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Abstract: The spatial resolution of climate data generated by general circulation models (GCMs) is usually too coarse 
to present regional or local features and dynamics. State of the art research with Artificial Neural Networks 
(ANNs) for the downscaling of GCMs mainly uses back-propagation algorithm as a training approach. This 
paper applies another training approach of ANNs, Evolutionary Algorithm. The combined algorithm names 
neuroevolutionary (NE) algorithm. We investigate and evaluate the use of the NE algorithms in statistical 
downscaling by generating temperature estimates at interior points given information from a lattice of 
surrounding locations. The results of our experiments indicate that NE algorithms can be efficient 
alternative downscaling methods for daily temperatures. 

1 INTRODUCTION 

General Circulation Models (GCMs) numerically 
simulate the present climate as well as project future 
climate. The output of GCMs, however, cannot be 
applied to many impact studies due to their 
relatively coarse spatial resolution (in the order of 
from 200 km × 200 km to 300 km × 300 km). 
Downscaling, as an emerge technique, is able to 
model data from large-scale to smaller-scale. 
Various downscaling techniques have been proposed 
in literatures (Xu, 1999). In general, these 
techniques can be divided into two major categories: 
dynamic downscaling and statistical downscaling. 
Dynamic downscaling works based on physically 
regional climate models, which is computationally 
expensive. Comparing with dynamic downscaling, 
statistical downscaling is computationally less 
demanding. The methods of statistical downscaling 
are to build models to find the relationship between 
large regional climatic variables, such as 
temperature, precipitation, pressure etc., and sub-
regional climatic variables. The major sub-
categories of statistical downscaling techniques 
include weather classification schemes, weather 
generators and regression methods, in which 
regression methods are most widely used. 

Artificial Neural Networks (ANNs), as non-
linear regression models, have shown high potential 

for complex, non-linear and time-varying input-
output mapping (Specht, 1991; Hecht-Nielsen, 1989; 
Kohonen et al., 1988; Lu et al., 1998). There are 
various successful applications of ANNs to 
statistical downscaling in last decades. Snell et al. 
(1999) introduced ANNs to the downscaling of 
GCMs and evaluated their use to generate 
temperature estimates at 11 locations given 
information from a lattice of surrounding locations. 
Their results indicated that ANNs can be used to 
interpolate temperature data from a grid structure to 
interior points with a high degree of accuracy. 
Cawley et al. (2003) presented ANN models in 
statistical downscaling of daily rainfall at stations 
covering the north-west of the United Kingdom. 
Their main purpose was to compare different error 
metrics for training ANNs in statistical downscaling. 
Dibike and Coulibaly (2006) investigated the 
capacities temporal neural networks (TNNs) as 
downscaling method of daily precipitation and 
temperature series for a region in northern Quebec, 
Canada. Their experiments demonstrated that the 
TNN model mostly outperforms other statistic 
models. Chadwick et al. (2011) developed an ANN 
model to construct a relationship between a GCM 
and corresponding nested RCM fields for 
downscaling of GCM temperature and precipitation. 
Their ANN model was able to reproduce the RCM 
climate change signal very well, particularly for the 
full European domain. Most of the previous 
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researches with ANNs employed classic back-
propagation (BP) as leaning approach to train ANNs 
for the downscaling of GCMs. However, it has been 
well-known that BP algorithms have difficulty with 
local optima, slower convergence and longer 
training times (Cuéllar et al., 2006).  

In this research, we are going to explore and 
evaluate GCM downscaling with ANNs by using 
evolutionary algorithms, also names 
neuroevolutionary algorithms. Evolutionary 
techniques have been widely and successfully 
applied to data models optimization (Eiben et al., 
1999; Buche et al., 2005; Regis and Shoemaker, 
2004), but rarely introduced into statistical 
downscaling. Genetic Programming (GP) is the 
major evolutionary technique that has been 
investigated in atmospheric downscaling, which has 
been also demonstrated to be superior to the widely 
used Statistical Down-Scaling Model (SDSM) 
(Coulibaly, 2004; Zerenner et al., 2014). 

This paper presents our initial results of a study 
for large-scale spatial interpolation of daily 
temperature at stations in south of Norway. The 
performances of our model indicate good potential 
of the neuroevolutionary technique as an effective 
statistical downscaling method for maximum 
temperature estimation. The rest of the paper is 
organized as follows: Section 2 describes the 
methodolology of our model. The experimental 
results and discussion on the performance of our 
model are presented in section 3. The concluding 
remarks, including future work, are given in the last 
section. 

