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Abstract:  Many real-world phenomena such as social networks and biological networks can be modeled as graphs. 
Discovering dense sub-graphs from these graphs may be able to find interesting facts about the phenomena. 
Quasi-cliques are a type of dense graphs, which is close to the complete graphs. In this paper, we want to 
find all maximal quasi-cliques containing a target vertex in the graph for some applications. A quasi-clique 
is defined as a maximal quasi-clique if it is not contained by any other quasi-cliques. We propose an 
algorithm to solve this problem and use several pruning techniques to improve the performance. Moreover, 
we propose another algorithm to solve a special case of this problem, i.e. finding the maximal cliques. The 
experiment results reveal that our method outperforms the previous work both in real and synthetic datasets 
in most cases. 

1 INTRODUCTION 

Graphs have been used to model lots of real-world 
applications for decades. For instance, biological 
networks, social networks, and financial domains 
can be modeled using graphs. In a graph, vertices 
represent objects and edges represent the 
relationships among objects. Finding dense sub-
graphs around certain important vertices is an 
interesting problem in the graph research. In the web 
network graph, (Gibson, 2005) observe that a dense 
sub-graph can correspond to spam link farms. In 
social networks or blogospheres, the specific 
vertices can be assigned as leaders or bloggers to 
advertise new products or to lead fashions, as 
observed by (Agarwal, 2008) and (Goyal, 2008). In 
the biology, (Fratkin, 2006) and (Langston, 2005) 
discover regulatory motifs in genomic DNA. (Zou, 
2007) find terrorist groups in a terrorist network by 
matching a specified structure in the corresponding 
graph. 

Suppose that there is a terrorist network built by 
an official security department. In the corresponding 
graph, each vertex corresponds to a terrorist and 
each edge denotes the partnership between two 
individuals. Through a long time investigation, 
polices aim at a terrorist as one of the suspects of a 

terror attack. In order to identify the whole terrorist 
group, dense sub-graphs containing the target vertex 
corresponding to the suspect need to be found. We 
measure whether a sub-graph is close enough by 
checking whether it meets the definition of a quasi-
clique.  

A graph is defined as a clique if an edge exists in 
any pair of the vertices in the graph. Different types 
of cliques, such as maximal cliques and maximum 
cliques have been addressed. To model real 
applications by graphs, incomplete situations need to 
be considered. The concept of quasi-clique has 
therefore been proposed. A quasi-clique represents 
an almost clique as defined in (Liu, 2008). A graph is 
a quasi-clique if the degree of each vertex is larger 
than or equal to ⌈γ × (N − 1)⌉, where γ is a parameter 
between 0 and 1 and N is the number of vertices in 
the graph. In this paper, we address a new problem 
on finding maximal quasi-cliques from a graph, 
which contain a specific target vertex. The maximal 
quasi-clique in a graph is a quasi-clique not 
contained by any other quasi-cliques. 

Given a graph, the search space of finding quasi-
cliques from the graph is equivalent to the power set 
of the number of vertices in it. In order to efficiently 
find all maximal quasi-cliques of a target vertex, we 
design several pruning strategies to reduce the 
search space. In addition, we modify the Quick 
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algorithm proposed in (Liu, 2008) for a comparison 
with our proposed method, which is originally 
designed for finding maximal quasi-cliques. 
Moreover, we also propose an algorithm to 
efficiently solve the special case on γ = 1. Two 
synthetic datasets and one real dataset are used to 
test the proposed methods, and the experiment 
results demonstrate that our methods are better than 
the modified Quick algorithm in most cases.  

The remainder of this paper is organized as 
follows. The related works are reviewed in Section 
2. Then, the preliminaries are given in Section 3. 
The modified Quick algorithm and our methods are 
detailed in Section 4. Thereafter, the performance 
evaluation on the proposed methods is presented in 
Section 5. Finally, Section 6 concludes this work. 

2 RELATED WORKS 

The dense graph problems have been adopted on a 
variety of applications, such as finding thematic 
groups, organizing social events, and tag suggestion 
(Sozio, 2010), (Tsourakakis, 2013). A Clique, also 
known as complete graph, is a typical dense graph, 
in which vertices are all connected to each other. 
The problem of finding a clique with a given size k 
in a graph is NP-complete. In addition, to find all of 
the maximal cliques is more difficult. (Du, 2006) 
have studied the techniques to enumerate all 
maximal cliques in a complex network. For general 
undirected graphs, Xiang et al. propose a color-
based technique to compute an upper bound of the 
size of cliques in (Xiang, 2013). If two vertices have 
different colors, it means that no edge exists between 
those two vertices. Since cliques are complete 
graphs, the number of colors in the graph represents 
the possible size of maximal clique able to be found. 
A partitioning algorithm is designed in (Xiang, 
2013), which computes the maximum clique on 
MapReduce using a branch and bound search. (Zou, 
2010) combine the maximal clique problem and the 
top-k query. They assume that the graph data is 
generally interfered in reality. This kind of graphs is 
called uncertain graphs. In an uncertain graph, 
vertices and edges have their own weights for 
representing the probabilities of existence. When 
they confirm that a sub-graph is a clique, its 
corresponding score is calculated from the weights 
of vertices and edges. Then, we can use the score to 
prune some other vertices, which cannot form other 
cliques with larger scores. 

