
Speaking in Tongues
Practical Evaluation of TLS Cipher Suites Compatibility

Manuel Koschuch1, Taro Fruhwirth2, Alexander Glaser2, Silvie Schmidt2 and Matthias Hudler1

1Competence Centre for IT-Security, FH Campus Wien, University of Applied Sciences
Favoritenstrasse 226, 1100 Vienna, Austria

2FH Campus Wien, University of Applied Sciences, Favoritenstrasse 226, 1100 Vienna, Austria

Keywords: OpenSSL, O-Saft, Bettercrypto, Openssl-compare, Applied Crypto Hardening, Cipher Suite, Cipher String.

Abstract: The Transport Layer Security (TLS) protocol is still the de-facto standard for secure network connections
over an insecure medium like the internet. But its flexibility concerning the algorithms used for securing a
channel between two parties can also be a weakness, due to the possible agreement on insecure ciphers. In
this work we examine an existing white paper (Applied Crypto Hardening) giving recommendations on how
to securely configure SSL/TLS connections with regard to the practical feasibility of these recommendations.
In addition we propose an additional configuration set with the aim of increasing compatibility as well as
security. We also developed a small Cipher Negotiation Crawler (CiNeg) to test TLS-handshakes using given
cipher configurations with a supplied list of websites and show its practical usability.

1 INTRODUCTION

Since its initial public specification in 1995, the
Transport Layer Security (TLS) protocol (Dierks and
Rescorla, 2008), originally and until v3.0 known as
Secure Sockets Layer (SSL) (Freier et al., 2011),
has become the de-facto standard for secure network
communications over an insecure channel. One of
the main reasons for its widespread usage (from web-
browsers to mobile apps to embedded systems) is the
flexibility this protocol offers with regard to the cryp-
tographic algorithms used in a session.

To achieve this flexibility, the concept of cipher
suites, described by cipher strings, is employed. Sec-
tion 2 gives an overview of these strings and how
they are used in the SSL/TLS handshake process. But
this mechanism also creates practical problems: due
to compatibility issues, or simple misconfiguration,
a potentially very large number of SSL/TLS secured
systems using insecure configurations exist. In addi-
tion, the cipher suites that — given a specific cipher
string configuration — are actually negotiated with a
specific server often remain unclear.

Several guides exist to support administrators on
how to choose secure and compatible cipher strings,
usually mostly focused on a single (or small range of)
product(s). One guide that tries to take a broader ap-

proach to this topic is the Applied Crypto Hardening
(ACH) white paper (Breyha et al., 2015), which is cur-
rently (2/2015) still in draft status and in near constant
flux. In Section 2.4 we give a more detailed descrip-
tion of the recommendations presented in this guide.

Our main motivation for this work was now to de-
termine how well the cipher strings recommended in
(Breyha et al., 2015) are usable in practice, how they
scale with different SSL/TLS versions, and what ci-
pher suites are effectively negotiated when using the
given strings in a practical setting. We also devel-
oped a small Cipher Negotiation Crawler (CiNeg) to
perform TLS-handshakes with a given list of websites
and show its practical usability. Section 3 details our
results.

Finally, we propose another cipher string, trying
to find a balance between security and compatibility,
and evaluate its practical applicability in Section 4,
summing up our results and findings in Section 5.

2 TRANSPORT LAYER
SECURITY PROTOCOL

Transport Layer Security (TLS) is, as well as its
predecessor SSL, a hybrid cryptographic protocol
(SSL specifications were last updated in (Freier et al.,

13Koschuch M., Fruhwirth T., Glaser A., Schmidt S. and Hudler M..
Speaking in Tongues - Practical Evaluation of TLS Cipher Suites Compatibility.
DOI: 10.5220/0005507900130023
In Proceedings of the 6th International Conference on Data Communication Networking (DCNET-2015), pages 13-23
ISBN: 978-989-758-112-0
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



2011), TLS is specified in (Dierks and Allen, 1999)
and was most recently updated in (Popov, 2015)). It
employs asymmetric cryptography during the initial
handshake phase to verify the authenticity of usually
at least one (the server side) of the communicating
parties, as well as to exchange a symmetric key be-
tween those parties. The data communication itself is
then encrypted and integrity protected using symmet-
ric techniques.

The initial handshake can be divided into four
phases, as detailed in Figure 1, where the individual
phases perform the following functions:

Figure 1: TLS Basic Handshake (cf. (Stallings, 2008)). The
shaded messages are optional or situation dependent.

during phase 1 security capabilities are established.
This includes information about the protocol version,
session ID, cipher suite, compression method, as well
as the initial random number.

Phase 2 contains three optional messages by the
server, i.e. certificate, key exchange, and the request
for a client certificate. Usually, in the context of a
web-server communicating with a client via HTPP
over SSL (HTTPS), at least the server certificate is
sent to authenticate the server.

In phase 3 the client may send its certificate if re-
quested by the server. In any case the client sends key

exchange information, depending on the actual cipher
suite agreed upon in phase 1. At the end of phase 3
the client may send a certificate verification (forcing
it to employ the private key corresponding to the one
present in the client’s certificate).

During phase 4 the change cipher spec messages
are sent both ways, and the handshake is finished by
exchanging a message symmetrically encrypted with
the agreed upon key and cipher.