2 METHODS 

2.1 Artificial Neural Networks 

An artificial neural network (ANN) is a 
mathematical model that simulates biological neural 
networks, which can be used for performing tasks 
such as classification, control, recognition, 
prediction, regression and so on. It consists of a set 
of interconnected nodes. Each node can be regarded 
as a neuron and each connection between two nodes 
can be regarded as a synapse. The mathematical 
models of an ANN and a neuron are shown in Figure 
1 and Figure 2. There are three basic elements in an 
ANN: node, weight and activation function. A node 
represents a neuron. The weights between 
interconnected nodes of an ANN model the 
synapses. Each weight is a real number, which 
represents the strength of a connection. A positive 

value reflects an excitatory connection, while a 
negative weight reflects an inhibitory connection. 
All of the inputs are multiplied by the weights and 
summed according to the following expression: 





n

j
jjii xwv

1
,  

where  njx j ,1,   are the inputs to the node i , and 

jiw ,  is the weight of the connection between the 

node i  and the input j . The summing function is 

input into an activation function. The output of the 
node iy  will be the outcome of the activation 

function on the value of iv . The main purpose of 

using the activation function is to control the 
amplitude of the output of each node. Common 
activation functions used in ANNs include step 
function, piecewise-linear function, sigmoid 
function and hyperbolic tangent function, in which 
sigmoid function is mostly used, as well as applied 
to our model. 

 

Figure 1: The model of an ANN. 

 

Figure 2: The model of a neuron. 
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After defining the weights, activation function 
and topology of an ANN, we will be able to 
calculate the output of the ANN for a particular 
input vector. Usually, the output of an ANN has no 
meaning before the ANN is trained, unless the ANN 
is configured using prior knowledge. Training is a 
process of adjusting the weights, topologies or 
activation function of an ANN, so that the ANN 
outputs corresponding desired or target responses for 
given inputs. Various methods have been designed 
to teach ANNs (Werbos, 1974; Yao, 1999; Brath et 
al., 2002; Carvalho and Ludermir, 2006). Back-
propagation is one of the most popular approaches in 
climate downscaling as we have introduced 
previously. In this research, however, Evolutionary 
algorithm was implemented for the ANNs design, 
which will be described in the next section. 

2.2 Evolutionary Algorithms 

Biological evolution is a process of change and 
development of individuals, generation by 
generation, following the principle of “survival of 
the fittest”. Evolutionary Algorithms (EAs) loosely 
simulate the natural evolution in computer problem 
solving, which has been proven to be robust in 
solving optimization problems (Bobbin and Yao, 
1997; Downing, 1997; Tsai et al., 2004). The 
implementation of EAs typically begins with a 
population of stochastic solutions. Each individual in 
the population presents a solution. A fitness function 
is defined to evaluate the quality of each individual. 
The algorithms update the individuals to improve the 
average quality of the entire population through the 
operations of selection, recombination, mutation and 
replacement. The improvement procedure is iterated 
until a terminal condition is satisfied. A basic 
pseudo-code of the EAs is shown in Figure 3. 

 

Algorithm Evolutionary Algorithm 
Initialize a population 
Evaluate all individuals in the population 
repeat 

Select parents from the population 
Recombine parents to generate new individuals 
Mutate individuals 
Evaluate new individuals 
Decide survival individuals for a new population 

until terminal condition is satisfied 
return the best individual from the population 

Figure 3: A basic pseudo-code of typical Evolutionary 
Algorithms. 

Initialization. An encoding scheme is firstly 
predefined to represent the solutions of a problem. 

