
Change Effort Estimation based on UML Diagrams
Application in UCP and COCOMOII

Dhikra Kchaou1, Nadia Bouassida1 and Hanene Ben-Abdallah1,2
1University of Sfax, Sfax, Tunisia

2King Abdulaziz University, Jeddah, K.S.A.

Keywords: Effort Estimation, Change, COCOMO, UCP.

Abstract: Change impact must be accounted for during effort estimation to provide for adequate decision making at the
appropriate moment in the software lifecycle. Existing effort estimation approaches, like the Use Case Point
method and the COnstructive COst MOdeL, estimate the effort only if the change occurs at one level, for
example when a new functionality is added (at functional level). However, they do not treat elementary
changes at the design level such as the addition of a class or a sequence diagram; because they incur several
modifications at different modelling levels, such changes are important to account for in effort estimation
during the software development. In this paper, we take advantage of intra and inter UML diagrams depend-
encies, first, to assist developers in identifying the necessary changes that UML diagrams must undergo after
a potential change, and secondly to estimate the necessary effort to handle any elementary change e.g. adding
a class, an attribute, etc. We use our traceability technique in order to adapt the UCP and COCOMO methods
to estimate the effort whenever a change occurs during the requirement or design phases.

1 INTRODUCTION

Software systems are inevitably subject to continuous
changes during their development as well as their ex-
ploitation. A change during any phase of a software
lifecycle often impacts several artifacts/models of the
software (requirements, design, code) and incurs ad-
ditional effort (i.e., cost) to handle it. Every change
must be therefore analyzed to account for its impacts
and incurred effort in order to provide for an adequate
decision making in the software project management.
A change impact analysis and management technique
should provide for both the identification of the ef-
fects of every change type on all software artifacts
and activities, and the estimation of the costs incurred
to handle these effects. The effort/cost estimation en-
sures the success of the software develop-
ment/maintenance project and can be used to decide
whether to undertake the change or to cancel it. Sev-
eral effort estimation methods have been adapted to
estimate changes in order to identify the factors that
should be included in a modified software—e.g. the
Use Case Point method (UCP) (Karner, 1993), the
COnstructive COst MOdeL (COCOMO II) (Boehm,
2000). However, current effort estimation methods
face two essential limits:

1. when they rely on the code which is produced
relatively late, their results must be revised each
time a change in the requirements or design hap-
pens. In addition, the projection of code changes
onto design/requirement changes is not straight-
forward because it is programming language and
style dependent. This limit makes code-based es-
timation methods unable to offer on-time and
precise support for adequate project manage-
ment; and

2. because they rely on one level of software mod-
elling (functional level for UCP and code level
for COCOMO), current estimation effort meth-
ods do not account for changes introduced in or
incurred on other software artefacts during all the
development phases—for instance, adding a
class to the design or an interaction in a sequence
diagram.

Our objective is to provide for a means to estimate the
effort required to deal with a change at the require-
ments and/or the design level, knowing that a change
may be elementary (affecting a class or an attribute)
yet it can affect the overall development effort. To at-
tain our objective, first, we make use of a graph-based
approach that ensures traceability among the different
software artifacts (e.g., the class, sequence and use

301Kchaou D., Bouassida N. and Ben-Abdallah H..
Change Effort Estimation based on UML Diagrams Application in UCP and COCOMOII.
DOI: 10.5220/0005510503010308
In Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages 301-308
ISBN: 978-989-758-114-4
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

case diagrams) in order to identify all impacted ele-
ments. Secondly, we show how this information can
be used with UCP and COCOMO II to estimate the
effort in terms of work hours. (Note that our tracea-
bility approach applies to any method of effort esti-
mation.)

More specifically, our approach exploits intra and
inter UML diagrams dependencies to identify the af-
fected elements. It explicitly encodes the intra and in-
ter diagram semantic and syntactic dependencies and
integrates them into a model dependency graph
(MDG) to identify the affected elements at any mod-
elling level. Thanks to the model dependency graph,
for instance, when a change occurs in a design dia-
gram (class or sequence diagrams), affected elements
in a use case diagram can be determined in order to
be able to apply the effort estimation methods.