The most interesting part of this handshake for
our work is phase 1, in particular the negotiation of
the cipher suites. Usually the client offers a list of
supported suites in its client hello message, with the
server selecting a suite from its own configuration
shared with the client and communicates it back to the
client in the server hello message. The cipher suites
supported by server and client depend on their respec-
tive configuration, as well as on the SSL/TLS version
used.

2.1 Cipher Suites

A cipher suite defines the cryptographic algorithms
used during an SSL/TLS connection, and usually con-
tains information about the primitives for key ex-
change, authentication, symmetric encryption, and in-
tegrity protection.

An example suite, given in the format used
by OpenSSL, would be DHE-RSA-AES128-SHA:
ephemeral Diffie-Hellman (Diffie and Hellman, 2006)
is used for agreeing on a symmetric key, RSA (Rivest
et al., 1978) signatures for checking the authenticity
of the parties involved, AES (NIST, 2001) with a 128-
bit key for symmetric bulk data encryption, and SHA-
1 (NIST, 2012) for calculation of the HMAC integrity
protection value.

Supported cipher suites vary by SSL/TLS version
and specific implementations, and are, among others,
specified in (Dierks and Allen, 1999; Medvinsky and
Hur, 1999; Chown, 2002; Moriai et al., 2005; Lee
et al., 2005; Eronen and Tschofenig, 2005; Dierks and
Rescorla, 2006).

The most commonly used algorithms for the dif-
ferent cryptographic primitives are:

Key Exchange: RSA, or Diffie-Hellman (DH) or
its equivalent over elliptic curves (ECDH),
both in ephemeral and non-ephemeral varieties
((EC)DH(E))

Authentication: RSA, or the Digital Signature Algo-
rithm (DSA) or its equivalent over elliptic curves
(ECDSA)

Encryption: AES, RC4, or CAMELLIA

DCNET�2015�-�International�Conference�on�Data�Communication�Networking

14



Hash: MD5, or a member of the SHA family (-1,-2,-
256,-384)

Most of the software products employing
SSL/TLS allow for some kind of control over
which cipher suites are available for negotiation,
thereby enabling the users and/or administrators for
enforcing certain minimum security requirements or
enabling compatibility with a wider range of devices.
The desired cipher suites can either be explicitly
enumerated or, as in the case of OpenSSL, given
as logical compositions of classes of algorithms
(e.g. “no SHA-1 AND no RC4 AND AES”, see
https://www.openssl.org/docs/apps/ciphers.html for a
detailed discussion of the expressions allowed).

Regardless of the approach taken, in practice it
is often unclear or at least quite cumbersome to de-
termine which actual cipher suite is being negotiated
when connecting to a particular server. In this work
we try to introduce a structured tool-assisted approach
to answer this question, as well as use this approach
to evaluate the practical applicability and compatibil-
ity of an existing project (Breyha et al., 2015) giving
cipher string recommendations.

2.2 OpenSSL

The OpenSSL1 project offers an open source toolkit
written in C to implement SSL/TLS protocols, to-
gether with comprehensive utilities for creating and
verifying digital certificates. OpenSSL is also the de-
fault cryptographic library used in the Apache2 and
nginx3 HTTP servers. Both servers combined com-
prise about 67,26% of current domains served (ac-
cording to Analyzer.cc4).

Analyzer.cc also gives the most used version (as of
1/2015) as 0.9.8e (25.3%), followed by version 1.0.0
and 0.9.8g, with 14.3% and 13.2%, respectively. Ta-
ble 1 shows the top five OpenSSL versions according
to Analyzer.cc.

Table 1: Top 5 OpenSSL versions in use (according to
http://technology.analyzer.cc/application/openssl).

OpenSSL Version Installations %
0.9.8e 119,839 25.31%
1.0.0 67,937 14.35%
0.9.8g 62,510 13.20%
1.0.1e 56,580 11.95%
0.9.8o 36,191 7.64%
other 130,343 27.53%

1https://www.openssl.org/
2http://httpd.apache.org/
3http://nginx.org/
4http://technology.analyzer.cc/application/openssl

2.3 SSL/TLS Version Distribution

To get recent statistics on SSL/TLS usage and its
versions’ dissemination we used SSL Pulse5. As
of December 2014, 1.5 million public websites are
SSL/TLS enabled; due to efficiency concerns SSL
Pulse recently decided to use the top 200,000 sites
(according to Alexa’s list6) for its monitoring and the
resulting statistics. SSL Pulse offers various statistics
concerning SSL/TLS trends. From that we find that -
as of Dec.7th, 2014 - almost a quarter (22.6%) of the
websites scanned uses weak or insecure cipher suites,
i.e. these sites support symmetric ciphers with a key
length lower than 128 bits. This percentage of web-
sites is 1.1% less than a month earlier, i.e. there is
a positive trend concerning cipher strength. Further-
more, SSL Pulse examines the usage of SSL/TLS ver-
sions, i.e. SSL v2.0, SSL v3.0, TLS v1.0, TLS v1.1,
and TLS v1.2.

Table 2 shows the usage of SSL/TLS versions in
December 2014 compared to November 2014. It is
obvious that SSL support is declining and the per-
centage of sites deploying TLS is growing, yet there
is still a considerable number of servers available that
are able to fallback to SSL when a client requests to
do so, making it all the more important to choose ci-
pher strings in a way to avoid this from happening.

