
Statistical Model Checking of GSPN Models

Franco Cicirelli, Christian Nigro and Libero Nigro
Laboratorio di Ingegneria del Software, Dipartimento di Ingegneria Informatica Modellistica Elettronica e Sistemistica

(DIMES), Università della Calabria, Rende, Italy

Keywords: Statistical Model Checking, UPPAAL, Generalized Stochastic Petri Nets, Structural Translation, Temporal
Analysis.

Abstract: Generalized Stochastic Petri Nets (GSPN) are a well-known timed extension of Petri nets suited for
modelling and performance analysis of general time-dependent concurrent systems. The work described in
this paper develops an original structural translation of GSPN models onto UPPAAL SMC so as to enable
property estimation through statistical model checking. The actual GSPN supported formal language admits,
in general, tagged tokens carrying timestamps, queuing places, normal, transport and inhibitor arcs and
timed and untimed transitions. This paper describes the proposed approach and demonstrates its practical
usefulness through a case study.

1 INTRODUCTION

Generalized Stochastic Petri Nets (GSPN) (Chiola et
al., 1993)(Marsan et al., 2004) are a well-known
timed extension of Petri nets suited for modelling
and performance analysis of general time-dependent
concurrent and distributed systems. Property
checking of GSPN models can be formally based on
the generation of the underlying Continuous Time
Markov Chain (CTMC) state reachability graph
(Marsan et al., 2004) or, in the practical cases of
complex systems whose state graph can suffer of
state explosion problems, through discrete-event
simulation.

In the work described in this paper the GSPN
formalism is mapped on top of the statistical model
checker of the UPPAAL toolbox (David et al., 2015)
which operates on a network of timed automata
(TA). UPPAAL was chosen because it is popular,
efficient and enriches TA with data
variables/structures, functions, clocks and
communication channels. UPPAAL makes it possible
to check system properties using either or both
symbolic model checking (i.e., exhaustive
verification of system behavior on the model state
graph) or statistical model checking (SMC) (Younes,
2005).

SMC does not build the state graph but instead
depends on a batch of simulation runs, possibly
executed in parallel on a modern multicore machine,

and on statistics techniques applied to the results of
these runs. SMC works on a stochastic
interpretations of TA (STA) and can furnish an
estimation of system behavior when the symbolic
state graph of the TA network is prohibitive to be
built in memory or it is undecidable. SMC, instead,
does not suffer of memory problems and can be used
with scalable models.

An original structural translation as in (Cicirelli
et al, 2012) is proposed in this paper which
transforms a GSPN model onto a network of
stochastic timed automata. The actual supported
GSPN formalism can work with classic
indistinguishable tokens or with tagged tokens so as
to allow specifying customer-centric performance
queries. Tagged tokens carry timestamps and are
stored into queue managed places. Arcs can be
normal, transport (Jacobsen et al., 2011) or inhibitor
arcs. Transitions can be timed or untimed (i.e.,
immediate).

With respect to classic special-case GSPN
simulators, the use of UPPAAL SMC is interesting
because it enables model-specific performance
queries and easily permits to explore design
alternatives. In addition, the built-in visualization
support proves of great value for the modeler.

The rest of this paper is structured as follows.
Section 2 summarizes the basic definitions and
informal semantics of GSPN and illustrates the
modelling capabilities through an example. Section

69
Cicirelli F., Nigro C. and Nigro L..
Statistical Model Checking of GSPN Models.
DOI: 10.5220/0005506700690076
In Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2015),
pages 69-76
ISBN: 978-989-758-120-5
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

3 describes the proposed structural translation of
GSPN onto UPPAAL SMC. Section 4 shows the
statistical model checking of the GSPN model
proposed in Section 2. Finally, conclusions are
presented with an indication of research directions
which deserve further work.

