSD of integrated test, determining a proper weight 
for prior information (De Santis, 2007) is a problem. 
Also, the obtained power prior (Ibrahim and Chen, 
2000) for design from large size of prior samples is 
often narrow enough to estimate the unknown 
parameter of interest, which seems no need for field 
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test samples. But, this totally inference of interested 
parameter by simulation test samples is under 
suspicion, and takes on great risk due to sometimes 
low credible simulation test samples. 

A proper design prior is the basis for Bayesian 
SSD of integrated test, which is the key content of 
our research. The rest of this paper is organized as 
follows: Section 2 introduce the common used SSD 
methods of both frequentist and Bayesian, as well as 
the definitions of analysis prior and design prior 
used in Bayesian SSD. Section 3 analyses the 
problem of determining exponential factor in getting 
design prior with power prior, and propose the 
design effect of test to calculate the equivalent 
sample size (ESS) of simulation test, which provide 
the key content of our proposed method for getting a 
rational design prior. Section 4 deals with optimal 
SSA for simulation test and field test, which takes 
average posterior variance of Bayesian estimation of 
hit accuracy as output, and gets two optimization 
equations under cost constraints and required 
posterior precision constraint. Section 5 illustrates 
the proposed methods with two examples, and 
proves their effectiveness in practical application. In 
section 6, the features of our proposed Bayesian 
SSD for design of integrated test are summarized. 

2 PRELIMINARIES 

2.1 Classical Sample Size 
Determination 

Classical sample size determination method is 
generally related to interval estimation and 
hypothesis testing. Estimation of mean value μ for 
normal distribution with known variance is the 
simplest condition in SSD, many literatures (Adcock, 
1997; Desu and Raghavarao, 1990) have made in-
depth study on this problem. Suppose we have a 
given estimation error d and confidence level 1-α, 
estimation of μ can be realized by sample mean, thus 
the SSD formula is 

 Pr 1x d           (1) 

As ( ) (0,1)n x N  � ， it follows that 

inequality (1) is satisfied if sample size n satisfies 

 2 2 2
/2n Z d   (2) 

Statistical power analysis of hypothesis testing 
extends the rule at inequality(2). Suppose we have a 
hypothesis of the form 

 0 0 1 1 0: ; :H H         

Significance level α of above hypothesis testing 

means we reject H0 while 0 2x Z n   . If 

the desired power of the alternative when 

1 0 d    is 1-β, where d is specified, then the 

required sample size n is the solution of the 
following equation 

 0 2 1Pr 1x Z n           

Define 0( )Z n x    , this could be expressed 

as 

 2Pr 1Z n d Z          (3) 

Equation (3) has a unique solution. Desu and 
Raghavarao (1990) have made detail deduction and 
gave out its approximate solution 

 * 2 2 2
2( )n Z Z d     (4) 

Equation (4) is valid as long as α is not too large, 
and it reduces to inequality (2) when the desired 
power is 0.5. While the variance σ2 is unknown, 
similar formulae can be gotten, for further detail, see 
(Desu and Raghavarao, 1990) and reference therein. 

Samples from simulation test and field test play 
different roles in performance assessment, so their 
sample size ratio and weights cannot be determined 
arbitrarily. In this way, classical SSD method cannot 
cope with situations in integrated test. As a result, 
Bayesian SSD method become the inevitable choice 
in design of integrated missile hit accuracy test. 

2.2 Bayesian Sample Size 
Determination 

The key difference in SSD between Bayesian 
method and classical method is the use of prior 
information. Suppose that we are interested in 
choosing the size n of a random sample Xn=(X1, …, 
Xn), whose joint density function fn(|θ) depends on 

the unknown parameter vector θ of interest. With 
Bayesian approach, given sample data 

 1, ,n nx x x , the likelihood function 

   ; |n n nL x f x  , and the prior distribution π() 
for parameter of interest, we get inference of θ based 
on elaborations of the posterior distribution: 
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Let T(xn) denote a generic function of the 
posterior distribution of θ, which can be controlled 
by designed test sample size. For instance, T(xn) 
could be either the posterior variance, or the width 
of the highest posterior density (HPD) set or the 
posterior probability of a certain hypothesis. Before 
we get actual sample data xn, T(Xn) is a random 
variable. The idea of Bayesian SSD is to select n so 
that the observed value T(xn) is likely to provide 
accurate information on θ. Pre-computations for 
SSD are made with the following marginal density 
function of sample data 

