
SuperMod — A Model-Driven Tool that Combines
Version Control and Software Product Line Engineering

Felix Schwägerl, Thomas Buchmann and Bernhard Westfechtel
Applied Computer Science I, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany

Keywords: Model-Driven Software Engineering, Software Product Lines, Version Control, Version Models, Software
Configuration Management, Tool Support.

Abstract: Version control (VC) and Software Product Line Engineering (SPLE) are two software engineering disciplines
to manage variability in time and variability in space. In this paper, a thorough comparison of VC and SPLE
is provided, showing that both disciplines imply a number of desirable properties. As a proof of concept for
the combination of VC and SPLE, we present SuperMod, a tool realizes an existing conceptual framework
that transfers the iterative VC editing model to SPLE. The tool allows to develop a software product line in
a single-version workspace step by step, while variability management is completely automated. It offers
familiar version control metaphors such as check-out and commit, and in addition uses the SPLE concepts of
feature models and feature configuration the definition of logical variability and to define the logical scope
of a change. SuperMod has been implemented in a model-driven way and primarily targets EMF models as
software artifacts. We successfully apply the tool to a standard SPLE example.

1 INTRODUCTION

Version control (VC) has become indispensable for
software engineers to control software evolution and
to coordinate changes among a team. Version control
systems (VCS) such as Git (Chacon, 2009) or Subver-
sion (Collins-Sussman et al., 2004) propose an itera-
tive three-stage editing model (cf., Figure 1): (1) A
developer checks out a revision of a software project
from a repository. A copy of the project is created
in the local workspace. (2) In the workspace, the
developer modifies the project by implementing new
functionality or by fixing bugs. (3) To make these
modifications visible to others, the developer com-
mits his/her changes to the repository. For the in-
ternal representation of version differences within the
repository, two distinct approaches exist. Symmetric

Repo
sitory

Work
space

1. check-out

2. modify

3. commit

Figure 1: The iterative three-stage editing model proposed
by version control systems.

deltas (Rochkind, 1975) comprise a superimposition
of all existing revisions, assigning version identifiers
to each element. Using directed deltas (Tichy, 1985),
change sequences reconstruct product revisions on
demand, ensuing form a baseline revision, which is
fully persisted.

Software Product Line Engineering (SPLE) aims
at a systematic development of a family of software
products by exploiting the variability among members
thereof (Clements and Northrop, 2001; Pohl et al.,
2005). Core assets of different products are provided
as a platform. Commonalities and differences among
products are captured in variability models, e.g., fea-
ture models (Kang et al., 1990). In literature, a two-
stage SPLE process is proposed (cf., Figure 2): (1)
During domain engineering, platform and variability
model are defined. A mapping, e.g., presence condi-

Plat
form

Prod. 1

1. domain
engineering

Prod. n

2. application
engineering

+
Variability

Model

...

Figure 2: The usual two-stage SPLE process.

5Schwägerl F., Buchmann T. and Westfechtel B..
SuperMod — A Model-Driven Tool that Combines Version Control and Software Product Line Engineering.
DOI: 10.5220/0005506600050018
In Proceedings of the 10th International Conference on Software Paradigm Trends (ICSOFT-PT-2015), pages 5-18
ISBN: 978-989-758-115-1
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

tions (Czarnecki and Kim, 2005), specifies which part
of the platform realizes which feature(s). (2) In ap-
plication engineering, variability is resolved, e.g., by
specification of a feature configuration, and a prod-
uct with the desired features is derived in a preferably
automated way. For the definition of the platform,
two distinct approaches exist: Using positive variabil-
ity, a common core is defined to which specific fea-
tures may be added, e.g. by composition (Apel and
Kästner, 2009). Negative variability means to spec-
ify the platform as superimposition of product vari-
ants, from which elements must be removed to obtain
a specific product. This is realized, e.g., by prepro-
cessor languages (Kästner et al., 2008).

Model-Driven Software Engineering (MDSE)
(Völter et al., 2006) considers models as first-class
artifacts, using well-defined languages such as the
Unified Modeling Language (UML) (OMG, 2011).
Many model-driven applications are built upon the
Eclipse Modeling Framework (EMF) (Steinberg et al.,
2009). The combination of MDSE with VC or SPLE
is subject to many research activities, resulting in the
integrating disciplines Model Version Control (Alt-
manninger et al., 2009) and Model-Driven Product
Line Engineering (MDPLE) (Gomaa, 2004), which
promise increased productivity by raising the abstrac-
tion level of the artifacts subject to variability.

In (Schwägerl et al., 2015), we have elaborated a
conceptual framework for the integration of MDPLE,
SPLE, and VC. The framework addresses the incre-
mental development of a model-driven software prod-
uct line in a single-version workspace using a filtered
editing model that fully automates variability man-
agement. In addition to a revision graph, which de-
scribes the evolution of the product, a feature model
and feature configurations are used to express logical
variability and to define the logical scope of a change.

The current paper presents SuperMod, a model-
driven tool that realizes the conceptual framework in
order to integrate temporal and logical versioning.
The tool allows to develop a software product line
in a single-version workspace step by step using the
familiar version control metaphors update and com-
mit. The product line may contain arbitrary model
and non-model artifacts. The feature model plays a
dual role, being subject to evolution and providing
an additional (logical) variability model for the prod-
uct line. Our integrated solution significantly reduces
the versioning overhead, since a manual mapping of
product line artifacts becomes unnecessary. The tool
integrates well with existing Eclipse editors.

The paper is structured as follows: After introduc-
ing a motivating example, a comparison of VC and
SPLE concepts is performed in Section 3. Next, in

Section 4, the implementation and user interface of
SuperMod are sketched and the operations check-out
and commit are formalized. Subsequently, the exam-
ple is reconsidered. Section 6 outlines related work,
before the paper is concluded.