The remainder of this paper is organized as fol-
lows: Section 2 first overviews the steps in the UCP
and COCOMOII methods. Section 3 shows how the
model dependency graph integrating various UML
diagrams can be used to identify all elements affected
by a change at any modelling level. Section 4 illus-
trates the application of COCOMOII and UCP
through an example. Section 5 concludes with a sum-
mary of the presented work and a highlight of its ex-
tensions.

2 EFFORT ESTIMATE
METHODS: AN OVERVIEW

In this section, we first overview the most known ef-
fort estimation methods which are adapted to
changes: the Use Case Point (UCP) method (Karner,
1993) and the COnstructive Cost MOdel II
(COCOMOII) (Boehm, 2000). Secondly, we discuss
those change impact analysis approaches that calcu-
late the effort needed to handle a change.

2.1 Change Effort Estimation using
COCOMO II

COCOMO (Boehm, 2000) was first introduced by
Barry Boehm in 1981. It takes software size and a set
of factors as input and it estimates effort in person-
months according to equation (1):

PM = A* sizeE * П EM i (1)

where:

 A = 2.94 for COCOMO II.2000;
 the size is in Kilo Source Lines Of Code (KSLOC).

It is derived from estimating the size of software

modules that will constitute the application pro-
gram. It can also be estimated from unadjusted
function points (UFP) converted to SLOC
(Boehm, 2000) (Kama et al., 2013);

 the exponent E is an aggregation of five scale fac-
tors (SF) that account for the relative economies or
diseconomies of scale encountered for software
projects of different sizes:

E=B+0.01 * ∑ SFjହ
୨ୀଵ

with B = 0.91 for COCOMO II.2000; and
 the effort multipliers (EMi) are used to adjust the

nominal effort, person-months, to reflect the soft-
ware product under development. For instance, the
Required Software Reliability (RELY) is the
measure of the extent to which the software must
perform its intended function over a period of time.
If the effect of a software failure is only a slight
inconvenience, then RELY is very low.

All the input parameters of the software cost esti-
mate model need to be consistent and available in the
early stages of a software project. However, very little
may be known about the size of the product to be de-
veloped, the nature of the target platform, the nature
of the personnel to be involved in the project, or the
detailed specificities of the process to be used.

Kama et al., (Kama et al., 2013) developed a new
change effort estimation model based on
COCOMOII. This contribution integrates the change
impact analysis technique SPD-CIF (Kama, 2011)
and COCOMO II effort estimation technique. Based
on the traceability between requirement, design arte-
facts and classes, the impact analysis is performed. To
estimate the change effort for a given change, the
modified, added, and canceled KSLOCs are deter-
mined. Weights are assigned to change types (addi-
tion, modification, cancellation). To calculate the
change effort for every change type, the constant A
(in equation (1)) is replaced by the weight of the
change type and the size is replaced by the amount of
changed (added, modified or cancelled) KSLOCs. Fi-
nally, the effort in person/months of every change
type is summed to obtain the overall change effort.
The change type’s weights are not justified. In addi-
tion, the effort of the deletion is subtracted from the
total effort (weight equals -1) which is not true in
terms of development since a deleted element incurs
changes in the models and hence effort to update
them.

2.2 Change Effort Estimation using
UCP

Introduced in 1993 by Karner (Karner, 1993), the Use

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

302

Case Points (UCP) method estimates effort in person-
hours based on use cases specifying the functional re-
quirements of a system. UCP is an adaptation of
Function Point (Albrecht, 1979) for measuring the
size of projects whose functional requirements speci-
fications are described by a use case model. The de-
sign of UCP takes into account three aspects of a soft-
ware project: Use cases, Technical qualities, and

Table 1: Adapted UCP estimation method.(Mohagheghi,
2005).