 ( ; ) ( ) ( )dn n n nm x f x    


    

Above equation shows a mixture of the sampling 
distribution and the prior distribution of θ. Most 
Bayesian SSD criteria select the minimal n so that, 
for chosen values ε>0 and (0,1)  , one of the two 

following statements is satisfied: 

  E ( )nT X    (5) 

 or  Pr ( )nT A   X   (6) 

Where, E[] denotes the expected value computed 

with respect to marginal density function mn. Pr[] 
express the probability measure corresponding to mn. 
A is a subset of the value space that the random 
variable T(Xn) can assume. Thus, SSD and the 
subsequent parameter inference is a two-step process: 
first select n* by a pre-posterior calculation; and 
then use *( )n  x  to obtain T(xn*). 

There are three common used Bayesian SSD 
criteria for estimation, where criteria (b) and (c) are 
interval type methods based on the idea of 
controlling the random length of credible sets for 
probability distribution, refer to (De Santis, 2007) 
for further detail. 

(a) Average posterior variance criterion (APVC): 
for a given ε>0, APVC select the minimal sample 
size n such that 

 E var( )n    X   (7) 

Where, var(θ|Xn) is the posterior variance of 
interested unknown parameter θ, and 

( ) var( )n nT x x , This criterion controls the 

dispersion of the posterior distribution. Of course, 
different dispersion measures can be used to derive 
alternative criteria. 

(b) Average length criterion (ALC): for a given 
l>0, ALC looks for the minimal n to meet the 
inequality 

  ( )nE L l X    (8) 

Where, for a fixed (0,1)  , .Lα(Xn) is the random 

length for the (1-α) level posterior set of θ. In this 
case, T(xn) = Lα(xn). This criterion was proposed by 
Joseph (1995) (Joseph et al., 1995), aiming at 
controlling the average length of the HPD set, but 
not its variability. 

(c) Length probability criterion (LPC): for given 
l>0 and (0, 1)  , LPC choose the smallest n to 

meet the inequality 

  Pr ( )nL l   X   (9) 

Just as for the ALC, T(xn)= Lα(xn) and the LPC can 
be written in the general form (6) with A = (l , U), 
where U denotes the upper bound for the length of 
the credible interval. Joseph and Belisle (1997) 
derived the LPC as a special case of the worst 
outcome criterion (WOC). Refer to (Di Bacco et al., 
2003; Joseph et al., 1995) for further details. 

SSD criteria for model selection and hypothesis 
testing are also available in many literatures such as 
(De Santis, 2004; Reyes and Ghosh, 2013; Wang 
and Gelfand, 2002; Weiss, 1997). As they are not 
suitable for sample size determination of integrated 
test design, we will not make detailed instruction 
here. For further information, refer to literatures 
above. 

2.3 Two Priors in Bayesian SSD 

Two priors approach to SSD, namely analysis prior 
and design prior, has been already proposed, for 
instance, by Spiegelhalter and Freedman (1986) and 
by Joseph et al. (1997). By now, this approach has 
gotten wide spread usage in many fields. Generally, 
analysis prior formalizes the pre-test knowledge that 
we want to take into account, together with test 
samples, in the final analysis. While design prior 
describes a scenario which is not necessarily 
coincident with that of analysis prior, under which 
we want to choose the sample size. Thus, design 
prior serves to obtain a marginal distribution mn that 
incorporates uncertainty on a guessed distribution 
for θ. Refer to (De Santis, 2007) for a thorough 
discussion on this question. 

In general, analysis prior can be improper (such 
as some non-informative priors) as long as the 
resulting posterior is proper. While the design prior 
is used for calculating marginal distribution mn, if it 
is improper, the resulting marginal distribution may 
not even exist and the integral that defines mn being 
divergent. So, proper design prior should be chosen 
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in Bayesian SSD of integrated test. In order to use 
historical data for Bayesian SSD, De Santis (2007) 
went into this problem and gave out a method for 
getting design prior of location parameter. 
According to his analysis results, non-informative 
prior can be used as analysis prior for simulation test 
samples, and the obtained posterior distribution is 
proper, which constitutes a suitable prior for 
subsequent SSD of field test. 