2.4 Available Tools

As already mentioned before, several projects exist
trying to give administrators guidelines on how to
securely configure SSL/TLS installations by deploy-
ing specifically crafted cipher strings. In this work
our interest is twofold: first we want to examine the
recommendations given in the Applied Crypto Hard-
ening (ACH) project (Breyha et al., 2015) on their
practical usability and compatibility. In addition, we
try to define our own new cipher string, trying to
strike a balance between the two configurations given
in (Breyha et al., 2015). We chose the ACH project
mainly for two reasons: the decision finding process
is open and well documented on a public mailing
list (http://lists.cert.at/cgi-bin/mailman/listinfo/ach)
as well as in the corresponding Git repository
(https://git.bettercrypto.org/ach-master.git).

And the contributors to the document come from
academic research as well as from the industry, giving
a broad perspective on the topic. These two properties
lend credibility to the notion that a configuration cre-
ated and recommended this way is actually sensible

5https://www.trustworthyinternet.org/ssl-pulse/
6http://www.alexa.com/

Speaking�in�Tongues�-�Practical�Evaluation�of�TLS�Cipher�Suites�Compatibility

15



Table 2: SSL/TLS Trends: absolute and relative numbers of sites supporting the respective version. (Data from
https://www.trustworthyinternet.org/ssl-pulse/, 1/2015).

Protocol Nov.2014 abs. Nov.2014 % Dec.2014 abs. Dec.2014 % Trend
SSL v2.0 23,238 16.6% 25,096 15.5% - 1.1%
SSL v3.0 91,526 60.6% 80,085 53.5% - 7.1%
TLS v1.0 149,132 99.5% 150,293 99.6% + 0.1%
TLS v1.1 68,595 45.4% 70,933 47.4% + 2.0%
TLS v1.2 72,701 48.1% 75,022 50.1% + 2.0%

in practice. Two cipher strings are provided by ACH
(as of draft revision 1333f7a):

Cipher String A is a configuration for strong secu-
rity, i.e. using strong ciphers, but offering less com-
patibility, i.e. fewer clients (Breyha et al., 2015):
EDH+ aRSA +AES256: EECDH +aRSA +AES256:
!SSLv3.

Cipher String B is configured with weaker ciphers,
but it offers better compatibility (Breyha et al., 2015):
EDH+ CAMELLIA: EDH +aRSA: EECDH +aRSA
+AESGCM: EECDH +aRSA +SHA256: EECDH:
+CAMELLIA128: +AES128: +SSLv3: !aNULL:
!eNULL:!LOW:!3DES: !MD5: !EXP: !PSK: !DSS:
!RC4: !SEED: !IDEA: !ECDSA: kEDH: CAMEL-
LIA128 -SHA: AES128 -SHA.

More detailed explanation for selecting these
ciphers and their compatibilities can be found in
(Breyha et al., 2015).

To evaluate these two strings in practice we used
two additional tools: Openssl-compare7, allowing us
to test a given cipher string against a certain OpenSSL
version and determining the resulting supporting ci-
pher suites.

And O-Saft8 to test a given cipher string against a
server.

3 PRACTICAL EVALUATION

In this section we describe the practical tests per-
formed and all the results and conclusions we derive
from these. We start with estimating the practical
compatibility of cipher string A and B from (Breyha
et al., 2015), and conclude by examining the available
cipher suites in different OpenSSL versions.

3.1 Methodology

We first try to estimate the percentage of websites
a client with a given cipher string configuration can
successfully connect to, taking into account the dis-
tribution of SSL/TLS versions as well as the cipher

7https://github.com/azet/openssl-compare
8https://www.owasp.org/index.php/O-Saft

suites described by the cipher string. To do this we
use openly available tools as detailed in Section 2.4
as well as our own command line application CiNeg,
detailed in the next Subsection.

We then try to verify our estimations by using
CiNeg to connect to Alexa’s top 1,000/top 25,000
sites and record the negotiated cipher suites.

Finally, we specify a new cipher string and ver-
ify its usability and compatibility by performing the
scans again.

3.2 Compatibility Estimation for ACH’s
Cipher Strings

In addition to the tools listed in Section 2.4, we devel-
oped the tool CiNeg, which creates an SSL/TLS ses-
sion for a given list of websites with a chosen cipher
string. CiNeg only tries to connect once, which re-
sults in small differences of the responding web sites
caused by the timeout after 2.5 seconds. CiNeg only
uses the given URL and does not try connecting to any
sub-domains. The tool uses the installed OpenSSL
client, version 1.0.1f in our case. The output shows
the negotiated cipher suite and the protocol version
used.

We estimate the compatibility of the cipher strings
A and B with web servers which support SSL or TLS,
using the results from scans with our CiNeg tool given
in Table 3.

3.2.1 Compatibility Estimation for Cipher
String A

Cipher string A only supports TLS 1.2 cipher suites.
This massively reduces the number of compatible
sites. According to SSL-Pulse data from December
2014, only 50.1% of SSL/TLS-enabled sites support
TLS 1.2. SSL-Pulse uses about 200,000 SSL/TLS
websites.