 Steps Output

1

1.1. Classify all actors as
average, WF = 2.

Unadjusted Actor Weight
UAW = #Actors * 2

1.2. Count the number of
new/modified actors.

Modified Unadjusted Actor
Weight(MUAW) = #New

or modified actors *2

2

2.1. Since each transaction in
the main flow contains one or

several transactions, count
each transaction as a single

use case.
2.2. Count each alternative
flow as a single use case.
2.3. Exceptional flows,

parameters, and events are
given weight 2. Maximum

weighted sum is limited to 15
(a complex use case).

2.4. Included and extended
use cases are handled

as base use cases.
2.5. Classify use cases as:

a) Simple- 2 or fewer
transactions,

WF = 5
b) Average- 3 to 4

transactions,
WF = 10

c) Complex-more than 4
transactions,

WF=15

Unadjusted Use Case
Weights (UUCW) =

∑ (#Use Cases * WF) +
∑(#Use Case Points for

exceptional flows and pa-
rameters from 2.3)

2.6 Count points for modifica-
tions in use cases according
to rules 2.1-2.5 to calculate

the Modified Unadjusted Use
Case Weights (MUUCW)

Modified UUCW
(MUUCW) =

∑(#new or modified Use
Cases * WF) +

∑(# new or modified ex-
ceptional flows and

parameters)

3

3.1. Calculate UUCP for all
software.

UUCP = UAW + UUCW

3.2. Calculate Modified
UUCP (MUUCP)

MUUC = MUAW +
MUUCW

4 Assume average project. TCF = EF = 1.

5

5.1. Calculate adjusted Use
Case Points (UCP).

UCP = UUCP

5.2. calculate adjusted
Modified UCP (MUCP)

MUCP=MUUCP

6
Estimate effort for

new/modified use cases
Effort = MUCP *

PHperUCP

Development resources. Each actor and each use case
is classified at a complexity level (simple, average, or
complex) and assigned a corresponding weight (from
one to three points for the actors, and from 5 to 15 for
the use cases). The technical qualities of UCP are rep-
resented by a Technical Complexity Factor (TCF),
which consists of 13 technical qualities, each with a
specific weight (zero is “not applicable” and five is
“essential”), combined into a single factor. The devel-
opment resources for UCP are represented by the En-
vironment Factors (EF). The UCP model identifies
eight such factors contributing to the effectiveness of
the development team. To calculate the EF, an expert
must assess the importance of each factor and classify
it on a scale from zero to five (zero meaning “very
weak” five meaning “very strong”).

The UCP method was adapted by Mohagheghi et
al. (Mohagheghi, 2005) to incremental development.
Table 1 summarizes the steps of the adapted UCP
method as proposed in (Mohagheghi, 2005). This
UCP method has the advantage of measuring easily
the software functional size as early as possible in the
development cycle. Nevertheless, this method has
many problems, for instance, the same category labels
are used for use cases (simple, average, and complex).
However, it cannot be assumed that the categories and
the categorization process are similar, since different
entity types are involved (Abran, 2010). In addition,
both the technical and resource factors are evaluated
through a categorization process with integers from 0
to 5. Note that these numbers do not represent numer-
ical values on a ratio scale, but merely a category on
an ordinal scale type; that is, they are merely ordered
labels and not numbers. For instance, a programming
language assigned a difficulty level of 1 is considered
to be less difficult for the development team than a
programming language of difficulty level 2, but it
cannot be considered to be exactly one unit less diffi-
cult than a programming language categorized as hav-
ing a difficulty level of 2, since these levels are meas-
ured on an ordinal scale (Abran, 2010).

2.3 Effort Estimate in Change Impact
Management Approaches

Several works tried to calculate the cost of repairing
inconsistencies caused by changes. For instance, Dam
et al. (Dam, 2010) proposes an approach to support
change propagation within UML design models. This
approach first generates repair plans for each detected
consistency constraint. It then calculates the cost of
each generated repair plan instance to propose the
cheapest repair to the designer. Finally, the selected
repair plan instance is executed to update the design

Change�Effort�Estimation�based�on�UML�Diagrams�Application�in�UCP�and�COCOMOII

303

model. This approach assumes that repair plans that
lead to fewer changes in the model, and thus have
lower costs, are preferable.