2 GSPN CONCEPTS

2.1 Basic Definitions

A basic GSPN is a tuple ሺܲ, ଵܶ, ଶܶ, ,ܤ ,଴ܯ,ܨ ,௡௛ܫ ,݀ܨ
,ݎܲ :ሻ whereߨ
 ܲ is a finite nonempty set of places;
 ܶ ൌ ଵܶ ∪ ଶܶ is a finite nonempty set of

transitions, where ଵܶܶ is the subset of timed
transitions, ଶܶ ⊂ ܶ is the set of immediate (or
untimed) transitions;

 ܲ ∩ ܶ ൌ ∅;
 B	is the backward incidence function, ܤ: ܲ ൈ

ܶ → Գ, where Գ denotes the set of natural
numbers;

 ܨ is the forward incidence function, ܨ: ܲ ൈ ܶ →
Գ;

 ܫ௡௛ is the set of inhibitor arcs, ܫ௡௛ ⊂ ܲ ൈ ܶ
where ሺ݌, ሻݐ ∈ ௡௛ܫ ⇒ ,݌ሺܤ ሻݐ ൌ 0;

 ܯ଴ is the initial marking function, ܯ଴: ܲ → Գ,
which associates with each place a number of
tokens;

 ݀ܨ: ଵܶ → ܴା is a function which associates each
timed transition with a firing delay, i.e., the rate
of an exponential probability distribution
function. ܴା denotes the set of positive real
numbers;

 ܲݎ: ଶܶ → ሾ0,1ሾ is a function that associates each
immediate transition with a probability value;

 ߨ: ଶܶ → Գ is a function which associates each
immediate transition with a priority value.

2.2 Informal Semantics

Let ܯ:ܲ → Գ be the marking function of a GSPN.
As in classic Petri nets, a transition ݐ ∈ ܶ is said to
be enabled in ܯ iff ∀	݌ ∈ ܲ, ሺ݌, ሻݐ ∈ ௡௛ܫ ⇒ ሻ݌ሺܯ ൌ
0	 ∧ ,݌ሺܤ	 ሻݐ ൐ 0 ⇒ ሻ݌ሺܯ ൒ ,݌ሺܤ ሻ. An enabledݐ
transition ݐ is fireable. Firing of ݐ changes
(instantaneously and atomically) the current marking
݌∀ :ᇱ such thatܯ into a new marking ܯ ∈ ܲ,
ሻ݌ᇱሺܯ ൌ ሻ݌ሺܯ െ ,݌ሺܤ ሻݐ ൅ ,݌ሺܨ .ሻݐ

If both immediate and timed transitions are
enabled in ܯ, the firing of immediate transitions
precedes the firing of timed transitions. Among the

immediate transitions, first priorities are applied. To
choice among immediate transitions having the same
highest priority, probabilities are applied. When
there are no more enabled immediate transitions,
timed transitions are allowed to fire according to
their absolute fire time established at the enabling
time by adding a sample (relative firing delay)
achieved from the associated exponential
distribution, to the current time. The most imminent
firing time dictates the timed transition to fire.

In this work the following policies regulate the
firing of timed transitions: (a) single-server
semantics, i.e., each transition fires its enablings one
at a time and sequentially, (b) race with re-sampling,
that is non determinism is applied when multiple
transitions should fire at the same time, and the
remaining time to fire is not memorized at a
transition preemption caused by the firing of a
conflicting transition. As a consequence of the
single-server semantics, a multi-server behavior
(parallel server), when needed, has to be explicitly
obtained in the model by replicating the server timed
transition (see transitions from t0 to t9 in the upper
section of the model in Fig. 2). The atomic and
instantaneous firing process of any transition is
actually split into the two phases: withdrawl and
deposit of tokens. A transition ݐ can loss its enabling
just after the withdrawl phase or the deposit phase of
the firing of another transition ݐᇱ. Whichever the
case, transition ݐ which loses its enabling is
immediately preempted.

2.2.1 Modelling Extensions

For the purposes of this paper, GSPN modelling is
extended by admitting also timed transitions with a
uniform distribution. In addition, to simplify the
performance analysis of some models, tokens can be
tagged, thus enabling a client-specific expression of
performance queries. Tagging means a token is
attached a unique identifier which in turn associates
the token with a timer (timestamp or age) carrying
the elapsed time since its last reset.

Besides normal arcs, the notion of a transport
arc (Jacobsen et al., 2011) is added to allow a token
to move from a place to another, during a transition
firing, while retaining its updated age. To clarify the
couple of places involved in a transport operation,
the notation “:arc-label”, with arc-label a natural
number, is attached to the couple of transport arcs
(see Fig. 1).