A second scan by Securitypitfalls9 from Novem-
ber 2014, which uses 441,636 SSL/TLS websites
from Alexa’s top list10, indicates that 66.2% sup-
port TLS 1.2. The scan by Securitypitfalls shows

9https://securitypitfalls.wordpress.com/2014/12/
10http://www.alexa.com/topsites

DCNET�2015�-�International�Conference�on�Data�Communication�Networking

16



that 56.7% of the surveyed sites support ECDHE and
49.5% support DHE.

Due to the numbers of the previous results and the
compatibility values from Table 3 we estimate that the
compatibility for this cipher string is between 50%
and 60%.

We used CiNeg to verify these values and ran a
scan with the top 1,000 and top 25,000 websites ac-
cording to Alexa’s top list. There are about 600 (60%)
websites in the top 1,000 that support SSL/TLS and
about 14,500 (58%) in the top 25,000.

We first performed a scan with the cipher string
’ALL’ to see how many websites return an error
within the handshake, even when the cipher suites are
not limited. This value may vary slightly according
to the number of no responses on port 443, but this
should not severely skew our estimations.

We subtract the number of the errors within the
handshakes with all possible cipher suites from the
number of errors in the handshake with the limited ci-
pher suites, i.e. we removed cipher suites with limita-
tions such that the errors caused by these cipher suites
do not occur any more. The result for the shared ci-
pher suite percentage of cipher string A, when using
the top 1,000 websites according to Alexa, is 54.3%.
The result for the top 25,000 websites is 56.1%.

These results confirm our initial estimation.
This quite limited compatibility is in line with the

goal of cipher string A, to focus on security and not
on compatibility with older systems.

The results of the CiNeg scan also include the ne-
gotiated cipher suites. Figure 2 shows the distribution
of negotiated cipher suites for the top 25,000 web-
sites. This chart shows that ECDHE-RSA-AES256-
GCM-SHA384 is used in about 65% of the successful
negotiations, although the DHE cipher suites are pre-
ferred by the client. Possible reasons for this might
be caused by the stronger support of the ECDHE ci-
pher suite or the fact, that - according to the scan by
Securitypitfalls - 67% of the websites use their own
priority order regarding their ciphers. It is also no-
table that about 95% of the negotiated cipher suites
use AES-GCM.

Figure 2: Percentage of cipher suites negotiated using ci-
pher string A with Alexa’s top 25,000 websites.

3.2.2 Compatibility Estimation for Cipher
String B

Cipher string B offers better compatibility than cipher
string A. The main reason for this fact is the support of
cipher suites which use RSA for key exchange. This
cipher string shares cipher suites with SSLv3, TLSv1,
TLSv1.1 and TLS1.2. The results of SSL-Pulse show
that nearly all of the websites support at least one of
these protocol versions and only 1.3% of the websites
support RC4 exclusively.

According to a scan by Securitypitfalls from
November 2014, only 0.02% of the SSL/TLS web-
sites from Alexa’s top 1 million sites only support
SSLv2. This scan used 441,636 SSL/TLS websites.
The results of this scan also show that RSA for key
exchange is supported by 94.2% of the websites, fol-
lowed by ECDHE with 56.7% and DHE with 49.5%.
AES for encryption is - according to this scan - sup-
ported by 93.6%. In this scan there are no different
results for AES128 and AES256. A different work
(Huang et al., 2014) using older data also found simi-
lar results concerning the distribution of AES128/256,
so this seems also valid for the newer values.

According to the previous numbers and the com-
patibility values from Table 3 we estimate that this
cipher string is compatible with about 95% of the
SSL/TLS websites.

We used CiNeg to verify this estimation in the
same way as described in the previous section. The
result for the shared cipher suite percentage of cipher
string B, when using the top 1,000 websites according
to Alexa’s list, is 98.3%. The result for the top 25,000
websites is 97.2%, i.e. the compatibility is slightly
better regarding the tested websites than estimated.

Figure 3 shows the distribution of negotiated ci-
pher suites for the top 25,000 websites when using
cipher string B. This chart shows that about 26.5%
of the websites negotiated the cipher suite AES128-
SHA, which does not offer perfect forward secrecy
(since using RSA as the key exchange method); this
cipher suite is the main reason for the better compati-
bility compared to cipher string A.

3.3 OpenSSL Support for Various
Cipher Suites

Openssl-compare, available at https://github.com/
azet/openssl-compare, provides the opportunity to in-
stall, execute and compare different OpenSSL ver-
sions. It offers the functionality to test a cipher string
against all OpenSSL versions present on the current
host. The command ciphersuite returns all the
shared cipher suites. To determine which cipher suite

Speaking�in�Tongues�-�Practical�Evaluation�of�TLS�Cipher�Suites�Compatibility

17



Figure 3: Percentage of cipher suites negotiated using cipher string B with Alexa’s top 25,000 websites.

of the shared cipher suites is actually negotiated dur-
ing a handshake, the command negotiate is used.

This tool was used to elaborate which cipher suite
is supported by which OpenSSL version. We also
used openssl-compare to test which cipher suite is
used for the different OpenSSL versions when a hand-
shake is executed with the cipher strings A and B of
the ACH project. The shared cipher suites where also
identified within these tests.