2 MOTIVATING EXAMPLE

We introduce as running example a product line of
different domain models for graphs, a common ex-
ample in SPL literature (Lopez-Herrejon and Batory,
2001). In this section, we conduct the example us-
ing a “traditional” tool chain: A state-of-the-art VCS
supports the development of the platform in multiple
iterations. Next, a feature model is defined, and an
MDPLE tool based on negative variability is used to
annotate domain model elements with variability in-
formation. During application engineering, we derive
one example product.

Variability Model. Figure 3 shows the underly-
ing feature model, which consists of a root feature
Graph with two mandatory sub-features Vertices
and Edges. Vertices may optionally be colored.
For edges, the optional sub-features weighted and
labeled are defined. Furthermore, the features
directed and undirected are mutually exclusive.

Platform. The superimposition is defined in the
form of a multi-variant domain model (MVDM) (Go-
maa, 2004). We realize the platform in multiple VC
iterations, after each of which a commit is carried out.
In Table 1, the performed modifications are listed.
When referring to the feature model in Figure 3, one
feature has been realized at a time. Figure 4 shows
the resulting MVDM.

Feature Mapping. After having defined the vari-
ability model and the platform, they need to be con-
nected. In an MDPLE approach based on negative
variability, this requires assigning feature expressions
to MVDM elements. A mapping for the example

mandatory
feature

optional
feature

XOR feature
group

Figure 3: Feature model for the graph product line, shown
in the tree diagram syntax provided by SuperMod.

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

6

Table 1: History of the developed multi-variant domain model for the graph product line. Within each revision, the inserted
elements are listed by their respective qualifier. For all associations, the corresponding member ends have been inserted in the
same revision.

Inserted elements Commit message
1 — “Initial commit.”
2 Class Graph “Realization of root feature Graph.”
3 Class Vertex, association has vertices “Realization of feature Vertices.”
4 Class Edge, association has edges “Realization of feature Edges.”
5 Property Edge::label “Realization of feature labeled.”
6 Property Edge::weight “Realization of feature weighted.”
7 Association connects “Realization of feature undirected.”
8 Association starts at and ends at “Realization of feature directed.”
9 Class Color, property Color::name, association has color “Realization of feature colored.”

Figure 4: Multi-variant domain model, which realizes all features of the graph product line as a superimposed UML class
diagram. The diagram has been created using the EMF-based UML modeling tool Valkyrie (Buchmann, 2012).

Figure 5: Mapping between the multi-variant domain model and the feature model, realized by feature expressions, logical
expressions on the set of feature variables defined in the feature model in Figure 3. The mapping has been realized with the
help of the MDPLE tool FAMILE (Buchmann and Schwägerl, 2012), where the mapping is defined on the abstract syntax tree
of the MVDM. Feature expressions are highlighted.

product line is shown in Figure 5. where a total of
22 feature annotations is necessary.

Application Engineering. To automatically derive
specific products from the product line, feature con-
figurations are specified which bind each feature to a
selection (either selected or deselected). For instance,
the feature configuration from Figure 6 produces the
product shown in Figure 7, a directed and weighted

graph.

Drawbacks. Although having successfully applied
an “off-the-shelf” combination of VC and MDPLE in
the initial example, we raise several issues.
� Variability in time and variability in space are

managed by means of two different mechanisms.
Therefore, the user has to repeatedly specify ver-
sioning information (i.e., feature expressions) for

SuperMod�—�A�Model-Driven�Tool�that�Combines�Version�Control�and�Software�Product�Line�Engineering

7

selected
mandatory

selected
optional

deselected
optional

no
selection

/

Figure 6: An example feature configuration.

Figure 7: An example product that corresponds to the fea-
ture configuration shown in Figure 6.

the same change. All manually provided map-
ping information (see Figure 5) could have been
inferred from commit messages.

� In the case of product specific adaptations, the
connection to the product line gets lost. When
SPL developers find a bug in a product, the ques-
tion arises, whether it is transferred from the
MVDM or due to mistakes in the mapping. In
case the MVDM is erroneous, the bug must be
fixed twice, in the product and in the platform.
There is no mechanism for propagating product
changes back into the product line.

� For the development of the multi-version plat-
form, developers are constrained by single-
version rules. E.g., it is impossible to specify
an alternative name DirectedEdge for the class
Edge in case the feature directed is selected.
This restriction is not imposed on the evolution
of the platform: It is possible to change the class
name within subsequent revisions.

In Section 4, the tool SuperMod is presented,
which allows to overcome the presented drawbacks.
We will revisit the graph example in Section 5.

3 COMPARISON: VC AND SPLE

In this section, we compare terms and notions of VC
and SPLE that have been used in the previous two
sections. This comparison motivates the prototype
SuperMod, which is described in Section 4. Table 2
summarizes the discussion below.

Equivalent Concepts. Both VC and SPLE provide
an abstraction for the entirety of product versions. In
VC, this is a repository, whereas in SPLE, this corre-
sponds to the platform. For single product versions,
the terms workspace and product (configuration) are
used, respectively. As mentioned in the introduction,
in both disciplines, there exist two distinct represen-
tations. On the one hand, it is possible to store all
variants as a superimposition, which corresponds to
symmetric deltas in VCS and to negative variability
in SPLE. On the other hand, only a minimal core may
be defined, which is then extended. This is realized
by directed deltas in VC and by positive variability in
SPLE. In both cases, it is necessary to assign visibili-
ties either to program fragments or to transformations.
These correspond to version identifiers (sets or ranges
of revisions), and to presence conditions, respectively.

Similar Concepts. In both disciplines, there is an
abstraction for the set of available versions. In VC, re-
vision graphs describe the commit history. In SPLE,
feature models organize mandatory and/or optional
features of a product line within a tree. The spec-
ification of a single version is done by selection of
a revision, or by a feature configuration, which in
turn describes a product variant. In both disciplines,
a filter operation is realized. In VCS, it populates
the workspace after a revision has been selected for
check-out. In SPLE, filtering is applied as product
derivation during application engineering.