Briand et al. (Briand, 2006) propose another way
of calculating the cost of a repair. They define a dis-
tance between the changed elements and potentially
impacted elements that represents the number of im-
pact analysis rules invoked to identify the impacted
elements. Based on this distance, they assumption
that the larger the distance is, the less likely the model
element is to be impacted.

Sharif et al. (Sharif, 2012) compute the effort in
terms of the total working hours needed to implement
a requirement change. Based on an empirical investi-
gation, a regression equation is derived by performing
correlation and regression analysis on the change re-
quest data.

Overall, the above examined approaches estimate
the effort of changes in software artefacts in a partic-
ular development phase and do not account for
changes incurred in other related software artefacts.
To account for change propagation among artefacts,
we propose an adaptation of COCOMO and UCP es-
timate models to estimate the effort needed when
changes occur in the design and/or the requirements.

3 CHANGE IMPACT ANALYSIS
ACROSS ARTEFACTS

Our approach to effort estimate identifies and
measures the potential side effects of changes across
different UML diagrams; the focus in this paper is on
the use case, class and sequence diagrams which
cover the requirements and design phases where
changes are frequent. To identify the dependencies
among these UML diagrams, our method adopts a
graph-based technique to construct automatically a
model dependency graph (MDG). Based on the
change type and the MDG produced for the UML di-
agrams, our method determines the impacted ele-
ments for every change type. These elements are then
used to estimate the effort need to handle the overall
changes using any effort estimate method; we illus-
trate in this paper the use of COCOMOII and UCP.

3.1 Traceability among the Use Case,
Class and Sequence Diagrams

Based on the fact that UML diagrams can be assimi-
lated to graphs, the dependencies among UML dia-
gram elements could therefore be determined using a
graph reachability analysis technique. Indeed, ins

pired from the work of Lallchandani et al., (Lallchan-
dani, 2009) for static slicing of UML models, we de-
fined a method to construct the model dependency
graph (MDG), which is used to ensure traceability be-
tween the class, sequence and use case diagrams.

The UML class diagram is transformed into a
Class Dependency Graph (CDG) and every UML se-
quence diagram is transformed into a Sequence De-
pendency Graph (SDG). In addition, every UML use
case diagram is transformed into a Use Case Depend-
ency Graph (UCDG) based on a structured use case
description (Ali, 2005). To get all dependencies
among the various diagrams, the UCDG, CDGs and
SDGs are merged into one Model Dependency Graph
(MDG).

Our CDG and SDG construction and integration
method adapts the transformations initially proposed
by (Lallchandani, 2009). To trace the change impact
from the use case diagram across the class and se-
quence diagrams, the UCDG, CDG and SDGs are in-
tegrated into a single graph called Model Dependency
Graph (MDG) using an information retrieval tech-
nique. In fact, we use the cosine similarity measure to
identify the correspondence among the ordered ac-
tions and data objects (specifying the use case scenar-
ios) and the information present in the sequence dia-
grams.

3.2 Example: The ATM System

To illustrate the effort estimation and the traceability
through the MDG, let us consider the automatic teller
machine (ATM) system example (Russel, 2004). The
use case diagram comprises, essentially, four use
cases (Figure1): “System startup”, “system Shut-
down”, “Session” and “Transaction”. The “Session”
UC and the “Transaction” UC textual descriptions are
presented respectively in Table 2 and Table 3.

Figure 1: Main use-case diagram of the ATM system (Rus-
sel, 2004).

SystemStartup

Operator

SystemShutdown

Customer
Session

Bank
Transsaction

InvalidPIN

<<include>>

<<extend>>

Withdrawal
Deposit Transfer

Inquiry

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

304

The documentation of the use cases can be formalized
through the sequence diagrams shown in Figure 3 and
4 where the objects are instances of the classes shown
in the class diagram of Figure 2.

Table 2: UC1: Use case “Session” description.