However, as simulation test samples are not 
totally credible, the obtained posterior cannot be 
used directly as design prior of field test. Power 
prior (De Santis, 2007; Fryback et al., 2001; 
Greenhouse and Waserman, 1995) has been taken as 
a method for incorporating historical information in 
a design prior and also for deciding the weight that 
such information has in the SSD process. Therefore, 
rational design prior for SSD of field test can be 
obtained based on simulation test samples and a 
proper use of power prior, which will be discussed 
in detail in the next section. 

3 EQUIVALENT SAMPLE SIZE 
FOR DESIGN PRIOR 

In this section we penetrate into the design prior for 
Bayesian SSD of field test. The problem and 
contradiction of using standard power prior from 
simulation test samples as the design prior of 
Bayesian SSD in integrated test will be analysed, 
which lead to our proposed design effect of test for 
calculating equivalent sample size (ESS) of 
simulation test. Thus, we get the ESS based design 
prior for Bayesian SSD. 

3.1 Power Prior for Design 

Power prior is often used in obtaining design prior of 
Bayesian SSD, which realizes the weighting fusion 
of prior information. Ibrahim and Chen (Ibrahim et 
al., 2003; Ibrahim and Chen, 2000) proposed the 
application of power prior in information fusion and 
regression modelling, and analysed its superiority 
therein. Suppose 

0nz  is prior data with size n0 used 

for providing design prior of field test; 
0

( ; )nL  z  is 

likelihood function of θ in 
0nz , here homogeneity of 

prior samples and subsequent field test samples is an 
implicit assumption; π0(θ) is non-informative prior. 
Consider posterior distribution 

0

P
0( | , )n a � z  is 

obtained through multiplication of prior distribution 

π0() and likelihood function 
0

( ; )nL  z , suitably 

scaled by an exponential factor a0: 

 
0

0 0

P
0 0

0

( | , ) ( ) ( ; )

(0, 1)

a
n na L

a

    



z z
 (10) 

If π0 is proper, 
0

P
0( | , )n a  z  is also proper; 

otherwise, 
0nz  should make 

0

P
0( | , )n a  z  a proper 

distribution function. Exponent a0 measures the 
importance of prior data in 

0

P
0( | , )n a  z . As a0→1, 

we get standard posterior distribution of θ with 
0nz ; 

while as a0→0, 
0

P
0( | , )n a  z  tends to initial non-

informative prior π0. Thus, exponent a0 determines 
the weight of 

0nz  in posterior distribution. This 

shows we can choose different a0 for alternative 
weights on prior information. Spiegelhalter et al. 
(2004) have gone through this question. Following 
the definition of power prior, we can get it with a 
mixture of expression (10) and distribution of a0. 
The effect of mixing is to obtain a prior for θ that 
has a much heavier tails than those which are 
obtained with fixed a0. Obviously, exponent a0 plays 
an important role in power prior calculation. 

As to Bayesian SSD of integrated test, field test 
samples Xn is still to be observed, we assume π0 is 
non-informative prior, and 

0

P
0( | , )n a  z  as the 

design prior obtained from 
0nz , a proper marginal 

distribution of the data Xn can be gotten from 

0 0

P
0 0( | , ) ( | ) ( | , )dn n n n n nm a f a   


 x z x z   (11) 

Marginal distribution mn and the resulting sample 
size depend on the exponent a0 of power prior. 
Owing to lack of operational interpretation and 
without a way to assess the value of a0, the use of 
power prior for posterior inference has been 
criticized, for instance, (Spiegelhalter et al., 2004). 
De Santis (2007) gave out two interpretations for 
using power prior in the parameter inference of 
independent and identically distributed (IID) data: 
 When a maximum likelihood estimator for θ 

exists and is unique, πP is equivalent to a 
posterior distribution that is obtained by using 
a sample of size 0 0r a n , which provides the 

same maximum likelihood estimator for θ as 
the entire sample. 

 When the model ( | )nf �  belongs to the 

exponential family, the prior πP for the natural 
parameter coincides with the standard 
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posterior distribution that is obtained by using 
a sample of size 0 0r a n  whose arithmetic 

mean is equal to the historical data mean. 