Differences. Both disciplines deal with different
kinds of variability. Version control manages vari-
ability in time, i.e., the fact that a software project is
subject to evolution. SPLE, in contrast, deals with
variability in space, using variability models to de-
scribe commonalities and differences among related
variants explicitly. In SPLE, it is intended that sev-
eral configurations of a software project co-exist. This
kind of variability has to be planned in advance by
suitable variation points in the platform. Most SPLE
tools require the platform to be free of context-free
or context-sensitive conflicts, e.g., a syntactically cor-
rect program that is accepted by the respective com-
piler, or a valid instance of the metamodel in the case
of MDPLE. In VC, there are no restrictions concern-
ing product variability: Neither a superimposition
nor directed deltas need to be syntactically meaning-
ful; constraints are merely imposed to single-version
products. VC and SPLE also differ in terms of ver-
sion specification. Typically, a VCS fixes the set of
versions available for selection (extensional version-
ing, see (Conradi and Westfechtel, 1998)). In SPLE,
versions may be described by a combination of fea-
tures, allowing to create versions that have not been

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

8

Table 2: Differences and commonalities among the terms and notions of VC and SPLE.

Aspect / Generalization Version control SPLE
Equivalent Concepts All Product versions Repository Platform

Single Product version Workspace Product configuration
Superimposition Symmetric deltas Negative variability
Transformations Directed deltas Positive variability

Visibilities Version identifiers Presence conditions
Similar Concepts Variability model Revision graph Feature model

Version Revision Feature configuration
Filter Check-out Product derivation

Differences Variability kind Variability in time Variability in space
Variation points Hidden Explicit

Product variability Unconstrained Constrained
Version specification Extensional Intensional

Editing model Filtered Unfiltered
Visibility management Manual Automatic

Version membership Immutable Mutable
No Equivalence Automatic visibility update Commit —

Manual visibility update — Edit feature mapping

committed earlier (intensional versioning). In VC, fil-
tered editing is applied. After a check-out, the devel-
oper sees and may modify only elements belonging to
the selected revision. As soon as a commit is issued,
changes are detected in the local workspace, and writ-
ten back to the repository, while visibilities are up-
dated automatically. In contrast, SPLE typically re-
quires the user to edit a multi-version view (unfiltered
editing) and to manage visibilities (i.e., presence con-
ditions) manually. VCS guarantee the immutability of
version membership of an element: Once committed,
it is not possible to remove an element from a revi-
sion. In contrast, it is allowed to modify the visibility
of an element arbitrarily in SPLE.

No Equivalence. VCS and SPLE tools both offer
operations that are not realized by the opposite. Ta-
ble 2 lists two of each. The VCS operation com-
mit detects differences in the workspace in order to
write changes back to the repository automatically.
No equivalent operation exists in SPLE tools, which
would, e.g., allow to propagate product specific mod-
ifications back to the platform. Conversely, in SPLE,
it is possible to directly modify the mapping between
the variability model and the platform, i.e., the vis-
ibilities. To the best of our knowledge, there exists
no VCS that would allow to retrospectively modify
version identifiers (which would, indeed, destroy the
property of immutable version membership).

Bottom Line. VC and SPLE share an unexpectedly
large amount of similarities, particularly with respect
to underlying data structures. Most differences are

due to the underlying editing models. As we will ex-
plain within the subsequent section, SuperMod elimi-
nates these differences by transferring the filtered VC
editing model to SPLE. In the workspace, the dis-
tinction between variability in time and variability in
space is blurred, offering the user new ways of ver-
sioning, such as committing a change against a ded-
icated feature. In particular, the desirable properties
of unconstrained variability, intensional versioning,
automatic visibility management, and immutability of
(temporal) version membership are transferred.

4 THE TOOL SuperMod

This section sketches the model-driven implementa-
tion of SuperMod. First, we explain theoretical foun-
dations developed in advance. Thereafter, the archi-
tecture is described at a coarse-grained level, before
we detail the specification by means of a metamodel.
Next, the operations check-out, modify and commit
are specified. Last, we discuss current limitations and
address future tool improvements. The tool is avail-
able for evaluation purposes as an Eclipse plug-in (see
installation instructions at the end of this paper).

4.1 Underlying Principles

SuperMod realizes the conceptual framework pre-
sented in (Schwägerl et al., 2015), which aims at the
integration of MDPLE, SPLE, and VC. The frame-
work in turn is built upon the uniform version model

SuperMod�—�A�Model-Driven�Tool�that�Combines�Version�Control�and�Software�Product�Line�Engineering

9

1. check-out

2. modify

3. commit

Repository

M
ul

ti
-V

er
si

on
D

om
ai

n
 M

o
de

l
M

ul
ti

-R
ev

is
io

n
Fe

a
tu

re
 M

o
d

e
l

R
ev

is
io

n

G
ra

p
h

R
ev

is
io

n

Fe
a

tu
re

C
on

fi
gu

ra
ti

o
n

Choice

Fe
a

tu
re

C
on

fi
gu

ra
ti

o
n

Ambition

Workspace

C
h

o
se

n
 D

o
m

ai
n

M

od
el

 V
er

si
o

n
C

ho
se

n
Fe

at
ur

e
M

o
d

el
 R

e
v

is
io

n

V
is

ib
ili

ty
Fo

re
st

M
et

ad
at

a

Figure 8: SuperMod tool architecture and editing model.

(Westfechtel et al., 2001), adding higher-level repre-
sentations for both the version space (by feature mod-
els and revision graphs) and the product space (by
the use of EMF models). Below, the core concepts
of UVM and its extensions are described informally,
defining the general notions in Table 2 more precisely.

Options. An option is a temporal or logical property
of a software system, which may or may not be
included in a specific version. In SuperMod, two
kinds of options exist: revision options and fea-
ture options (see below).