On the other hand, researchers consider quasi-
cliques, another type of dense graphs, which have 

different definitions for different studies. 
(Tsourakakis, 2013) define the threshold for the 
number of edges in a quasi-clique, and mention that 
each vertex need connect to most other vertices in a 
quasi-clique. (Brunato, 2007) formulate two 
parameters to define the quasi-clique. The first one 
determines the number of neighbors of each vertex 
in a quasi-clique, and the second one determines the 
number of edges in the quasi-clique. (Abello, 2002) 
and (Liu, 2008) have the similar definition for quasi-
cliques, which is based on the degree of each vertex 
in the same sub-graph. (Abello, 2002) propose an 
algorithm for finding a single maximal quasi-clique. 
(Liu, 2008) propose the Quick algorithm for finding 
maximal quasi-cliques in a graph. The basic idea of 
this Quick algorithm is to use the depth-first order to 
explore the search space. Then, they use several 
pruning techniques to reduce the execution time. We 
illustrate the detailed steps of the Quick algorithm in 
Section 4 as a comparison of our method. 

3 PRELIMINARIES 

In this section, we describe the notations and terms 
to be used in this paper, and formally define the 
problem on finding maximal quasi-cliques for a 
target vertex in a graph. Given a simple graph G = 
(V, E), where V denotes a set of vertices and E 
denotes a set of edges to represent objects and the 
relationships among objects, respectively. That is, if 
any two objects have a relationship, an edge between 
the two corresponding vertices exists. An edge is 
denoted using a form of (u, v) where u, v ∈ V. |V| 
and |E| denote the number of vertices and the 
number of edges in a graph, respectively. NG(v) = {u| 
∀(u, v) ∈ E} denotes the neighbors of a vertex v in 
G. |NG(v)| therefore denotes the degree of v in G. 
distG(u, v) denotes the distance between the vertex u 
and the vertex v, which equals the minimum number 
of edges to traverse from u to v in G. G' = (V', E') is 
a sub-graph of G = (V, E) when V' ⊂ V, E' ⊂ E, and 
for any u and v in V', if (u, v) ∈ E, then (u, v) ∈ E'. 
In the following discussion, we also use a set of 
vertices to represent the corresponding sub-graph. 
Definition 1 (Quasi-Clique): Given a sub-graph G' = 
(V', E') of G, where V' ⊂ V and E' ⊂ E, G' is defined 
as a quasi-clique of v with respect to a parameter γ, 
denoted QC(γ, v), where v ∈ V and 0 < γ ≤ 1, if G' 
satisfies the following three conditions. 1) v ∈ V'. 2) 
G' is connected, which means at least a path exists 
between any two vertices in V'. 3) |NG'(v)| needs to 
equal or exceed ⌈(|V'| − 1) × γ⌉, ∀v ∈ V', where ⌈(|V'| 
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−1) × γ⌉ is named the degree threshold and denoted 
degγ(V'). 
Example 1: As shown in Figure. 1, let the target 
vertex be v1 and γ be 0.5. G' = (V', E'), where V' = 
{v1, v2, v3, v5} and E' = {(v1, v2), (v1, v3), (v2, v3), (v2, 
v5), (v3, v5)} is a quasi-clique QC (0.5, v1), since G' 
is connected, and for all vertices v ∈ V', |NG'(v)| ≥ 
degγ(V') (= ⌈(4 − 1) × 0.5⌉ = 2). 
Definition 2 (Maximal Quasi-Clique): Given a sub-
graph G' = (V', E') of G and G' is a quasi-clique of v 
with respect to a parameter γ, where v ∈ V'; G' is 
defined as a maximal quasi-clique of v with respect 
to γ if G' is not a sub-graph of any other quasi-
cliques of v with respect to γ. 
Example 2: As shown in Figure. 2, let γ be 0.6 and 
the target vertex be v2, according to Definition 1, G' 
= (V', E'), where V' = {v1, v2, v3, v4} and E' = {(v1, 
v2), (v1, v4), (v2, v3), (v2, v4), (v3, v4)} is a quasi-clique 
QC(0.6, v2). Since no other quasi-cliques QC(0.6, v2) 
contain G', G' is a maximal quasi-clique of v2 with 
respect to 0.6. 

Given a graph G = (V, E), a parameter γ ∈ (0, 1], 
and a target vertex v ∈ V, the problem of finding 
maximal quasi-cliques for v in G is to discover all 
the sub-graphs G' where G' is a maximal quasi-
clique of v with respect to γ. 