Hence, at least in some standard problems, a power 
prior can be interpreted as a posterior distribution 
that is associated with a sample whose informative 
content on θ is qualitatively the same as that of the 
historical data set, but quantitatively equivalent to 
that of a sample of size r. In the design of integrated 
test for missile hit accuracy, an intuitive idea is to 
choose directly the simulation system credibility C0 
as exponent a0 for power prior calculation. However, 
considering the exponential behaviour of likelihood 
function for normal random variable, the obtained 
power prior with extremely large size of prior 
samples via expression (10) could be a very sharp 
distribution, which means the design prior of field 
test already meets with the Bayesian SSD criteria as 
APVC, ALC and LPC. So, we don't need to carry 
out any field test for inference of interested 
parameter. Obviously, this is impractical, as with 
low simulation credibility, performance inference 
can takes on high risk even with large size of 
simulation test samples. 

The above contradictory is caused by ignoring 
the influence of prior sample size n0 on determining 
the exponent a0 of power prior. Taking C0 = a0, the 
prior sample size n0 can still have great influence on 
the equivalent standard sample size according to 

0 0r a n , which makes the design prior impractical. 

For this reason, we propose the design effect of test, 
which can be used to get equivalent sample size nr of 
simulation test samples based on the notion of 
design effect equivalence, and hence get a rational 
design prior of Bayesian SSD. 

3.2 Design Effect of Test 

Design effect of test is proposed with a 
comprehensive consideration on test credibility and 
posterior estimation performance. Taking average 
posterior variance of Bayesian SSD as the posterior 
estimation performance, it is defined as 

 APVexp( )ED C L     (12) 

Where, C indicates test credibility, LAPV denotes the 
average posterior variance of interested parameter 
obtained with non-informative prior and test samples. 
If simulation test has a credibility C0, and with a 
sample size n0, it takes on equal design effect as 
field test (whose credibility is 1) with a sample size 
nr, then we choose the exponential factor a0=nr/n0 
for power prior calculation. Thus, according to De 

Santis's interpretation, we get the equivalent sample 
size (ESS) nr for simulation test samples of size n0 
with equal informative content on θ. 

From equation (12), while C0 =1, prior samples 
is equal to actual field test samples, and a0=1; if 
simulation test credibility C0 is low, even though 
sample size n0 is very large, and LAPV → 0, as its 
design effect DE →C0, the ESS nr would only be a 
limited value. Taking non-informative prior as 
analysis prior, and s0=s1=1.2, exponent a0 of power 
prior under different simulation credibility can be 
worked out based on equivalence of test design 
effect. Figure 1 shows its relationship with 
simulation test sample size n0. In this way, exponent 
a0 of power prior decreases with the increment of 
simulation test sample size n0, which avoids the 
above-mentioned assessment risk with only large 
numbers of simulation test samples. 
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Figure 1: Power exponent a0 vs. simulation test sample 
size n0. 

3.3 Equivalent Sample Size based 
Design Prior Elicitation 

In the integrated test of missile hit accuracy, mean 
value μ of impact point is taken as parameter of 
interest, simulation test samples 

0 01[ , , ]n nz z z  

and field test samples 1[ , , ]
r rn ny y y  are 

independent identically distributed (IID) normal 
random variables, with both mean value μ and 
precision λ (reciprocal of variance σ2) unknown. 
Then, we can get the posterior distribution of μ from 
simulation test samples with non-informative 
analysis prior , which is expressed as 

 
0 0

2
0 0 0 0( | ) St( | , ( 1) , 1), 1n nz n s n n      z   

Where, St express student t distribution; 

0
mean( )n iz z  is estimated location parameter; 

2
0 0( 1)n s  is precision, with  

0

2 2
0 mean ( )i ns z z  ; 
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n0-1 is the degree of freedom for student t 
distribution. So, the average posterior variance of μ 
can be derived as 

  
0 0

2
0

APV
0

( | ) E var( | )
1n n

s
L

n
  


z z   

With non-informative prior, suppose field test 
samples of size nr take on equal design effect as 
simulation test samples of size n0, the computational 
formula of equivalent sample size is 