Choices. A choice denotes a single version by as-
signing a selection (selected, deselected) to each
of the existing options. Choices are used as read
filters, i.e., they describe versions visible in the
workspace.

Ambitions. An ambition denotes a set of versions
as a subset of all available versions. Ambitions
are used as write filters in order to delineate the
scope of a change performed in the workspace. In
contrast to a choice, an ambition may contain un-
bound options, to which the change is immaterial.

Version Rules. The set of available choices and am-
bitions is constrained by a set of version rules,
logical expressions over the option set. Version
rules are used, e.g., in order to implement con-
straints such as mutual exclusion within feature
models, or to designate subsequent revisions.

Visibilities. A visibility is a logical expression over
the option set, which is attached to an element of
the feature or domain model. In order to test an
element’s presence in a specific version, the bind-
ings specified by the respective choice are applied.
Visibilities are modified automatically during the
commit operation (see below).

4.2 Tool Architecture/ Editing Model

Both the architecture and the editing model of Su-
perMod are inspired by distributed VCS such as Git
(Chacon, 2009). The tool offers the traditional ver-
sion control metaphors check-out and commit and ad-
ditionally offers SPLE concepts such as feature mod-
els and feature configurations for the definition of the
version space and specific versions. The traditional
VCS architecture is extended: (1) The feature model
is an additional, temporally variable, versioned arti-
fact. (2) The domain model varies along two dimen-
sions, the revision graph and the feature model. Fig-
ure 8 illustrates the remarks below.

Repository. A repository is a persistent storage
linked to a software project under VC. Developers
communicate with their private repository by means
of the operations check-out and commit. A SuperMod
repository consists of three layers.

� The revision graph is a directed acyclic graph
that describes the temporal history of a SuperMod
project. The graph is extended automatically each
time a new revision has been committed. For each
revision, a revision option is introduced transpar-
ently. Furthermore, version rules ensure that revi-
sion selections amend all predecessor revisions.

� The multi-version feature model plays a dual role:
Firstly, its evolution is controlled by the revision
graph. Secondly, each feature is mapped to a fea-
ture option, such that the feature model provides
an additional version model. Feature model con-
straints are mapped to version rules transparently
(Schwägerl et al., 2015).

� The multi-version domain model describes the su-
perimposition of the versioned project. Although
the term “domain model” is used here, the project
may comprise a file hierarchy containing model

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

10

or non-model resources. Within the visibilities of
domain model elements, revision and feature op-
tions may occur.
Technically, the repository is an instance of the

SuperMod metamodel (see Section 4.3), representing
multi-version models (and non-model artifacts) as a
superimposition. Thus, from the VC perspective, Su-
perMod uses symmetric deltas, and from the SPLE
perspective, it is based on negative variability.

Visibilities are represented in a memory-
optimized way using a global data structure, the
visibility forest. It contains each visibility occurring
on any model element at most once. Furthermore,
visibilities may reference each other to form several
tree-like structures (hence, a forest). The visibility
forest is updated during a commit transparently.

Workspace. A SuperMod workspace contains the
currently selected version of the domain model, i.e.,
the derived product, in its domain specific representa-
tion within an ordinary file system. EMF models are
represented as instances of their custom Ecore-based
metamodel(s). Plain text and XML files are repre-
sented in their custom format. This allows SuperMod
users to utilize their single-version editing tools they
are familiar with.

During the sub-process modify, the user may also
edit the feature model arbitrarily, e.g., by introducing
new features or constraints. For this purpose, the cho-
sen revision of the feature model is made available
for modification in the workspace. Technically, the
feature model is represented as an instance of the Su-
perMod Feature metamodel (Schwägerl et al., 2015).

In addition to the single-version resources, meta-
data are managed transparently to the user. They
augment workspace resources with VC details, such
as the versioning state (versioned, non-versioned,
added, removed, etc.). Furthermore, the current
choice is persisted.

Choices and Ambitions. As mentioned above, fea-
ture configurations are used to specify choices and
ambitions in addition to revision graphs as known
from state-of-the-art VCS. A feature configuration is
always specified on the current revision of the feature
model. When specified as an ambition, the feature
configuration may be partial and typically binds only
few features. The effective choice/ambition is formed
during check-out/commit as conjunction of the tem-
poral and logical component, e.g., rev4 and labeled.

4.3 The SuperMod Metamodel

SuperMod has been developed in a model-driven way
using the Eclipse Modeling Framework (Steinberg

et al., 2009). Furthermore, the tool has been imple-
mented modularly; it is is not restricted to the three-
layer architecture shown in Figure 8, but flexible with
respect to the underlying version space space model.

The metamodel realizes the sub-set of concepts
presented in Sections 3 and 4.1, which are relevant
to the repository. As shown in Figure 9, a Super-
Mod repository consists of a version space, a product
space, and a visibility forest. The version space in turn
is composed of several version dimensions, and the
product space comprises a number of product dimen-
sions, which in turn contain a hierarchy of versioned
elements. These may reference a visibility, which is
organized within a visibility forest. A visibility may
be an option reference or a composed expression (e.g.,
and, or, not). Choices and ambitions, which occur
in SuperMod as temporary data structures (except for
the choice in the metadata section), are represented by
OptionBinding, which maps options to selections.

On the right hand side of the class diagram,
the three dimensions discussed in this paper are de-
picted. Obviously, the revision graph is a subclass
of VersionDimension. Due to its dual role, the fea-
ture model is both a version and a product dimension.
The metamodel of the primary product space, the ver-
sioned file system, is decomposed into three differ-
ent resource types: EMF, plain text, and XML. As
a representative for VersionedElements, the class
Object represents multi-version EMF objects. More
details on the EMF and Feature multi-version meta-
models are provided in (Schwägerl et al., 2015).

4.4 Repository Operations

The user interface of SuperMod has been realized us-
ing the Eclipse Team Provider API. In this section, we
sketch the available UI commands.