When a token is generated through a normal
output arc, its timer is reset. A dynamic tagging
system is actually adopted, supported by a pool of
available tags. Since classic transition firing involves

SIMULTECH�2015�-�5th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

70

Figure 1: Two couples of transport arcs.

only normal arcs and operates on anonym tokens, it
is possible to release to the pool the tags of
withdrawn tokens and acquire tags from the pool
(and reset their timers) for newly generated tokens.
The association of tags to tokens has to be kept, with
the help of transport arcs, when it is important to
observe the elapsed time from a cause event to an
effect event. The use of tagged tokens is
complemented with a notion of queue managed
places. Whereas anonym tokens imply a random
policy can be used to select tokens during a
withdrawl phase, in a queue managed place, instead,
tokens are stored and retrieved according to their
arrival time. Finally, to simplify model expression
the following defaults and conventions are adopted
(see also Fig. 2). Timed transitions are depicted as
small white rectangles, whereas immediate
transitions as black thin bars. Transport arcs are
drawn as double ended arrows, normal arcs as single
ended arrows, inhibitor arcs are terminated by a
small circle. Ordinary arcs, i.e., having a unitary
weight, can be introduced without weight
specification. Similarly, when there is no need to
distinguish among the transport arcs, the :0
specification is implicitly assumed. When not
explicitly indicated, the default priority value =1
applies to immediate transitions.

2.3 A Modelling Example

Fig. 2 portrays a GSPN model where a fixed number
of clients recirculate and attend for service in the
system. The model is the interconnection of six
components (stations or service centers). S0 is a
reflective station. Here clients reflect in parallel
before entering the system, i.e. moving in input to
the S1 station. After being served by S1, a client can
be redirected to one of three specific service centers
S2, S3 or S4, or it can exit the system by re-entering
the S0 station. The choice is performed by a Router
station which realizes a random switch. After being
served by S2, S3 or S4, a client comes back in input
to S1, ready for a new cycle in the system.

The model is representative of many physical
systems. For instance, it can describe the operation

of a call center (Cicirelli and Nigro, 2015), or the
accident and emergency unit of an hospital etc. The
parameter values in Fig. 2 are just an example to
drive a case study. A population of 10 clients is
considered. S1 and S2 are simple exponential
distributed stations. S4 follows an Erlang
distribution composed of 16 exponential
distributions all having the same rate =0.6. The
Erlang distribution was abstracted as one
exponential distribution of rate 14=0.6/16=0.0375.
S3 adopts an hyper-exponential distribution made up
of two exponential distributions able to generate a
burst behavior. Here, for demonstration purposes, a
subnet is used to further exemplify the use of
probabilities for controlling a random switch.

S0

Router

S1

S2 S3

t26 t27 t30

t28 t29

P15 P16

t12 t13

t11 t14

t10

t25

P0
10

P1 P2 P9 P10

t0 t1 t8 t9

t15 t16 t23 t24
pr15=0.1 pr16=0.1 pr23=0.1 pr24=0.1

λ1=0.1 λ2=0.1 λ8=0.1 λ9=0.1

λ10=1

λ11=0.8 λ14=0.0375

λ12= 5.0 λ13= 0.5

pr26=0.3 pr27=0.3 pr30=0.2

pr28=
0.95

pr29=
0.05

P13 P14 P17

P12P11

S4

pr25=0.2

Figure 2: A GSPN model for a system of services.

As one can see from Fig. 2, the model is logically
split in two sections. The upper section hosts the
reflective station and makes use of normal arcs only.
When a client finishes reflecting (a transition
between t0 to t9 fires), it is injected into the p11
place and its timer is reset. The lower section

pa pb

pc pd

:0

:1

:1

:0
t

Statistical�Model�Checking�of�GSPN�Models

71

contains the effective service system. Here transport
arcs are used to allow tracking the temporal behavior
of each client as it flows from one station to another.
When a client is routed to p0 it exits the system and
enters the reflective station. At each firing of t25, the
token timestamp mirrors the sojourn time of the
client in the system. The model will be analyzed
later in this paper, by evaluating the throughput,
utilization, response time etc. separately for each
station and as emerging properties of the whole
system. In addition, some specific properties such as
estimating the probability a certain number of clients
consecutively exits the system with each client
having experimented a sojourn time less than or
equal to a given end-to-end delay (deadline), will be
investigated.