 
2 2
0

0
0

exp exp
1 1

r

r

s s
C

n n

    
      

  

And, it follows that 

 
2 2

0 0 0 0
2
0 0 0

( 1) ( 1) ln( )

( 1) ln( )
r

r

n s s n C
n

s n C

   


 
 (13) 

Where, sr is standard deviation of field test samples. 
In test design stage, both s0 and sr are unknown, we 
can take sr =s0 provided a homogeneity of variance 
assumption. Figure 2 shows the relationship of 
equivalent sample size nr and simulation test sample 
size n0 under different simulation test credibility, 
with sr =s0=1.2. It can be seen that the ESS tend to 
finite value as the increase of simulation sample size, 
and the higher the simulation credibility, the larger 
the equivalent sample size, which coincides with 
practical situation. 
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Figure 2: Equivalent sample size of simulation test 
samples. 

Following De Santis's conclusions, as long as we get 
the equivalent sample size of simulation test samples 

0nz , which is IID and normally distributed, the 

design prior for Bayesian SSD of subsequent field 
test can be expressed as 

 0 0 0 0

0 0 0

( , | ) Ng( , | , , , )

N( | , ) Ga( | , )

n r

r

p n

n

      

     



 

z
   (14) 

Where, 
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4 SSD FOR INTEGRATED TEST 
SCHEME 

The purpose of SSD for integrated test of missile hit 
accuracy is to get a comprehensive test scheme 
satisfying the requirement of assessment precision 
with minimal test cost. In this section, we take 
average posterior variance of missile hit accuracy as 
assessment precision, and give out the optimal SSD 
methods for integrated test under both test cost 
constraint and required assessment precision 
constraint, according to Bayesian average posterior 
variance criterion. 

4.1 Purpose for Optimal Design of 
Integrated Test Scheme 

Design of integrated test scheme takes on the 
objective of deciding sample sizes of both 
simulation test and field test for optimal assessment 
of missile hit accuracy. So we can avoid resources 
waste caused by excessive sample size and also 
assessment risk due to insufficiency of test samples. 
Therefore, optimal design of integrated test takes on 
two purposes: first, determining sample size 
allocation plan for simulation test and field test to 
get a minimal Bayesian average posterior variance 
of missile hit accuracy under limited test cost 
constraint; second, making unified sample size 
allocation plan for simulation test and field test, to 
meet the requirement of posterior estimation 
precision with minimal test cost. 

In allusion to integrated test of missile hit 
accuracy, we want to get a scientific estimation for 
mean value μ of impact point, whose precision can 
be expressed with posterior variance. So, optimal 
design of integrated test scheme will be studied from 
two aspects as devoted test cost and estimated 
average posterior variance, with an objective of 
getting optimal sample size allocation plan for 
integrated test scheme under two kinds of constraints. 
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4.2 Bayesian SSD based on APVC 

The problem can be formalized as follows. Take 
equation (14) as design prior of field test, while we 
get field test samples xn, mark mean( )ix x , 

 2 2mean ( )is x x  , then, the posterior 

distribution of μ is 

 1
0 0

1
0

2
1 2

0 0

( | ) St , ( )( 2) , 2

( ) ( )

1
( ) ( )

2 2

n n r n

n r r

n r r

p n n n n

n n n nx

ns
n n n n x
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 

  







   

  

    

x

 

It follows that the posterior variance of μ is 
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As field test sample xn is unknown, and can be seen 
as random variable. So, in order to get the average 
posterior variance of μ, marginal distribution (11) of 
field test sample xn is used in mean value calculation, 
and it follows that 

  
0

E( )
E var( | )

( )( 2)
n

n
rn n n







 
x   (16) 

In this way, average posterior variance of μ is a 

function of E(ns2) and  2
0E ( )x  . Where, ns2 has 

a Gamma-Gamma distribution, and x  has a student 
t distribution, Bernardo (Bernardo and Smith 2000) 
gave out their probability distribution function as, 

  2 2
0 0( ) Gg , 2 , ( 1) / 2p ns ns n    (17) 

  1 1
0 0 0 0 0( ) St , ( ) , 2p x x n n n n       (18) 

From equations (13) to (18), we can get the average 
posterior variance of μ 
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x  (19)

Given the required ε in APVC, we can get the 
minimal field test sample size n* according to 
equation (19), which meets with the requirement of 
APVC. 