Check-Out. For check-out, the UI offers two dis-
tinct commands: Switch prompts the user for a choice
in both the revision graph and the feature model,
whereas Update automatically generates a new choice
whose temporal component is updated to the latest
available successor of the current revision. In general,
the operation check-out has been realized as follows:

� The specified choice is recorded in the metadata.

� The feature model is filtered by the temporal com-
ponent of the selected choice and copied into the
local workspace.

� The domain model is filtered by the effective
choice and exported into the local workspace.
The export transformation has been implemented
for each specific resource type to translate a

SuperMod�—�A�Model-Driven�Tool�that�Combines�Version�Control�and�Software�Product�Line�Engineering

11

Repository ProductSpaceVersionSpace

VisibilityForest

VersionedElementOptionExpr

ProductDimensionVersionDimension

And
Not

Ref

OptionBinding

sel: Selection

Entry

Rule Option

selected
unselected
unbound

<<enumeration>>
Selection

* *

** *

*
*

*

1

0..1

1 1

2

Or... ...

*

1
1core

file

text

xml

VersionedFileSystem

feature
FeatureModel

revision

RevisionGraph

emf
Object

visibility

Figure 9: The SuperMod Core metamodel and three extensions as simplified Ecore class diagram.

multi-version representation into its correspond-
ing single-version representation.1

Modify. The user may modify both the feature
model and the domain model within the workspace.
For domain model resources, arbitrary editors avail-
able in the current Eclipse installation may be used.
For the feature model, the command Edit Version
Space is offered by SuperMod, which opens an EMF
tree editor for the current feature model revision. In
addition to the modification of versioned resources,
the commands Add/Remove to/from Version Control
are provided, which adjust the corresponding entries
within the metadata section accordingly.

Commit. The Commit command is defined as a
counterpart to the check-out operation as follows.:

� A new revision is created as the successor of the
revision specified for the choice. Within the given
revision of the feature model, the ambition is user-
specified as a partial feature configuration. For
consistency reasons, it is required that the ambi-
tion implies the previously specified choice.

� The original state of the workspace version is tem-
porarily restored by applying the recorded choice
to the repository. The new state is generated
by importing (the inverse of export) the current
workspace into its multi-version representation.

� Differences are computed by comparing both ver-
sions, the original and the new state.

� Inserted elements are copied into the repository.

� The visibilities of inserted/deleted feature
model elements are updated automatically by
adding/subtracting the temporal component of
the ambition to/from the existing visibility.

1In the case of EMF models, the export transformation
is generic, i.e., there is no necessity to define a custom trans-
formation for each metamodel used.

� The visibilities of inserted/deleted domain model
elements are updated by adding/subtracting the ef-
fective ambition.

As proposed in (Schwägerl et al., 2015), the up-
date operations add and subtract have been imple-
mented by the operators _ and ^:.

4.5 Current Limitations and Outlook

The current version of SuperMod allows to answer re-
search questions referring to the added value of trans-
ferring the VC editing model to SPLE. However, there
are some questions that remain to be answered by fu-
ture work:

� Currently, SuperMod is restricted to single-user
operation — the repository is persisted locally.
After having evaluated and improved the tool, it
is planned to realize support for multi-user oper-
ation. A multi-user version of SuperMod will of-
fer commands similar to the Push/Pull operations
as defined in the distributed VCS Git (Chacon,
2009). With the number of its users, the size of
the repository will grow, concerning both the fea-
ture and the domain model. A transactional stor-
age will be necessary that scales with large model
instances.

� Concurrent modifications will lead to conflicts
in the domain/feature model, which must be re-
solved by a specific three-way merging compo-
nent for models, e.g., (Schwägerl et al., 2013).

� The evolution of the feature model remains to be
further evaluated. For instance, how does the
deletion of a feature affect existing variants in the
workspace?

� From the SPLE perspective, domain engineering
and application engineering are not clearly sepa-
rated. SuperMod does not allow to design a multi-
variant domain model from scratch and switch to
filtered editing in a later phase. Furthermore, de-
rived products are currently considered as volatile

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

12

artifacts in the workspace, which disappear as
soon as the choice is changed. It may be desir-
able to derive several products in a batch mode.

� The concepts of choices and ambitions are hard
to grasp for VCS users. Concerning user interac-
tion, there is still room for improvement. For in-
stance, a default ambition might be inferred from
the choice and newly introduced features.

5 EXAMPLE REVISITED

To demonstrate the added value of SuperMod, we re-
consider the example from Section 2. Now, we de-
velop the platform, consisting of the domain model
and the feature model (and the mapping in between,
which is hidden now) together in multiple iterations,
using feature configurations to describe the scope of
changes to the domain model. Figure 10 shows the
subsequent iterations in which the model-driven prod-
uct line is developed as described below. In each
step i, revision i�1 is evolved to revision i.

Initialization. We create an empty Eclipse project
and invoke the Share command, which puts it under
SuperMod version control. Next, we create an empty
UML class diagram and add it to version control. Ini-
tially, the feature model is empty. The project is com-
mitted to the repository as revision 1. Since there is
no variability defined in the feature model yet, the
user is not prompted for a feature configuration — the
change is universal.

Realization of Common Parts. In step 2, both the
feature model and the domain model are evolved. We
add the root feature Graph and its mandatory sub-
features Vertices and Edges to the feature model.
Within the domain model, a class Graph is created.
Since this class realizes the identically named feature,
we specify as ambition a partial feature configuration
where Graph is selected. Transparently, the visibil-
ity of the added features is set to rev2, whereas the
visibility of the class Graph is set to rev2 and graph.

Similarly, realizations of the mandatory features
Vertices and Edges are provided in steps 3 and 4,
where the feature model remains unmodified. The
performed commit operations result in the visibilities
rev3 and vertices for the class Vertex and the asso-
ciation has vertices, and rev4 and edges for Edge
and has edges.