3 A STRUCTURAL
TRANSLATION OF GSPN
ONTO UPPAAL

GSPN models can be transformed into UPPAAL
SMC (David et al, 2015) by associating each
transition with a suitable template process and by
introducing some global data and helper functions.

The following constants capture model topology:
P (number of places), PRE (maximum number of
input places per transition), POST (maximum
number of output places per transition), T (number
of transitions), ET (number of exponential
transitions), UT (number of uniform transitions), IT
(number of immediate transitions), T=ET+UT+IT, B
and F (incidence matrices), M (marking vector),
TAGS (number of available tags), MTA (maximum
number of distinct transport arcs). The three
constants NORMAL, TRANSPORT and INHIBITOR
denote the corresponding arc type. Each element of
the matrices B and F, implemented as TxPRE and
TxPOST respectively, holds the index of a place, the
weight of an arc, the type of the arc and the id of the
transport arc if the previous attribute is
TRANSPORT.

Transitions are numbered from 0 to T-1. In
particular (see also Fig. 2), as a matter of
convention, first are numbered the exponential
transitions, then the uniform transitions, finally the
immediate transitions. tid is the integer range type of
all transitions, etid, utid and itid are respectively the
range types of the three categories of transitions. pid
is the range type of places. tags is the range type of
the tags, atid and taid respectively describe the range
type of arcs and of the transport arcs. Global
functions bool enabled(tid), void withdraw(tid), void

deposit(tid) respectively check transition enabling
and realize token withdrawal and deposit during a
transition firing. Global function void rank() returns
in the global variable NIT the id of the Next
Immediate Transition to fire. The clock array
y[ET+UT] associates a clock to each timed transition.
The clocks in y serve the purpose of measuring
transitions activity periods. They are stopped when
the transition is disabled. The clock array x[UT]
associates a clock with every uniform transition.
Each clock in x is used to constrain the firing of the
transition according to its time interval. The global
clock now mirrors current system time. Clock stime
is devoted to measuring the activity periods of the
system. The clock array time[TAGS] associates a
clock to each distinct tag. The global array ta[MTA]
stores the tags flowing through specific transport
arcs during a transition firing. The global array
pool[TAGS] along with the top variable realize a
stack of dynamically available tags. The tag pool is
actually managed by the functions tags acquire() and
void release(tags). The global queue structure
implements the tag queue associated with each
place. The array queue tag[pid] associates each place
with its tag queue. Tag queues are managed by the
functions: void enq(&queue,tags), tags deq(&queue),
bool empty (queue), bool full(queue), tags
size(queue).

3.1 Template Models

Figures from 3 to 5 depict the three basic automata
corresponding to timed (exponential or uniform) and
untimed (immediate) transitions of a GSPN model.

Figure 3: The eTransition automaton.

Basic design issues can be described through the
eTransition automaton (Fig. 3). An eTransition t
borns in the N (Not enabled) location. It moves to
the F (Fireable) location as soon as it finds itself
enabled. In F the transition can remain a time
corresponding to a sample of the exponential
probability distribution whose rate (possibly
marking dependent) is furnished by the function

!enabled(t)

enabled(t)

NIT==NONE

enabled(t)
end_fire!

end_fire!!enabled(t)

end_fire?

end_fire?

end_fire! deposit(t)
fire=false

rate(t)

withdraw(t),
fire=true

fire=false

D W

N

y[t]'==0

F

SIMULTECH�2015�-�5th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

72

rate(t). The transition can complete its firing
provided no immediate transition is under firing
(NIT==NONE). If the transition loses its enabling
during its stay in F, it immediately comes back to N.
The firing process of t is completed by performing
(atomically and instantaneously) the two sub-phases
of withdraw and deposit of tokens. Towards this the
broadcast end_fire channel is used together with the
two committed locations W and D. Two end_fire
synchronizations are actually launched by transition
t respectively after the withdraw and the deposit
phases. Each synchronization forces all the other
transitions to review their enabling status following
the firing of t. Movements from N to F or from F to
N are triggered by receiving an end_fire?
synchronization (another transition is completing its
firing) and the check of the enabling status. It is
worth noting that all the three templates make it
possible to enable/disable other transitions at the end
of each sub-phase of a firing. An eTransition t stops
its clock y[t] when it stays in N. The clock is
reactivated as soon as the transition abandons N.