4.3 Optimal Design Equations of 
Integrated Test Scheme 

Suppose unit sample costs for simulation test and 
field test are u0 and u1 respectively. Under the 
constraint of total test cost within Tc, we can get the 
optimal integrated test scheme with minimal average 

posterior variance of interested parameter based on 
APVC of Bayesian SSD, whose design equation is 
as follows: 
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  (20) 

Where, LAPV(N, C0, s0) represents Bayesian average 
posterior variance of missile hit accuracy, and works 
as the objective function of optimization, which is 
denoted by equation (19). N is the optimizing vector 
containing sample sizes of simulation test and field 
test. C0 is simulation test credibility. s0 is standard 
deviation of simulation test samples. 

The other condition for optimal design of 
integrated test scheme is under required precision ε 
constraint in APVC, seeking the sample size 
allocation (SSA) plan for minimal total test cost. At 
this time, the optimal design equation is 

 

0 0 1
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n
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N
   (21) 

Equations (20) and (21) provide the optimal design 
methods for integrated test scheme of missile hit 
accuracy, whose usage will be demonstrated in 
detail in Section 5 with two illustrative examples. 
During their utilization, we get equivalent sample 
size of simulation test samples for design prior based 
on credibility C0 and standard deviation s0. So, 
optimal design scheme of integrated test can be 
obtained in consideration of two kinds of unit 
sample cost. 

5 ILLUSTRATIONS 

In the test and evaluation of missile hit accuracy, the 
key point of integrated test design is to decide the 
sample size allocation plan for simulation test and 
field test. So, we can get optimal assessment 
precision with minimal test consumption. In this 
section, we demonstrate the optimal design of 
integrated test scheme under constraints of cost and 
required assessment precision. In this way, the 
effectiveness of Bayesian SSD method for design of 
integrated test is illustrated, where the basic settings 
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for simulation test and field test are shown in Table 
1 (not real number, just used for illustration). 

Table 1: Basic setting for test schemes. 

Test type 
Unit sample 

cost ($) 

Pre-estimated 
standard 
deviation 

Credibility 
(CT) 

Simulation 50 1.2 0.70~0.95 

Field 2000 1.2 1.0 

5.1 Optimal Design with Cost 
Constraint 

Suppose we have a total appropriation budget TC 
=20, 000 $, and want to get the optimal missile hit 
accuracy assessment. Optimization equation for SSA 
of integrated test can be built according to (20), 
whose solution is straight forward using a nonlinear 
constrained optimization algorithm. Thus, we get 
optimal sample size allocation plans under different 
simulation credibility (SC), where n0 and n1 are 
sample sizes for simulation test and field test 
respectively, as shown in Table 2. Obviously, the 
ratio of simulation test samples in optimal integrated 
test scheme and the corresponding equivalent 
sample sizes increase with simulation credibility. 
Meanwhile, average posterior variances decrease 
with simulation test credibility, which indicates the 
precision of Bayesian posterior assessment is better 
under higher simulation test credibility. 

Table 2: Optimal integrated test schemes under cost 
constraint. 

SC SSA ESS APV 

C0 n0 n1 nr LAPV 

0.70 80 8 4.8410 0.2321 

0.80 80 8 6.9659 0.1407 

0.90 80 8 12.6516 0.0813 

0.95 160 6 24.8609 0.0494 

 

Figure 3 shows the relationship between field test 
sample size n and average posterior variance under 
total test cost constraint with a simulation test 
credibility C0=0.8, where simulation test sample size 
is determined by the residual fund of field test. In 
this way, integrated test with combined use of 
simulation test and field test takes on better 

assessment effect than traditional only with field test 
samples mode. 
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0.16

0.18
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Figure 3: Average posterior variance vs. field test sample 
size. 