+ Session
Actor Customer
Precondition ATM card is inserted into the card reader slot

of the machine
Postcondition Nothing
Extension
Point

[Pin valid], use case «Transaction »

Normal
Scenario

NSa1.<The customer> < enters the card into
the machine>
NSa2. <The ATM> <reads the card >
NSa3.< The customer > < enter his/her
PIN>
NSa4.< The customer > <chooses from a
menu the type of transaction>
NSa5. < The customer > < performs a trans-
action>
NSa6.<The ATM> <ejects the card and
ends the session>

Alternatives
Scenario

<the reader cannot read the card, restart
from NSa2>
<AS1a1> <the ATM> <reject the card and dis-
plays an error screen>

Error
Scenario

< too many invalid PIN entries>
<ES1a1> <the ATM> < abort the session with
the card being retained in the machine >

Table 3: UC2: Use case “Transaction” description.

Use case Transaction
Actor Bank
Precondition the customer chooses a transaction type from a

menu of options
Postcondi-
tion

Nothing

Extension
Point

[PIN is invalid], use case « invalid PIN »

Normal
Scenario

NSa1.<The customer> < furnish appropriate
details (e.g. account(s) involved, amount)>
NSa2. <The ATM> < send to the bank the in-
formation from the customer's card and the PIN
the customer entered>
NSa3. < The ATM > < perform the transac-
tion>
NSa4. < The ATM > <print a receipt>
NSa5. < The ATM > < display a menu of pos-
sible types of transaction >

Alternatives
Scenario

<the reader cannot read the card, restart from
“session” use case>
AS1a1. <the ATM> <reject the card and dis-
plays an error screen>

Error
Scenario

< too many invalid PIN entries>
ES1a1. <the ATM> < abort the session with the
card being retained in the machine >

Let us suppose that the designer wants to make the
following change to the class diagram presented in
Figure 2 delete the “session” class. Based on the
MDG of Figure 5, the impacted elements in the use
case diagram can be determined: In the use case “ses-
sion”, the scenarios NSa3, NSa4, NSa5, NSa6 are af-
fected. The messages/actions I(k) from the deleted
class “ses sion” are impacted by the change.

Figure 2: ATM system class diagram (CD) (Russel, 2004).

Figure 3: The sequence diagram “Session” (Russel, 2004).

Figure 4: The sequence diagram “Transaction” (Russel,
2004).

Change�Effort�Estimation�based�on�UML�Diagrams�Application�in�UCP�and�COCOMOII

305

Figure 5: The model dependency graph integrating the CD,
UC1 and SD1.

3.3 UCP Application

Based on the impacted elements detected in the use
case diagram through the MDG, we can apply the
adapted UCP estimation method of Mohagheghi et al.
(Mohagheghi, 2005). Recall that the change (deleting

Table 4: Example of counting UUCP and MUUCP for the
use case “session”.

Steps UUCP & MUUCP values

1 UAW= 3*2= 6

MUAW = 0
2 Normal scenario/Main flow

#simple use cases =6
#Average use cases=0
#complex use cases = 0
Weight per simple use case=5
6*5=30
Alternative flow
#simple use cases =1
Weight per simple use case=5 1*5=5
Error flow
#simple use cases =1
Weight per error use case=5
1*5=5
 Total =40
Normal scenario(Main flow)
#Average use cases=1 (the use case session with 4 new
or modified action)
Weight per Average UC = 10
1*10=10
 Total for changed flow = 10

3 UUCP = 6+40
 = 46
MUUC = 0+10=10

4 TCF = EF = 1.
5 UCP = UUCP = 46

MUCP = MUUCP
=10

6 Effort = 10 *36 =360

a class) occurs in the class diagram whereas the UCP
method depends on use cases. Our proposition has the
merit of determining the affected use cases (via the
MDG) in order to apply UCP. The application of the
adapted UCP is presented in Table 4.

To derive an appropriate duration for the project,
we need to know the team’s rate of progress through
the use cases. The literature on the UCP method pro-
poses from 20 to 36 PHperUCP. Mohagheghi et al.
(Mohagheghi, 2005) decided to ignore counting the
environmental factors and decided for the large num-
ber of complex use cases to choose the maximum
used number of PHperUCP that is 36. This means that
our example of 10 use case points corresponds to 360
hours of work.