Realization of Optional Parts. In steps 5 and 6,
the optional features labeled and weighted are in-

troduced. In addition, their realization is provided
by performing the following changes in the local
workspace: the feature labeled is realized as an at-
tribute label, and the feature weighted as weight,
both located in the class Edge. The change performed
in step 6 would also have been applicable in a fea-
ture configuration where labeled is selected, since
the features weighted and labeled are mutually in-
dependent.

Within two subsequent steps, we commit alter-
native realizations for edges, being directed and
undirected. In step 7, a corresponding XOR-group
is introduced to the feature model. In the domain
model, a realization for directed edges is added: two
associations starts at and ends at with multiplic-
ity 1 at the Vertex end. The realization for undi-
rected edges is committed in step 8 under the ambition
undirected: an unspecific association connects with
multiplicity 2 at the Vertex end. Since the features
directed and undirected are mutually exclusive, it
is ensured that no version containing both realizations
may be derived.

In step 9, the optional feature colored is intro-
duced and realized by a class Color and an associa-
tion has color between Vertex and Color.

Re-Combination of Independent Features. In the
original version of our example, we have derived an
example product by specifying the feature configura-
tion shown in Figure 6 in the application engineer-
ing phase. Since the operations check-out and prod-
uct derivation are similar (see Table 2), this step may
be “simulated” by checking out a choice that consists
of the latest revision and the same feature configura-
tion. As a consequence, the workspace is populated
with the domain model version shown in Figure 7.
This version may be refined with product specific
adaptations (by specifying an ambition that equals the
choice) or by changes that influence related products
(by specifying as ambition a partial feature configu-
ration that delineates the set of logical versions where
the change shall be visible).

Inspecting the Repository. During the described
check-out/modify/commit iterations, the management
of visibilities has been completely automated by the
mechanisms described in Section 4.4. As a conse-
quence, a SuperMod user never has to inspect or mod-
ify visibilities manually, as it had been necessary in
the initial example. Nevertheless, it is interesting to
inspect the superimposition and the visibilities de-
fined in the repository for a comparison with the man-
ually defined mapping. Figure 11 depicts the inter-
nal state of the repository after step 9. Visibilities of

SuperMod�—�A�Model-Driven�Tool�that�Combines�Version�Control�and�Software�Product�Line�Engineering

13

 workspace before workspace after

feature m. domain model feature m. domain model
choice
feature c.

ambition

feature c.

2

3

4

5

6

7

8

9

1

Figure 10: Summary of all performed check-out/modify/commit iterations during the example. For the reason of compactness,
certain parts of the feature model and domain model have been elided (. . .). For the development of the domain model,
Valkyrie (Buchmann, 2012) has been used again. All feature models and feature configurations are represented in the tree
representation provided by SuperMod.

the multi-version feature model only contain revision
options, since the feature model is only versioned by
the revision graph and not by itself. Visibilities of
the MVDM are hybrid: they contain a revision part
(which corresponds to the version history shown in

Table 1) and a feature part (which is equivalent to the
mapping shown in Figure 5).

Outlook. The presented example has only
scratched the surface of SuperMod. Performed

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

14

Graphr1 Verticesr2

Edgesr3

Edgesr3

labeledr4

weigh.r5

coloredr8
r1

r1
r1

r1

r8

r4

r5

r6

r6
r6

Figure 11: Internal representation of the repository, consisting of the multi-version representations of feature model and
domain model, in its state after the example has been conducted. Visibilities of elements are attached using dashed boxes.

modifications were restricted to element insertions,
and the specified ambitions always include one
selected feature. These simplifications have been
applied for the reason of comprehensibility. We infor-
mally sketch a couple of extensions to the example,
where SuperMod is used in a more advanced way:

� We may add different constructors for the class
Edge, depending on the combination of features
labeled and weighted. As shown in Figure 12,
the features selected in the ambition match the
corresponding parameters in different versions of
the constructor.

� Hyper graphs are a generalization of graphs
whose edges connect a number of vertices greater
than two. For this purpose, we may add a feature
hyper below Edge. The realization would consist
in renaming of the class Edge to HyperEdge and
changing the association name and multiplicities
as shown in Figure 13. The co-existence of dif-
ferent class names is only allowed due to Super-
Mod’s property of unconstrained variability.

� A universal change may be retrospectively
mapped to a new feature by reverting the change
(i.e., by deleting all added elements and vice
versa) and specifying the negation of the new fea-
ture in the ambition. An example is provided in
(Schwägerl et al., 2015, Section 5).

� Our example has been restricted to a single class
diagram. SuperMod can handle complete Eclipse
projects, including interconnected EMF model re-
sources, and non-model resources such as plain
text or XML files. For instance, we may add gen-
erated Java code to version control, which would
enable for variability in behavioral aspects.

Added Value. When compared to the first version
of the example, the cognitive complexity of feature
mapping has been significantly reduced. The domain
model and the feature model have been developed

step by step, while realizations for each feature have
been specified directly in the workspace. This is en-
abled by the uniform version mechanism for temporal
and logical variability in SuperMod, which removes
the necessity of repeated annotations. For realizing
changes, the developer has used an arbitrary single-
version editor. This is in contrast to many SPLE
tools, which require custom multi-variant editors or
additional composition languages, which both disrupt
the developers’ workflow. The additional advantage
of unconstrained variability has been demonstrated
above. In sum, SuperMod removes the drawbacks and
limitations that have been identified for an “off-the-
shelf” approach to combined VC/SPLE in Section 2.

6 RELATED WORK

In (Schwägerl et al., 2015), concepts and theory used
for the realization of SuperMod have been described,
including a comparison with the integrating disci-
plines Model-Driven Product Line Engineering (MD-
PLE), Model Version Control, and Software Product
Line Evolution. The current paper describes the added
value from the end user’s perspective. Subsequently,
we compare SuperMod to other tools and approaches
that partially share VC and SPLE concepts.