5.2 Optimal Design with Required 
Precision Constraint 

Suppose we expect an assessment precision of ε=0.1 
(take APVC here) for missile hit accuracy, 
optimization goal is to get an integrated test scheme 
with minimal cost. Thus, optimization equation for 
SSA of integrated test can be built according to (21), 
and optimal SSA plan under different simulation test 
credibility can be obtained using a nonlinear 
constrained optimization algorithm, as shown in 
Table 3. In this way, under APVC constraint, sample 
size of field test in optimal test scheme is on the 
decrease as simulation credibility increases, and 
meanwhile the total cost for integrated test scheme is 
decreasing. Exponent of power prior (EoPP) a0 
become larger and larger as the increment of 
simulation credibility C0, which indicates simulation 
test samples with higher credibility take on greater 
weight in posterior assessment. Thus, less field test 
samples are needed, and total test cost is reduced. 

Table 3: Optimal integrated test schemes under required ε 
in APVC. 

SC SSA EoPP APV TC 

C0 n0 n1 a0 LAPV TC 

0.70 88 30 0.0552 0.1000 64400 

0.80 65 16 0.1056 0.0999 35250 

0.90 101 3 0.1290 0.0999 11050 

0.95 25 2 0.5576 0.0985 5250 

 

Note that with a given ε=0.1, classical SSD method 
gives a number of 16. So we can see that with low 
simulation test credibility (as C0=0.7, 0.8), 
integrated test scheme show no predominance, 
which is due to the negative influence on Bayesian 
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posterior assessment brought by poor prior 
information. This fact also indicates that if 
distribution difference of simulation test samples 
and field test samples is big (namely simulation test 
takes on low credibility), classical design of 
experiment and assessment method without 
consideration on prior information could be more 
rational. While simulation test credibility is high, 
adopting integrated test scheme improves test 
efficiency greatly by saving a great deal of test cost. 

In Table 4, we give out several designed test 
schemes satisfying the required precision ε=0.1 in 
APVC, where the simulation test credibility is 0.9. It 
is thus clear that as the increase of simulation test 
sample size, exponential factor a0 of power prior 
decreases, and equivalent sample size tend to finite 
value. Thus, it would not happen that design prior 
obtained with large number of simulation test 
samples has already met with Bayesian SSD criteria, 
which avoids the credibility risk of posterior 
assessment for parameter of interest. So, we can see 
the rationality of equivalent sample size, which is 
obtained based on equal test design effect. 

Table 4: Test schemes for required ε=0.1 in APVC with 
C0=0.9. 

SSA ESS EoPP APV TC 

n0 n1 nr a0 LAPV TC 

187 2 13.7318 0.0734 0.1000 13350 

101 3 13.0240 0.1290 0.0999 11050 

68 4 12.3517 0.1816 0.0998 11400 

50 5 11.6866 0.2337 0.0999 12500 

40 6 11.1206 0.2780 0.0995 14000 

32 7 10.4854 0.3277 0.0999 15600 

27 8 9.9583 0.3688 0.0997 17350 

6 CONCLUSIONS 

The paper considers SSD problem for integrated test 
design of missile hit accuracy. Power prior is used in 
weighted fusion of simulation test samples, and ESS 
of simulation test based on equal test design effect is 
proposed to get the design prior of Bayesian SSD for 
field test. Thus, an advanced Bayesian solution, with 
systematic and scientific planning concept, for SSA 
problem in design of integrated test scheme is 

obtained, which takes on the following features: 
(1) SSD is realized by Bayesian pre-posterior 

calculation. A reasonable estimation for posterior 
distribution of interested parameter θ can be 
obtained with comprehensive usage of historical 
data and prior information before actual field test. 
Hence, minimal sample size for required assessment 
precision can be worked out. 

(2) Calculation method for ESS of simulation 
test is given out based on the idea of power prior and 
test design effect, which get an equivalency of large 
number of low credible simulation test samples with 
limited standard filed test samples. Thus, we avoid 
the discrepancy that taking simulation credibility 
directly as exponent of power prior, design prior 
obtained from large numbers of simulation test 
samples has already met with Bayesian SSD criteria. 
And in this way, the assessment risk is reduced. 

(3) Taking APV of missile hit accuracy as the 
output, we get the optimization design equations for 
integrated test scheme with Bayesian SSD method 
under both test cost constraint and required precision 
ε constraint in APVC. Thus, we give out a Bayesian 
SSD method for integrated test design of missile hit 
accuracy with optimal efficiency. 
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