Now let us suppose that a developer spend about
40 hours per week on project tasks. As a consequence,
he will spend about two month (360/40= 9 weeks) to
manage this change (the deletion of the “session”
class).

3.4 COCOMO II Application

To apply the COCOMOII model, we need the size pa-
rameter expressed in SLOC. Since the change occurs
in a design diagram, the size of changed elements is
calculated first in function points and then it is con-
verted to SLOC.

3.4.1 Function Points Calculation

The calculation of function points is based on the
principle of Albrecht’s function point analysis (FPA)
(Albrecht, 1979) where a system is decomposed into
functional units. The inputs represent information en-
tering the system, and the outputs represent infor-
mation leaving the system. The enquiries represent
requests for instant access to information. The inter-
nal logical files represent information held within the
system. Finally, the external interface files represent
information held by other systems used by the system
being analyzed.

Information domain of the use case “session”:

The information domain treats only the part of the use
case affected by the change. Based on the MDG in the
Figure 5, the deletion of the use case “session” im-
pacts the actions NSa3, NSa4, NSa5, NSa6. The in-
formation domain of these actions is extracted from
the lines in bold in Table 2.

External Inputs: the PIN, the selected transaction.
External Outputs: the types of transactions.
External inquiries: 0.
Internal logical files: 0.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

306

External interface files: error screen, type of transac-
tion interface.

Table 5: Functional units with weighting factors.

Information Domain
Weights

Simple Average Complex
External Inputs 3 4 6
External Outputs 4 5 7
External Inquiries 3 4 6
Internal Logical Files 7 10 15
External Interface Files 5 7 10

Function point calculation:

Function points (FP) are calculated based on the
functional units extracted from the actions affected by
the change multiplied by their weights as defined in
Table 5:

FP =2*3 (simple External Inputs) +
1*4 (simple external outputs) +
2*5 (simple external interface files)

= 20 function-points.

For instance, in the case of the C++ programming
language, 1 FP = 29 LOC (Boehm, 2000), which
gives the following estimated size (ES):

ES =20* 29 = 580= 0.56 KLOC

Note that function points describe what the appli-
cation interacts with; but there is other implicit infor-
mation in addition to the interactions. We have to
scale the function value according to expectations.
These expectations are presented by scale factors and
cost drivers. The values of scale factors and cost driv-
ers are usually affected by experts based on their
judgment (Mohagheghi, 2005). In our work, we sup-
pose that the impact of the scale factors and cost driv-
ers is insignificant and it does not have a large impact
on the estimate in this particular example. Dropping
these factors is also suggested in other cost models
(Kemerer, 1987) (Mohagheghi, 2005).

3.4.2 Scale Factors Calculation

We suppose that all scale factors are nominal. The
nominal scale factors values presented in
COCOMOII 2000 (Boehm, 2000) are summed up to
calculate the exponent E.

E=B+0.01 * ∑ ହ݆ܨܵ
௝ୀଵ

E=0.91+0.01*18.67= 1.0997

3.4.3 Effort Multiplier Calculation

Similarly to the scale factors, we suppose that cost
drivers are nominal. So, based on the values presented
by COCOMOII (Boehm, 2000), the effort multiplier
product is taken as 1.00.
Finally, the effort in terms of person-per-months can
be calculated:

Effort = 2.94 * (0.56) 1.0997 * 1 = 1.55

3 EMPIRICAL INVESTIGATION

We evaluated our method through an empirical eval-
uation based on a comparison between results (effort
needed to correct a change) built by applying our
method and results constructed by experts. Experts
are UML professionals and have years of experience
studying and developing projects designed with
UML.

More specifically, we choose six designers who
are responsible in updating projects (versioning, de-
sign improvement, error handling) and have already
made and managed changes. Our evaluation consists
in collecting information (actual effort, weighting
factors, programming language, etc.) for two change
types in order to calculate the effort based on our
adapted UCP and COCOMOII approach.

Table 6 presents a comparison between the efforts
(The number of weeks needed to manage a change)
estimated by experts (E1, E2…, E6) and effort esti-
mated by our adapted COCOMO II and UCP estima-
tion techniques.