With branches, many contemporary version con-
trol systems, e.g., Git (Chacon, 2009) and Subversion
(Collins-Sussman et al., 2004) offer logical variants
to a limited extent. However, the current state of the
art only allows to restore variants that have been com-
mitted earlier (extensional versioning), but not to re-
combine new variants based on predicates similar to
feature configurations (intensional versioning).

In (Reichenberger, 1995), an approach for or-
thogonal version management is proposed. A ver-
sion cube is formed by product, revision, and vari-
ant space. Albeit, this approach does not consider the
variant space to be subject to temporal evolution.

SuperMod�—�A�Model-Driven�Tool�that�Combines�Version�Control�and�Software�Product�Line�Engineering

15

Figure 12: Four additional changes, which add different constructors to the class Edge, each with a corresponding ambition.

 workspace before workspace after
domain model domain model

ambition
feature c.

Figure 13: Additional change realizing the feature hyper, associated with a corresponding ambition.

The tool SuperMod presented in this paper builds
upon the uniform version model (UVM) presented in
(Westfechtel et al., 2001). UVM’s basic concepts (op-
tions, visibilities, constraints) have been initially in-
troduced in the context of change-oriented versioning
(CoV) (Munch, 1993). The tool EPOS-DB is an im-
plementation of CoV concepts. In contrast to Super-
Mod, both the version space and the product space are
represented at a low level of abstraction (propositional
formula and text files, respectively).

In (Zeller and Snelting, 1997), an approach to uni-
fied versioning based on feature logic is presented.
Versions of text files are stored with selective deltas;
visibilities are controlled by feature-logical expres-
sions. Constraints on feature combinations are ex-
pressed by (low level) version rules.

In (Walkingshaw and Ostermann, 2014), an ap-
proach to filtered (projectional) editing of multi-
variant programs is described. Like in our work, the
motivation is a reduction of complexity gained by hid-
ing variants not important for a specific change to a
multi-variant model. Visibilities are managed auto-
matically, but in contrast to our approach, the choice
always equals the ambition. Furthermore, the restric-
tion of a completely bound choice does not exist since
the user operates on a partially filtered product which
still contains variability. Our tool presented in this pa-
per ensures a relaxed form of the edit isolation princi-
ple discussed in (Walkingshaw and Ostermann, 2014,
Section 4): a change may affect only those variants
that are included in the specified ambition.

Using Stepwise and Incremental Software Devel-
opment (Apel and Kästner, 2009), a sub-discipline of
Feature-Oriented Software Development, features are

described as refinements or layers. This replaces the
necessity of an explicit mapping in the form of pres-
ence conditions, but the increments need to be speci-
fied in a form that deviates from the “normal” imple-
mentation language, e.g., model transformations. In
contrast, SuperMod enables for SISD using a familiar
development environment.

The source-code centric tool CIDE (Colored IDE)
(Kästner et al., 2008) generalizes preprocessors using
a colored representation to distinguish features. CIDE
is based on negative variability and offers the possi-
bility to temporarily restrict a variational project to
views on a specific feature or variant. Then, irrelevant
source code fragments are hidden. The performed
changes only affect the selected feature or variant, i.e.,
choice and ambition must be equal.

The MDPLE tool Feature Mapper (Heidenreich
et al., 2008), which is based on negative variability,
offers the possibility of change recording during do-
main engineering. Having selected one or several fea-
tures and invoked the record operation, all changes
performed are associated with a feature expression
derived from the provided feature selection. However,
only insertions are supported, and change recording is
restricted to GMF-based editors.

7 CONCLUSION

In this paper, we have presented SuperMod, a model-
driven tool that combines the management of vari-
ability in time and variability in space, i.e., version
control (VC) and Software Product Line Engineer-
ing (SPLE). Typical SPLE processes distinguish be-

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

16

tween domain engineering, where a platform and a
variability model are defined, and application engi-
neering, where variability is resolved to automatically
derive specific products. In contrast, in VC, software
is developed iteratively. SuperMod bridges this gap
by transferring VC metaphors to SPLE. For the selec-
tion of versions during check-out and commit, feature
configurations are specified in addition to a selection
among the revision graph. The mapping between the
platform and the variability model is managed auto-
matically.

In a running example, where a product line of
graph domain models has been developed, we have
demonstrated many advantages of the VC/SPLE in-
tegration. Due to the filtered editing model, the ver-
sioning overhead is notably small when compared to
existing SPLE approaches. For workspace modifica-
tions, the developer is not restricted by single-version
constraints. Furthermore, a familiar development en-
vironment can be used. Intensional version specifi-
cation allows for the definition of feature configura-
tions as version descriptions. These advantages are
boosted by using models as higher-level descriptions
of the versioned software system.

Future work will address the development of a
multi-user component, which will advance SuperMod
to a full-fledged distributed VCS. The evolution of the
feature model will be subject to research. Further-
more, a detailed evaluation against SPLE tools will be
conducted, using a real-world example. The obtained
results will be important to understand the impact of
the filtered SPL editing model on the underlying de-
velopment processes and tool chains.

TOOL AVAILABILITY

The research prototype SuperMod is available as a set
of Eclipse plug-ins under the Eclipse Public License.
The plug-ins may be installed into a clean Eclipse
Luna Modeling distribution using the following up-
date site (Help — Install new Software):

http://btn1x4.inf.uni-bayreuth.de/
supermod/update

In order to reproduce the example provided in
this paper, at least the items SuperMod Core and
SuperMod Revision+Feature Layered Version Model
should be selected for installation.

After having installed the plug-ins, SuperMod
version control may be added to arbitrary Eclipse
projects using the operation Team — Share Project
and selecting the SuperMod repository connector. Af-
ter that, the operations Team — Commit and Team

— Update/Switch are available in order to communi-
cate with the locally persisted repository. The feature
model may be edited by Team — Edit Version Space.