The algorithms initialize a population with a set of 
individuals created following the encoding scheme. 
Evaluation. Evaluation of which individuals are fit 
and which ones are unfit is performed by the fitness 
function designed for the problem. A well-designed 
fitness function is a key factor in the successful 
application of an EA. The goal of an ideal fitness 
function is to make an accurate assessment of the 
qualities of individuals according to the objective of 
the problem. It guides the algorithm to rank the 
individuals. Which individuals are discarded and 
which are reserved will be decided based on the 
rank.   
Parent Selection. The evaluation also drives the 
selection of parents. New individuals are generated 
through the sexual reproduction of selected parents, 
known as recombination. All parent selection 
strategies boil down to one principle: that the 
individuals who have higher fitness receive higher 
probabilities of being selected as parents. 
Recombination and Mutation. Recombination, 
also called crossover, is actually the exchange of 
data between two or more individuals to create new 
individuals. It is one of the most common genetic 
operators in EAs. Another common genetic operator 
is mutation, which changes the form of an individual 
itself. 
Survivor Selection. The strategies of selecting 
survival individuals are looser than that of selecting 
parents. One can select the individuals who have 
higher fitness to be survivors. In a more generational 
model, the older individuals are just replaced by 
their offspring. 
Termination. The EA circularly performs the 
evaluation, parent selection, recombination and 
mutation, and survivor selection. A terminal 
condition, therefore, has to be defined in order to 
determine when to exit the evolutionary cycle. The 
most common way is just to specify a maximum 
number of generations. 

2.3 Neuroevolution 

The techniques that ANNs design using evolutionary 
algorithms are so-called neuroevolutionary (NE) 
algorithms. Yao (1999) roughly summarized three 
levels of NE algorithms: evolving connection 
weights, evolving architectures and evolving 
learning rules. In the past decade, however, 
researchers have mainly focused on the first and the 
second level, that is evolving connection weights or 
simultaneously evolving connection weights and 
topologies of ANNs (Moriarty and Miikkulainen, 
1997; Lubberts and Miikkulainen, 2001; Stanley and 
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Miikkulainen, 2002; Shi 2008). 
In this work, we built our NE model at the level 

of evolving connection weights, that is also called 
standard NE. The standard NE evolves connection 
weights of fully-connected neural networks, where 
each individual in the population represents a vector 
with all connection weights of the network, and each 
value of this vector specifies a weight between two 
neurons. Each weight jiw of a network was encoded 

into a m-bit binary string, where 16m  in our 
experiments. We transformed the binary string into a 
float value by using the following equation: 

,)(
2 min,min,max, jijijim

i
ji www

d
w   

where id  was the integral value of the binary string 

of jiw , max,jiw  and min,jiw  were the upper bound and 

the lower bound of the decimal value of jiw , which 

was defined to be -10 and 10 in our experiments. 
Other parameters of our NE model are summarized 
in table 1. 

Table 1: Parameters of the NE model. 

Parameters Values 
Number of generations 500 
Population size 100 
Crossover rate 0.7 
Mutation rate 0.1 
Fitness function RMSE 

3 EXPERIMENTS 

Our initial work would like to evaluate the use of the 
NE model for downscaling GCM. We setup our 
experiments based on the idea from Snell’s research 
(1999). A 4-point grid with coarse spatial resolution 
was built on the map of south of Norway. 
Observation data from stations near and within the 
grid points were used for training and verifying the 
model. Four stations near the grid points were 
chosen to be known stations and five stations within 
the grid points were chosen to be unknown stations. 
Figure 4 depicts our study area and the details of 
these stations are presented in table 2. 

For this study, we constructed feed-forward 
networks which consist of three layers, one input 
layer, one hidden layer and one output layer. There 
were 9 neurons in the input layer, 10 neurons in the 
hidden layer and one neuron in the output layer. 
Usual root-mean-square error metric is defined as 
the fitness function of our algorithm. The 9 variables 

contained in the input layer are illustrated in table 3. 
The output of the ANN is the maximum daily 
temperature for an unknown station. An ANN was 
built for each of the unknown stations. 

Table 2: Study stations. 

Station Name Location 
Known 
station1 

Fiskåbygd 62.10N, 5.58E 

Known 
station2 

Nedre Vats 59.48N, 5.75E 

Known 
station3 

Drevsjø 61.89N, 12.05E 

Known 
station4 

Oslo Blindern 59.94N, 10.72E 

Unknown 
station1 

Åbjørsbråten 60.92N, 9.29E 

Unknown 
station2 

Løken I Volbu 61.12N, 9.06E 

Unknown 
station3 

Kise Pa Hedmark 60.78N, 10.81E 

Unknown 
station4 

Geilostølen 60.52N, 8.2E 

Unknown 
station5 

Skåbu storslålen 61.52N, 9.38E 

 

Figure 4: Map of study area. Black markers are known 
stations and yellow markers are unknown stations. 