Figure 4: The uTransition automaton.

An uTransition automaton t behaves in a similar way
to an eTransition. The difference is that now there is
an interval [lb(t),ub(t)] for the firing time, with
lb(t)<=ub(t) and ub(t) can be infinite (expressed by
the global constant INF). Global functions lb(t), ub(t)
return respectively the lower and upper bounds
(possibly marking dependent) of t. The upper section
of the uTransition automaton is related to a time
strict interval, i.e., ub(t)!=INF. The lower section
handles the cases of [lb(t),INF]. Let us first consider a
time strict interval. As soon as t discovers it is

enabled, it moves to the F location and resets its
clock x[t]. Transition firing is then constrained to
occur at an instant within [lb(t),ub[t]. The invariant
x[t]<=ub(t) attached to F forces the exiting from F
would the last instant of the interval have been
reached, provided the transition is still enabled and
no fireable immediate transition exists at the
moment. The firing edge leaving F is conditioned by
the guard x[t]>=lb(t) to ensure the transition cannot
fire before the lower bound is not yet elapsed. The
lower section in Fig. 4 first guarantees the lower
bound is elapsed (location F1). Then the automaton
moves to the F2 location where it waits for an
amount of time established by a model provided
exponential distribution whose rate is given by
rate(t).

Figure 5: The iTransition automaton.

An iTransition automaton t behaves as shown in Fig.
5. A major difference from Fig. 3 and 4 is the
location F is now committed, i.e., the transition has
to fire immediately. All the enabled immediate
transitions in the current marking reach
simultaneously their F location. It is the
responsibility of the rank() function that of selecting
the id of the next immediate transition to fire (held
in the global variable NIT), by first applying
priorities and then probabilities (the UPPAAL SMC
library function random(b) is exploited). To avoid
interleaving of committed locations, an immediate
transition is allowed to fire only if there is a not in
progress firing of a timed transition (see the global
fire variable).

Figure 6: The SystemMonitor automaton.

For model bootstrapping a Starter automaton is used
which invokes a model_initialize() function (model
specific) and then launches a first end_fire

enabled(t)&&
ub(t)==INF

x[t]>=lb(t)

enabled(t)&&
ub(t)!=INF

!enabled(t)

!enabled(t)

enabled(t)&&
ub(t)==INF

NIT==NONE

!enabled(t)

!enabled(t)

end_fire!

end_fire!

end_fire!

end_fire?

x[t]>=lb(t) &&
NIT==NONE

end_fire!

enabled(t)&&
ub(t)!=INF

end_fire?

end_fire?

end_fire?

end_fire?

withdraw(t),
fire=true

deposit(t)

x[t]=0

rate(t)x[t]<=lb(t)

withdraw(t),
fire=truex[t]=0,fire=false

fire=false

x[t]=0

x[t]=0,fire=false

W

F

D

F1

N

x[t]<=ub(t)

F2

y[t]'==0

!enabled(t)

enabled(t)enabled(t)
end_fire!

end_fire!

!fire && t==NIT

end_fire?

!enabled(t)
end_fire!

withdraw(t),
NIT=NONE

deposit(t)rank()

rank()rank()

N D

F

W

idle active

activate()

end_fire?

end_fire?

stime'==0
deactivate()

Statistical�Model�Checking�of�GSPN�Models

73

synchronization. In Fig. 6 it is portrayed an
automaton which monitors system activity and
permits to collect information about the entire
system. For the model in Fig. 2, activate() returns
true if at least one token is found within the places
p11, p13, p15, p16 and p17, and conversely for
deactivate().

4 SMC ANALYSIS OF GSPN
MODEL

The following reports some experimental results
about the GSPN model in Fig. 2 preliminarily
translated in UPPAAL SMC.

In order to get statistical information about the
temporal behavior of the GSPN model, a problem-
specific decoration was added to the translated
model. Some global arrays were introduced to
observe the number of services (n[]), the utilization
(u[]), the throughput (thru[]), the response time (rt[])
and mean service time (st[]) of each station. Simple
variables sn, su, sthru, srt allow to watch emergent
properties of the whole system. It is worth noting
that all the reported pictures were directly taken
from UPPAAL SMC.