The following OpenSSL versions and sub-
versions where used:
� 0.9.6 (e,i-m)
� 0.9.7 (a-m)
� 0.9.8 (a-y,za,zb,zc)
� 1.0.0 (a,b,beta1-beta5,c-o)
� 1.0.1 (a,b,beta1-beta3,c-j)
� 1.0.2 (beta1-beta3)

3.3.1 Supported Cipher Suites

To determine the oldest OpenSSL version sup-
porting a specific cipher suite we used the com-
mand openssl-compare ciphersuite -s ’ALL’.
The cipher string ’ALL’ matches all the cipher suites
that are supported by default.

Table 3 shows an excerpt of supported cipher
suites. The compatibility values are the results of
scans using our CiNeg tool with the top 1,000 web-
sites according to Alexa’s list. The compatibility per-
centage is computed as described above.

Table 3 shows that AES is supported since version
0.9.7. It is also notable that ECDH and ECDHE are

supported since version 1.0.0. In version 1.0.1 major
modifications were made by introducing AES-GCM
(128 and 256), SHA256, and SHA384. AES256-
GCM is always used in a cipher suite with SHA384.
In TLS v1.2 AES256 is usually used in a cipher suite
with SHA256, except for cipher suites that include
ECDH(E), where SHA384 is used.

3.3.2 OpenSSL Support for Cipher String A

The command openssl-compare ciphersuite -s
was used to find the OpenSSL versions which share
cipher suites with the cipher string A. The result
shows that this cipher string shares cipher suites only
with OpenSSL versions 1.0.1 and 1.0.2. These shared
cipher suites are:

� DHE-RSA-AES256-GCM-SHA384

� DHE-RSA-AES256-SHA256

� ECDHE-RSA-AES256-GCM-SHA384

� ECDHE-RSA-AES256-SHA384

The three beta versions of version 1.0.1 do
not support the cipher suite DHE-RSA-AES256-
SHA256. This cipher string only supports TLSv1.2.
To examine which cipher suites are negotiated
in a handshake the command openssl-compare
negotiate -s was used. The negotiated cipher suite
for all supported OpenSSL versions is DHE-RSA-
AES256-GCM-SHA384.

DCNET�2015�-�International�Conference�on�Data�Communication�Networking

18



Table 3: OpenSSL versions’ cipher suite support and estimated compatibility for a given suite according to the top 1.000
Alexa websites. “x” denotes support for a cipher suite, “-” lack thereof.

OpenSSL Identifier 0.9.6 0.9.7 0.9.8 1.0.0 1.0.1 1.0.2 Compatibility [%]
RC4-SHA x x x x x x 65.6
DES-CBC3-SHA x x x x x x 87.4
AES128-SHA - x x x x x 96.1
AES256-SHA - x x x x x 94.0
EDH-RSA-DES-CBC3-SHA x x x x x x 27.3
DHE-RSA-AES128-SHA - x x x x x 34.2
DHE-RSA-AES256-SHA - x x x x x 27.5
DHE-RSA-CAMELLIA128-SHA - - - x x x 17.1
DHE-RSA-CAMELLIA256-SHA - - - x x x 17.0
DHE-RSA-AES128-SHA256 - - - - x x 16.9
DHE-RSA-AES256-SHA256 - - - - x x 16.9
DHE-RSA-AES128-GCM-SHA256 - - - - x x 19.0
DHE-RSA-AES256-GCM-SHA384 - - - - x x 17.4
ECDHE-RSA-AES128-SHA - - - x x x 60.7
ECDHE-RSA-AES256-SHA - - - x x x 56.2
ECDHE-RSA-AES128-SHA256 - - - - x x 51.2
ECDHE-RSA-AES256-SHA384 - - - - x x 50.5
ECDHE-RSA-AES128-GCM-SHA256 - - - - x x 52.1
ECDHE-RSA-AES256-GCM-SHA384 - - - - x x 51.1

3.3.3 OpenSSL Support for Cipher String B

There is no shared cipher suite for any of the 0.9.6
OpenSSL versions. This cipher string causes prob-
lems with some of the older versions. In OpenSSL
versions 0.9.7 to 0.9.7l the cipher suite AES256-SHA
is incorrectly included. This is caused by parsing
problems11 and is fixed in 0.9.7m. 0.9.7m includes
the following cipher suites when tested with cipher
string B:

� AES128-SHA

� DHE-RSA-AES128-SHA

� DHE-RSA-AES256-SHA

The parsing problems also exist in versions 0.9.8
to 0.9.8d and the shared cipher suites are:

� AES128-SHA

� AES256-SHA

� DHE-RSA-AES128-SHA

� DHE-RSA-AES256-SHA

� ECDHE-RSA-AES128-SHA

� ECDHE-RSA-AES256-SHA (not in 0.9.8(a))

� ECDH-RSA-AES128-SHA

� ECDH-RSA-AES256-SHA

11https://www.openssl.org/news/changelog.html

The five shared cipher suites, indicated in bold in
the listing above, should not be included in the shared
cipher suites in versions 0.9.8 to 0.9.8d. The ECDHE
cipher suites are according to the cipher string, but
they are not included by the default lists and should
not be used in version 0.9.8.