3.1 Data Preparation 

Maximum daily temperatures for a period from 1970 
to 2010 were used for training and verifying our 
model. Because not every day has valid data for all 
stations due to some observation data missing, the 
data was pre-processed and all data on invalid date 
were removed. An invalid date defined in our 
experiments is a day that anyone of the training 
stations has missing data. 

After pre-processing the dataset was shuffled 
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before presenting to ANN, in which 80% data were 
randomly selected for training and 20% data were 
selected for test. The reason to train our model with 
shuffled data were two-fold: 1) the model we built in 
this study is a spatial downscaling model, so to 
present the training data with sequential order does 
not make sense; 2) random ordering has been 
reported to be superior to both sequential ordering 
and aggregated values by Snell’s study (1999). 

Table 3: Inputs of the NE model. 

Input 
number Input 

1 Maximum temperature at known station 1 
2 Maximum temperature at known station 2 
3 Maximum temperature at known station 3 
4 Maximum temperature at known station 4 
5 Distance between station 1 and unknown 

station 
6 Distance between station 2 and unknown 

station 
7 Distance between station 3 and unknown 

station 
8 Distance between station 4 and unknown 

station 
9 Elevation of unknown station 

3.2 Experimental Results 

We carried out 10 runs for training ANNs to learn 
the relationship of maximum temperatures between 
known stations and each of the unknown stations. 
The average performance of each experiment took 
about 400 to 600 seconds. Figure 5 shows average 
learning curves of the ANNs from the 10 runs, and 
table 4 shows our average test results. 

From figure 5 we can see that the average RMSE 
curves bend down very steeply in the first 100 
generations, and then start coming down gently in 
the rest of generations. As we introduced earlier, 
EAs are optimal search algorithms. By integrating 
EAs with ANNs, NE is able to find optimal 
connection weights and topologies to map the 
relationship of maximum temperatures between 
knowns stations and unknown stations. The learning 
curves shown in figure 5 indicate that our NE model 
rapidly found relatively optimal connection weights 
of ANNs at the early stages of evolution. After that 
the NE model turned to gradually converge toward 
global optima. Of course, NE algorithms cannot 
guarantee to deliver the best ANN topology to a 
problem, to find relatively optimal solutions, 
however, are usually reachable.  

Table 4: Overall performance measures. Average RMSE 
and R2 for test from 10 runs. 

Station RMSE R2 
Åbjørsbråten 2.91 0.898 
Løken i Volbu 3.19 0.893 
Kise Pa 
Hedmark 

2.85 0.912 

Geilostølen 2.78 0.797 
Skåbu 
storslålen 

2.79 0.911 

 

 

Figure 5: Average learning curves of the ANNs from the 
10 runs for the five unknown stations. 

If we only measure the RMSE values shown in table 
IV, the average RMSE achieved by our algorithms 
are significantly smaller than those reported by some 
other literatures (Snell et al., 1999; Cawley et al., 
2003; Coulibaly, 2004). However, to compare the 
average R2 values performed by our model with 
those reported by others, our model does not appear 
to be generally superior to other methods. Instead, 
the average R2 value for station Geilostølen is a bit 
low. It is worthy of being mentioned, however, the 
results reported in this paper were from the average 
performance of our experiments. The compared 
results from the above literatures were from the best 
performance of their experiments.  

In EAs, fitness functions play a crucial role to 
guide how the evolutionary process goes to achieve 
the objectives of problems. In our current NE 
algorithm, only RMSE was considered in the fitness 
function. The goal of our NE algorithm is, therefore, 
merely to minimize RMSE values. However, a 
smaller value of RMSE does not indicate a higher 
value of R2. A possible improvement of our NE 
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model is to evolve ANNs by using multi-objective 
evolutionary algorithms, which will be able to both 
minimize the values of RMSE and maximize the 
values of R2. 

4 CONCLUSIONS 

In this paper we have applied a NE model for the 
spatial statistical downscaling of daily maximum 
temperature. We demonstrated our approach by 
interpolating temperature data from a large scaled 
grid structure to interior points. The results of our 
method showed good potential for the construction 
of high-resolution scenarios. The future work of this 
research can be comparison studies of our model 
with the state of the art methods for the same study 
area. In addition, our method can be improved by 
using multi-objective evolutionary algorithms. Both 
RMSE and R2 should be taken into consideration 
when we design the fitness function of the model. 
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