The attainment of steady-state condition (see Fig.
7) was checked by monitoring the utilization of the
system and of the selected transitions t10 (S1), t11
(S2) and t14 (S4) of Fig. 2, using 5 simulations with
105 as the time limit, by the query:

simulate 5 [<=100000] { su, u[10], u[11], u[14] }

Figure 7: Utilization of system and of S1, S2 and S4.

As one can see from Fig. 7, 3x104 tu are sufficient to
reach the steady-state.

One goal of the performance study was to detect
sources of bottlenecks, if any, for the system
behavior. From Fig. 7 it results that system
utilization and S4 utilization are both 100%, whereas
the utilization of other stations is lower, in particular

the S2 utilization is the lowest one.

Figure 8: Throughput of system and of S1, S2 and S4.

Figure 9: Response time of the system and of S1, S2 and
S4.

Fig. 8 and 9 show the throughput (number of served
clients per time unit) and response time (i.e., client
waiting time for service plus service time) for the
same components (using 1 simulation of 4x104 tu).

Figure 10: Number of services vs. time.

The system exhibits the same throughput of S4,
suggesting S4 could be a performance bottleneck for
the system. The response time of S4 is greater than
that of S1. The intuition that S4 is effectively a
bottleneck for system behavior is confirmed also by
Fig. 10 where the number of performed services is

SIMULTECH�2015�-�5th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

74

shown. Here the number of services realized by the
system coincides with that of S4.

Fig. 11 portrays the marking (queue length) of
the various stations, which was monitored using the
query:

simulate 1 [<=40000] { M[11],M[13],M[15],M[16],M[17] }

Figure 11: Station queue lengths vs. time.

As it clearly emerges from the Fig. 11, most of the
time clients get sticked into the place p17, as the
marking of M[17] is almost often close to 10 (recall
the system model admits 10 recirculating clients).
The resultant behavior confirmed the modeler
expectation being S14 the station with the highest
mean service time (1/0.0375=26.667 tu).

The performance pictures were re-generated with
the service rate of station S4 being doubled
(14=0.0750). As the mean service time of S4
remains the highest one among the various stations,
it still drives the emergent system behavior, although
now the distribution of clients among the stations
was found improved and the number of services
doubled.

Estimating the response times depicted in Fig. 9
was facilitated by token tagging.

As a specific property based on client-tracking
(assuming 14=0.0750), it was checked the event E1
“What is the probability of a client exiting the system
with a sojourn time not greater than the deadline
D=50 tu?”. The following query was issued:

Pr[<=100000] (<>now>=30000 &&
iTransition(25).W && time[ta[0]]<=D)

The query eliminates transient behavior by ensuring
the now clock is greater than 30000 tu. Then, the
firing of the immediate transition iTransition(25)
(i.e., t25 in Fig. 2) is considered along with the client
time checked against the deadline. It should be noted
that when iTransition(25) fires (that is the withdraw
W location is entered in Fig. 5), the tag (identifier) of
the token (client) can be retrieved as ta[0], which is
then used to select the client clock (time[ta[0]]) to

compare against the chosen deadline. Fig. 12 depicts
a probability distribution of the event whose
confidence interval (CI) is [0.902606,1] with a 95%
confidence degree (CD). UPPAAL SMC used 36 runs
to estimate the query result and the plot refers to a
time sample chosen by the tool in which the runs
satisfy the query.

Figure 12: A probability distribution for the event E1.

Whereas the response times reported in Fig. 9 are
average values, Fig. 13 plots measured values of the
system sojourn time of clients during a simulation
experiment. It emerges a maximum value of about
1400 tu.

Figure 13: Observed sojourn time during a simulation

The next step was checking the probability of the
event E2 “What is the probability the percentage of
clients which exit the system with a sojourn time less
than or equal to the deadline D=50 tu, be at least
50%?”, using the query:

Pr[<=100000] (<>now>=30000 && PCSTlteD>=0.50)

A decoration variable was used to count the number
of clients which exit the system with a sojourn time
less than or equal to the deadline. Such a counter is
divided by the number of services of the system, and

Statistical�Model�Checking�of�GSPN�Models

75

stored in the percentage variable used in the query.
UPPAAL SMC used 118 runs with a wall clock time
(WCT) of about 15 min, and suggested a CI for the
event of [0.870781,0.970278] with 95% of CD.