The parsing problems are fixed in version 0.9.8e.
The versions 0.9.8e to 0.9.8zc share the following ci-
pher suites:

� AES128-SHA

� DHE-RSA-AES128-SHA

� DHE-RSA-AES256-SHA

In versions 1.0.0, 1.0.1 and 1.0.2 there are no
problems regarding parsing or negotiation of the ci-
pher suite. The 1.0.0 versions share the following ci-
pher suites:

� AES128-SHA

� CAMELLIA128-SHA

� DHE-RSA-AES128-SHA

� DHE-RSA-AES256-SHA

� DHE-RSA-CAMELLIA128-SHA

� DHE-RSA-CAMELLIA256-SHA

� ECDHE-RSA-AES128-SHA

� ECDHE-RSA-AES256-SHA

This list shows that in version 1.0.0 CAMELLIA
is also used in DHE cipher suites. The versions 1.0.1

Speaking�in�Tongues�-�Practical�Evaluation�of�TLS�Cipher�Suites�Compatibility

19



and 1.0.2 also share the cipher suites of the 1.0.0 ver-
sions. Additional shared cipher suites in 1.0.1 and
1.0.2 are:
� DHE-RSA-AES128-GCM-SHA256
� DHE-RSA-AES128-SHA256
� DHE-RSA-AES256-GCM-SHA384
� DHE-RSA-AES256-SHA384
� ECDHE-RSA-AES128-GCM-SHA256
� ECDHE-RSA-AES128-SHA256
� ECDHE-RSA-AES256-GCM-SHA384
� ECDHE-RSA-AES256-SHA384

This list shows that AES-GCM, SHA256, and
SHA384 since are supported OpenSSL 1.0.1 (used by
only about 12% of installations, according to Table
1).

We then again utilized the openssl-compare tool
to find the actual cipher suite negotiated when using
cipher string B; Table 4 lists our results.

Table 4: Negotiated cipher suite when using cipher string
B.

Cipher Suite OpenSSL
ECDHE-RSA-AES128-SHA 0.9.8(a)
ECDHE-RSA-AES256-SHA 0.9.8b-d
DHE-RSA-AES256-SHA 0.9.8e-zc
DHE-RSA-CAMELLIA256-SHA 1.0.0
DHE-RSA-AES256-GCM-SHA384 1.0.1, 1.0.2

This test shows that the priority settings of the ci-
pher suites does not work properly for the versions
0.9.8 to 0.9.8d, because ECDHE is preferred, but ci-
pher suites including DHE should be preferred instead
and ECDHE should not be used with versions 0.9.8.

The following cipher string fixes most of cipher
string B’s problems:

EDH +CAMELLIA: kEDH +aRSA +AES: EECDH
+aRSA +AESGCM: EECDH +aRSA +SHA256:
EECDH: +CAMELLIA128: +AES128: +SSLv3:
!aNULL: !eNULL: !LOW: !3DES: !MD5: !EXP:
!PSK: !DSS: !RC4: !SEED: !IDEA: !ECDSA:
CAMELLIA128 -SHA: AES128 -SHA.

The remaining problem with this cipher string is
that the cipher suite AES256-SHA is included in the
shared cipher suites for versions 0.9.7h-k and 0.9.8a.
This is caused by parsing problems of these versions.
The negotiated cipher suites using the modified cipher
string B are listed in Table 5. These results are accord-
ing to the priorities of the cipher suites in the cipher
string, i.e. it is working as intended.

If this cipher string should include all the cipher
suites mentioned for string B in (Breyha et al., 2015),
CAMELLIA256-SHA:AES256-SHA has to be added at
the end of the cipher string.

Table 5: Negotiated cipher suite when using modified ci-
pher string B.

Cipher Suite OpenSSL
DHE-RSA-AES256-SHA 0.9.7 - 0.9.8
DHE-RSA-CAMELLIA256-SHA 1.0.0
DHE-RSA-AES256-GCM-SHA384 1.0.1, 1.0.2

3.4 Analyzing Available Cipher Suites
Using O-Saft

In order to get all supported cipher suites of
web servers we used the tool O-Saft from
https://www.owasp.org/index.php/O-Saft. To au-
tomate the O-Saft scans we wrote a tool which
executes the O-Saft command cipherraw for a given
list of URLs and a tool which parses the results.

Figure 4 shows the results for the top 100 sites
according to Alexa. 58 websites of the 100 support
SSL/TLS. The cipher suite with the highest compati-
bility (96.6%) is AES128-SHA. It is also notable that
67.2% of the sites support RC4-SHA and 44.8% sup-
port RC4-MD5. Some of these values differ slightly
to results of other scans; this is caused by the small
sample size.

4 CIPHER SUITE PROPOSAL

After having evaluated the practical compatibility of
cipher strings A and B from (Breyha et al., 2015), our
goal was to create a cipher string that offers high se-
curity and is compatible with a wide range of web-
sites. Since the two cipher strings by (Breyha et al.,
2015) are designed for different requirements — one
of them for high security and one for best compatibil-
ity — the created cipher string should be placed in the
middle between these two.

The first condition for the cipher string is that it
only uses cipher suites that support forward secrecy.
These are cipher suites using DHE or ECDHE for
key exchange. This reduces the compatibility, but
is a very important point. (Perfect) Forward Secrecy
(Huang et al., 2014) uses the private key of the web
server to sign a Diffie-Hellman (DH) key exchange
message. When using DH, the server always uses the
same key pair: i.e. when the private key gets stolen,
all sessions recorded in the past could be decrypted.
When using Diffie-Hellman ephemeral (DHE) a new
key pair is created for each session and the private
key of the session is never stored on the server after
the session has terminated. Gaining access to the pri-
vate keys of a server now only enables decryption of
the sessions currently in progress, but not of the ones
recorded in the past.