Table 6: A comparative study.

 Experts’
estimate

Adapted
COCOMOII

Adapted
UCP

 C1 C2 C1 C2 C1 C2
E1 4,5 2,5 6 2,5 9 3,5
E2 2 3 2,5 3 5 5
E3 10 8 8 8 15 10
E4 6 2 5.5 3 8 5
E5 14 6 13 3 9 10
E6 2 7 3 6,5 5 10

Our preliminary evaluation affirmed that com-
pared to experts' estimate, COCOMOII estimate is
closer to the reality than UCP.

Change�Effort�Estimation�based�on�UML�Diagrams�Application�in�UCP�and�COCOMOII

307

4 CONCLUSIONS

This paper illustrated the feasibility of integrating an
effort estimate method with a change impact analysis
technique early in the software development life cy-
cle. Effort estimate during the accommodation of a
change helps the designer and/or project manager to
decide whether to undertake a change or to cancel it.
Such a decision is needed during the requirements
and/or design phases since most often changes occur
during these phases and impact the overall software
project management.

Our integration approach explored the semantic
relations among the UML diagrams to ensure the
traceability of a change in one diagram in other dia-
grams. This paper illustrated through an example how
COCOMOII and UCP estimate models can be
adapted to estimate the effort needed when changes
occur in the design (class diagram) and/or the require-
ments (use case diagram).

Besides conducting a large-scale experimental
evaluation of our propositions, we are in the process
of extending the adaptation of COCOMO and UCP to
cover changes in the remaining UML diagrams.

REFERENCES

Abran, A., 2010. Software Metrics and SoftwareMetrology.
Wiley-IEEE Computer Society Press.

Albrecht, A.J., 1979. Measuring Application Development
Productivity. In: Proceedings of Joint Share, Guide and
IBM Application Development Symposium.

Ali M., Ben-Abdallah H., Gargouri F., 2005. Towards a
Validation Approach of UP Conceptual Models. In:
Proceeding of Consistency in Model Driven Engineer-
ing in European Conference on Model Driven Architec-
ture - Foundations and Applications Nuremberg.

Boehm, B., Brown, W., Madachy, R., Yang, Y., 2000.
COCOMO II Model Definition Manual, Center for
Software Engineering, Version 2.1.
http://csse.usc.edu/csse/research/COCOMOII/cocomo
2000.0/CII_modelman2000.0.pdf.

Briand, L. C., Labiche, Y., O’Sullivan, L., & Sówka, M. M.
2006. Automated impact analysis of UML models. J.
System Software,

Dam H. K., Winikof M.: Supporting change propagation in
UML models, 2010. IEEE International Conference on
Software Maintenance (ICSM).

Karner, G., 1993. Resource Estimation for Objectory Pro-
jects. Objective Systems SF AB.

Kama, N., Halimi, M., 2013. Extending Change Impact
Analysis Approach for Change Effort Estimation in the
Software Development Phase. In 13th WSEAS Interna-
tional Conference on APPLIED COMPUTER
SCIENCE.

Kama, N.M., 2011. A change impact analysis framework
for the software development phase. Thesis, University
of Western Australia.

Kemerer, C.F., 1987. An empirical validation of software
cost estimation models. In: Communications of the
ACM magazine. Volume 30, Issue 5.

Lallchandani, J.T., Mall, R., 2009. Static Slicing of UML
Architectural Models. Journal of object technology,
Vol. 8, No. 1.

Mohagheghi, P., Anda, B., Conradi, R., 2005. Effort esti-
mation of use cases for incremental large-scale software
development, In: 27th International Conference on
Software Engineering, IEEE.

Russell C., 2004. Bjork, Gordon College, Copyright©2004,
http://www.math-cs.gordon.edu/courses/cs211/AT-
MExample/

Sharif B., Khan S. A., Bhatti M.W., 2012. Measuring the
Impact of Changing Requirements on Software Project
Cost: An Empirical Investigation, IJCSI International
Journal of Computer Science Issues.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

308