REFERENCES

Altmanninger, K., Seidl, M., and Wimmer, M. (2009). A
survey on model versioning approaches. Interna-
tional Journal of Web Information Systems (IJWIS),
5(3):271–304.

Apel, S. and Kästner, C. (2009). An overview of feature-
oriented software development. Journal of Object
Technology, 8(5):49–84.

Buchmann, T. (2012). Valkyrie: A UML-based model-
driven environment for model-driven software engi-
neering. In Hammoudi, S., van Sinderen, M., and
Cordeiro, J., editors, Proceedings of the 7th Interna-
tional Conference on Software Paradigm Trends (IC-
SOFT 2012), pages 147–157. SCITEPRESS Science
and Technology Publications, Portugal.

Buchmann, T. and Schwägerl, F. (2012). FAMILE: tool
support for evolving model-driven product lines. In
Störrle, H., Botterweck, G., Bourdells, M., Kolovos,
D., Paige, R., Roubtsova, E., Rubin, J., and Tolvanen,
J.-P., editors, Joint Proceedings of co-located Events
at the 8th European Conference on Modelling Foun-
dations and Applications, CEUR WS, pages 59–62,
Building 321, DK-2800 Kongens Lyngby. Technical
University of Denmark (DTU).

Chacon, S. (2009). Pro Git. Apress, Berkely, CA, USA, 1st
edition.

Clements, P. and Northrop, L. (2001). Software Product
Lines: Practices and Patterns. Boston, MA.

Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M.
(2004). Version Control with Subversion. O’Reilly,
Sebastopol, CA.

Conradi, R. and Westfechtel, B. (1998). Version models for
software configuration management. ACM Computing
Surveys, 30(2):232–282.

Czarnecki, K. and Kim, C. H. P. (2005). Cardinality-based
feature modeling and constraints: a progress report.
In International Workshop on Software Factories at
OOPSLA’05, San Diego, California, USA. ACM.

Gomaa, H. (2004). Designing Software Product Lines with
UML: From Use Cases to Pattern-Based Software Ar-
chitectures. Addison-Wesley, Boston, MA.

Heidenreich, F., Kopcsek, J., and Wende, C. (2008). Fea-
tureMapper: Mapping Features to Models. In Com-
panion Proceedings of the 30th International Confer-
ence on Software Engineering (ICSE’08), pages 943–
944, New York, NY, USA. ACM.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
and Peterson, A. S. (1990). Feature-oriented do-
main analysis (FODA) feasibility study. Technical Re-
port CMU/SEI-90-TR-21, Carnegie-Mellon Univer-
sity, Software Engineering Institute.

Kästner, C., Trujillo, S., and Apel, S. (2008). Visualizing
software product line variabilities in source code. In

SuperMod�—�A�Model-Driven�Tool�that�Combines�Version�Control�and�Software�Product�Line�Engineering

17

Proceedings of the 2nd International SPLC Workshop
on Visualisation in Software Product Line Engineer-
ing (ViSPLE), pages 303–313.

Lopez-Herrejon, R. E. and Batory, D. S. (2001). A stan-
dard problem for evaluating product-line methodolo-
gies. In Proceedings of the Third International Con-
ference on Generative and Component-Based Soft-
ware Engineering, GCSE ’01, pages 10–24, London,
UK. Springer.

Munch, B. P. (1993). Versioning in a Software Engineering
Database — The Change Oriented Way. PhD thesis,
Tekniske Høgskole Trondheim Norges.

OMG (2011). UML Infrastructure. Object Management
Group, Needham, MA, formal/2011-08-05 edition.

Pohl, K., Böckle, G., and van der Linden, F. (2005). Soft-
ware Product Line Engineering: Foundations, Princi-
ples and Techniques. Berlin, Germany.

Reichenberger, C. (1995). VOODOO - a tool for orthogonal
version management. In Estublier, J., editor, SCM,
volume 1005 of Lecture Notes in Computer Science,
pages 61–79. Springer.

Rochkind, M. J. (1975). The source code control sys-
tem. IEEE Transactions on Software Engineering,
1(4):364–370.

Schwägerl, F., Buchmann, T., Uhrig, S., and Westfech-
tel, B. (2015). Towards the integration of model-
driven engineering, software product line engineer-
ing, and software configuration management. In Ham-
moudi, S., Pires, L. F., Desfray, P., and Filipe, J., edi-
tors, Proceedings of the 3rd International Conference
on Model-Driven Engineering and Software Develop-
ment (MODELSWARD 2015), pages 5–18, Angers,
France. SCITEPRESS Science and Technology Pub-
lications, Portugal.

Schwägerl, F., Uhrig, S., and Westfechtel, B. (2013).
Model-based tool support for consistent three-way
merging of EMF models. In Proceedings of the work-
shop on ACadeMics Tooling with Eclipse, ACME ’13,
pages 2:1–2:10, New York, NY, USA. ACM.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks,
E. (2009). EMF Eclipse Modeling Framework. The
Eclipse Series. Addison-Wesley, Upper Saddle River,
NJ, 2nd edition edition.

Tichy, W. F. (1985). RCS — a system for version con-
trol. Journal of Software: Practice and Experience,
15(7):637–654.

Völter, M., Stahl, T., Bettin, J., Haase, A., and Helsen, S.
(2006). Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley &
Sons.

Walkingshaw, E. and Ostermann, K. (2014). Projectional
editing of variational software. In Generative Pro-
gramming: Concepts and Experiences, GPCE’14,
Vasteras, Sweden, September 15-16, 2014, pages 29–
38.

Westfechtel, B., Munch, B. P., and Conradi, R. (2001).
A layered architecture for uniform version manage-
ment. IEEE Transactions on Software Engineering,
27(12):1111–1133.

Zeller, A. and Snelting, G. (1997). Unified versioning
through feature logic. ACM Transactions on Software
Engineering and Methodology, 6(4):398–441.

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

18