As another property, it was studied the event E3
“What is the probability of 4 consecutive clients
exiting the system with the sojourn time of each
client being not greater than D=50 tu?”.

In this case model decoration was adapted so as
to increment the counter NCCSTlteD when the
current client exits the system (iTransition(25) fires)
within the deadline and the immediately preceding
one did the same. If current client does not fulfill the
deadline the counter is reset. The following query
was issued:

Pr[<=100000](<>now>=30000 && NCCSTlteD==4)

which generated, with 36 runs, a CI of [0.902606,1]
with 95% CD, and a WCT of 3.5 min.

The following query was used to estimate the
maximum value of the NCCSTlteD counter using 20
simulation runs.

E[<=100000;20] (max:NCCSTlteD)

Proposed answer was 13.55±0.93 (WCT of 6.45
min).

Experiments were carried out using a Win 8,
Intel Core i5 CPU @ 2.67 Gz, 8 GB RAM.

5 CONCLUSIONS

In this paper UPPAAL SMC (David et al., 2015) is
exploited for modelling and analysis of Generalized
Stochastic Petri Net (GSPN) models which, besides
working with an arbitrary number of
undistinguishable tokens, can be decorated to work
with tagged tokens.

An original structural translation from GSPN to
stochastic timed automata was developed which
enables a thorough assessment of the temporal
behavior of a modelled system. Practical usefulness
and flexibility of the achieved implementation is
demonstrated by a case study. The example testifies
that a proper decoration of a translated model
enables queries to be designed to check not obvious
system properties. On the other hand, since the state
graph of the model is not generated, added variables
do not constitute a memory penalty for the stochastic
analysis of the model.

Prosecution of the research is geared at:
 Automating the generation of the UPPAAL SMC

code of a GSPN model using the TPN Designer
toolbox (Carullo et al., 2003).

 Specializing the approach to support modeling
and quantitative evaluation of stochastic Time
Petri Nets (Vicario et al., 2009).

 Experimenting with the use of UPPAAL SMC in
the modelling and schedulability analysis of
real-time systems.

REFERENCES

Vicario, E., Sassoli, L., Carnevali, L., 2009. Using
Stochastic State Classes in Quantitative Evaluation of
Dense-Time Reactive Systems, IEEE Transactions on
Software Engineering., 35(5):703-719.

Carullo, L., Furfaro, A., Nigro, L., Pupo, F., 2003.
Modelling and Simulation of Complex Systems using
TPN Designer. Simulation Modelling Practice and
Theory. 11/7-8, pp. 503-532.

Chiola, G., Marsan, M. A., Balbo, G., Conte, G., 1993.
Generalized Stochastic Petri Nets: A Definition at the
Net Level and its Implications. IEEE Transactions on
Software Engineering, 19(2):89-107.

Cicirelli, F., Furfaro, A., Nigro, L., 2012. Model Checking Time-
Dependent System Specifications Using Time Stream Petri
Nets and UPPAAL, Applied Mathematics and Computation,
218(16):8160-8186.

Cicirelli F., Nigro, L., 2015. Control Aspects in Multi-
Agent Systems, Chapter of forthcoming Springer book
Intelligent Agents in Data Intensive Computing, Ed. J.
Kolodziej, L. Correia, and J.M. Molina.

David A., Larsen, K. G., Legay, A., Mikucionis, M.,
Poulsen, D. B., 2015. UPPAAL SMS Tutorial, Int. J. on
Software Tools for Technology Transfer, Springer,
17:1-19, 06.01.2015, DOI 10.1007/s10009-014-0361-
y.

Jacobsen L., Jacobsen, M., Moller, M. H., Srba, J., 2011.
Verification of Timed-Arc Petri Nets. SOFSEM 2011,
LNCS 6542, pp. 46-72.

Marsan, M. A., Balbo, G., Conte, G., Donatelli, S.,
Franceschinis, G., 2004. Modelling With Generalized
Stochastic Petri Nets. John Wiley and Sons.

Younes, H. L. S., 2005. Verification and Planning for
Stochastic Processes with Asynchronous Events, PhD
Thesis, Carneige Mellon.

SIMULTECH�2015�-�5th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

76