DCNET�2015�-�International�Conference�on�Data�Communication�Networking

20



Figure 4: Results of the O-Saft scans, indicating how many percent of Alexa’s top 100 websites use a specific cipher suite.

In our cipher string proposal, TLS 1.2 cipher
suites are preferred. If the cipher suites have the same
protocol version, then ECDHE is preferred, because
according to (Huang et al., 2014) only 0.3% of the
websites support DH parameters with a size of 2048
bits. 99.3% of the websites support a parameter size
of 1024 bits and even 34% support a parameter size
of 512 bits.

The chosen encryption methods are AES and
CAMELLIA with key lengths of 128 and 256 bits, re-
spectively. These ciphers offer high security and are
widely supported; as MAC we only allow hash func-
tions from the SHA family.

The resulting cipher string is:
EECDH: kEDH +aRSA +AES: kEDH +aRSA

+CAMELLIA: +SSLv3: !aNULL: !eNULL:
!3DES: !IDEA: !RC4: !MD5: !EXP: !PSK:
!DSS: !ECDSA: !DES

The cipher suites shared by OpenSSL from ver-
sion 1.0.1 and up with this string are:

� DHE-RSA-AES128-GCM-SHA256

� DHE-RSA-AES128-SHA256

� DHE-RSA-AES128-SHA

� DHE-RSA-AES256-GCM-SHA384

� DHE-RSA-AES256-SHA256

� DHE-RSA-AES256-SHA

� DHE-RSA-CAMELLIA128-SHA

� DHE-RSA-CAMELLIA256-SHA

� ECDHE-RSA-AES128-GCM-SHA256

� ECDHE-RSA-AES128-SHA256

� ECDHE-RSA-AES128-SHA

� ECDHE-RSA-AES256-GCM-SHA384

� ECDHE-RSA-AES256-SHA384

� ECDHE-RSA-AES256-SHA

Table 6 gives an overview of the cipher suites ne-
gotiated by the different OpenSSL versions when us-
ing this newly proposed string. When compared to
cipher strings A and B from above, our string prefers
AES over CAMELLIA and elliptic curve versions of
Diffie-Hellman over the integer ones.

Table 6: Negotiated cipher suite when using our proposed
cipher string.

Cipher Suite OpenSSL
DHE-RSA-AES256-SHA 0.9.7 - 0.9.8
ECDHE-RSA-AES256-SHA 1.0.0
ECDHE-RSA-AES256-GCM-SHA384 1.0.1, 1.0.2

CiNeg was used to get an approximate value for
the compatibility. The result for the shared cipher
suite percentage of our cipher string proposal, when
using the top 1,000 websites according to Alexa, is
74.8%. The result for the top 25,000 websites is
77.9%. These results are showing that — in line with
the goal of the cipher string proposal — the compati-
bility is ranked between ACH’s cipher string A and B
(see also Table 7).

Figure 5 shows the distribution of negotiated ci-
pher suites for the top 25,000 websites when using

Speaking�in�Tongues�-�Practical�Evaluation�of�TLS�Cipher�Suites�Compatibility

21



Figure 5: Percentage of cipher suites negotiated using our cipher string proposal with Alexa’s top 25,000 websites.

the cipher string proposal. 71% of the negotiated ci-
pher suites are TLS 1.2 cipher suites and this is ac-
cording to the priorities in the cipher string. It is also
notable that 66% of the negotiated cipher suites use
AES-GCM.

5 SUMMARY AND CONCLUDING
REMARKS

5.1 Comparing the Cipher Strings

Table 7 indicates the percentage of shared cipher
suites for the cipher string A, B and our proposal.
These are the results from the CiNeg scans with
Alexa’s top 1,000 and top 25,000 websites, respec-
tively.

Table 7: Cipher Strings A - B - Proposal, comparing the per-
centage of Alexa’s top 1,000/top 25,000 websites sharing at
least one cipher suite with the given cipher string (i.e. a
TLS handshake with a site would succeed for the respective
cipher string)

Top 1,000 Top 25,000
Cipher String A 54.30% 56.10%
Cipher String B 98.32% 97.17%
Proposed Cipher String 74.75% 77.9%

Cipher string A only supports TLS 1.2 cipher
suites which offer perfect forward secrecy, uses hash-
functions of the SHA-2 family and AES256. The goal
of this cipher string is to use strong cipher suites. This
leads to a lower compatibility.

Cipher string B does support some weaker ci-
pher suites in order to offer better compatibility. The

two fall back cipher suites are AES128-SHA and
CAMELLIA128-SHA; the other cipher suites offer
perfect forward secrecy. TLS 1.2 cipher suites are
preferred.

Our cipher string proposal supports only cipher
suites which offer perfect forward secrecy, but it is not
limited to TLS 1.2 cipher suites, i.e. ciphers suites us-
ing AES128 and CAMELLIA128 are also supported.
This offers a wider range of support than cipher string
A, with only a minor reduction in security.

5.2 Conclusion

Bruce Schneier’s words “Security is a process, not a
product12” clearly sums up that there will never be a
final solution regarding security issues.

Everything concerning security underlies fast de-
velopment and rapidly changing requirements; there-
fore any security issues depend on individual condi-
tions. In this work we evaluated the practical usability
and compatibility of two OpenSSL cipher strings pub-
licly proposed by members of academia and industry,
using existing tools like O-Saft and Openssl-compare,
as well as our newly developed CiNeg tool.

In addition we propose a new cipher string
which provides better compatibility than ACH’s ci-
pher string A and stronger security than cipher string
B, with the caveat of being less secure than A and
lacking compatibility compared to B.

This again underlines the problem that there is no
single perfect cipher string which meets all possible

12https://www.schneier.com/crypto-gram/archives/2000/
0515.html

DCNET�2015�-�International�Conference�on�Data�Communication�Networking

22



requirements; administrators have to find the right ci-
pher string by balancing security strength and com-
patibility regarding their individual needs, using the
tools available at their disposal.

Considering this complexity as well as recently
discovered attack vectors against TLS like FREAK
(Beurdouche et al., 2015) and Logjam (Adrian et al.,
2015), a point of further research should be to deter-
mine if the algorithm variability present in the TLS
protocol might in fact be a severe weakness and differ-
ent approaches on selecting cryptographic primitives
could be considered.

ACKNOWLEDGEMENTS

Manuel Koschuch is being supported by the MA23
- Wirtschaft, Arbeit und Statistik - in the course
of the funding programme “Stiftungsprofessuren und
Kompetenzteams für die Wiener Fachhochschul-
Ausbildungen”.

REFERENCES

Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P.,
Green, M., Halderman, J. A., Heninger, N., Springall,
D., Thom, E., Valenta, L., VanderSloot, B., Wus-
trow, E., Zanella-Bguelink, S., and Zimmermann, P.
(2015). Imperfect Forward Secrecy: How Diffie-
Hellman Fails in Practice. Technical report, IN-
RIA Paris-Rocquencourt and INRIA Nancy-Grand
Est, CNRS and Universit de Lorraine and Microsoft
Research and University of Pennsylvania and Johns
Hopkins and University of Michigan.

Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Four-
net, C., Kohlweiss, M., Pironti, A., Strub, P.-Y., and
Zinzindohoue, J. K. (2015). A Messy State of the
Union: Taming the Composite State Machines of
TLS. In IEEE Security & Privacy 2015, preprint.

Breyha, W., Durvaux, D., Dussa, T., Kaplan, L. A., Mendel,
F., Mock, C., Koschuch, M., Kriegisch, A., Pschl,
U., Sabet, R., San, B., Schlatterbeck, R., Schreck, T.,
Wrstlein, A., Zauner, A., and Zawodsky, P. (2015).
Applied Crypto Hardening. Technical report.

Chown, P. (2002). RFC3268 - Advanced Encryption Stan-
dard (AES) Ciphersuites for Transport Layer Security
(TLS). Technical report, Network Working Group.

Dierks, T. and Allen, C. (1999). RFC2246 - The TLS Pro-
tocol Version 1.0. Technical report, Network Working
Group.

Dierks, T. and Rescorla, E. (2006). RFC4346 - The Trans-
port Layer Security (TLS) Protocol Version 1.1. Tech-
nical report, Network Working Group.

Dierks, T. and Rescorla, E. (2008). RFC5246 - The Trans-
port Layer Security (TLS) Protocol Version 1.2. Tech-
nical report, Network Working Group.

Diffie, W. and Hellman, M. (2006). New directions in cryp-
tography. IEEE Trans. Inf. Theor., 22(6):644–654.

Eronen, P. and Tschofenig, H. (2005). RFC4279 - Pre-
Shared Key Ciphersuites for Transport Layer Security
(TLS). Technical report, Network Working Group.

Freier, A., Karlton, P., and P.Kocher (2011). RFC6101
- The Secure Sockets Layer (SSL) Protocol Version
3.0. Technical report, Internet Engineering Task Force
(IETF).

Huang, L., Adhikarla, S., Boneh, D., and Jackson, C.
(2014). An experimental study of TLS forward se-
crecy deployments. In IEEE CS Security and Privacy
Workshops.

Lee, H., Yoon, J., and Lee, J. (2005). RFC4162 - Addition
of SEED Cipher Suites to Transport Layer Security
(TLS). Technical report, Network Working Group.

Medvinsky, A. and Hur, M. (1999). RFC2712 - Addition of
Kerberos Cipher Suites to Transport Layer Security
(TLS). Technical report, Network Working Group.

Moriai, S., Kato, A., and Kanda, M. (2005). RFC4132 - Ad-
dition of Camellia Cipher Suites to Transport Layer
Security (TLS). Technical report, Network Working
Group.

NIST (2001). Advanced Encryption Standard (AES) (FIPS
PUB 197).

NIST (2012). Secure Hash Standard (SHS) (FIPS PUB 180-
4).

Popov, A. (2015). RFC7465 - Prohibiting RC4 Cipher
Suites. Technical report, Internet Engineering Task
Force (IETF).

Rivest, R. L., Shamir, A., and Adleman, L. (1978). A
method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM, 21(2):120–126.

Stallings, W. (2008). Cryptography and Network Security,
page 539. Pearson, 4th edition.

Speaking�in�Tongues�-�Practical�Evaluation�of�TLS�Cipher�Suites�Compatibility

23