 
Figure 1: (Left) G' is a QC(0.5, v1). 

 
Figure 2: (Right) G' is a QC(0.6, v2). 

4 APPROACHES TO FINDING 
MAXIMAL QUASI-CLIQUES 
FOR A TARGET VERTEX 

In this section, the solutions on finding maximal 
 

quasi-cliques for a target vertex are detailed. In 
Section 4.1, we discuss the Quick algorithm 
proposed in (Liu, 2008) and describe how to modify 
it to solve our problem. This modification is used to 
compare with our method in the experiments. Then, 
we describe our solutions in Section 4.2. 

4.1 The Quick Algorithm 

 
Figure 3: The depth-first search tree of a group G. 

Since any sub-graphs of G = (V, E) may have 
chances of being quasi-cliques, the search space of 
finding quasi-cliques is equivalent to the power set 
of V. The Quick algorithm proposed by (Liu, 2008) 
uses depth-first search to find quasi-cliques. An 
example of a depth-first search tree of a graph G 
with four vertices {v1, v2, v3, v4} is shown in Figure. 
3. Each node in the tree is associated with a sub-
graph which contains a set of vertices and the 
corresponding edges in G. Moreover, the search 
order follows the order of the vertex id, that is, the 
sub-graphs with the smallest vertex id v2 are 
traversed after those with the smallest vertex id v1. 
Notice that, if the smallest vertex ids of two sub-
graphs are the same such as {v1, v2} and {v1, v3}, we 
compare the second smallest vertex id to decide the 
search order and so on. As shown in Fig. 3, for each 
internal node N in the tree, its children contain an 
additional vertex and moreover, this additional 
vertex must be with a larger vertex id than all of the 
vertex ids of the vertices in N. For example, {v1, v2} 
is one of the children of {v1}. The vertex used to 
extend an internal node related to the sub-graph G' is 
called a candidate vertex of G'. For instance, in 
Figure. 3, let G' = (V', E') where V' = {v2, v3}, the 
candidate vertex of G' is v4. The set of candidate 
vertices of G' is denoted CV(G'), e.g., CV(G') = {v3, 
v4} while V' = {v1, v2}. During traversing the whole 
depth-first search tree, some lemmas used in the 
Quick Algorithm to prune the candidate vertices are 
discussed in the following. 
Lemma 1: (Liu, 2008) Given a sub-graph G' = (V', E') 
of G, let ex_degmin(G') = min(|NG(v)|), ∀v ∈ V'. If G'' 
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= (V'', E'') is a quasi-clique extended from G', then 
|V''| ≤ ⌊ex_degmin(G')/γ⌋ + 1. 

 

Figure 4: G' is a QC(0.5, v1). 

ex_degmin(G') is the minimum degree of the 
vertices in V', considering the edges in G. Since the 
vertex degree in a quasi-click should be large 
enough, i.e. at least ⌈(|V''| − 1) × γ⌉ for G'' to be a 
quasi-clique, according to Lemma 1, the number of 
vertices to be added to the sub-graph G' to form a 
quasi-clique G'' is limited to be no larger than ⌊ex_degmin(G')/γ⌋ + 1 – |V'|, denoted U(G') (U for 
upper bound). Once the number of vertices being 
added to G' is larger than U(G'), the newly generated 
sub-graph G'' cannot be a quasi-clique. 
Example 3: As shown in Figure. 4, let γ be 0.5 and 
the target vertex v1. The sub-graph G' = (V', E'), 
where V' = {v1, v2, v3, v5, v6} and E' = {(v1, v2), (v1, 
v5), (v2, v3), (v2, v6), (v3, v5), (v3, v6), (v5, v6)} is a 
quasi-clique QC(0.5, v1). Also, ex_degmin(G') = 3, 
and U(G') = ⌊3/0.5⌋+ 1 – 5 = 2. 
Lemma 2: (Liu, 2008) Given a sub-graph G' = (V', E') 
of G and G' is not a quasi-clique, let in_degmin(G') = 
min(|NG'(v)|), ∀v ∈ V'. If G'' = (V'', E'') is a quasi-
clique extended from G', then |V''| ≥ |V'|+ n, where n 
= the minimal value in {i | in_degmin(G') + i ≥ ⌈γ × 
(|V'| + i − 1)⌉}. 

in_degmin(G') is the minimum degree of the 
vertices in V', considering the edges in G'. If G' is 
not a quasi-clique, |V''| should be large enough for 
G'' to be a quasi-clique. According to Lemma 2, the 
number of vertices to be added to the sub-graph G' 
to form a quasi-clique G'' is limited to be no smaller 
than the minimal value in {i | in_degmin(G') + i ≥ ⌈γ × 
(|V'| + i − 1)⌉}, denoted L(G') (L for lower bound). 
Once the number of vertices being added to G' is 
smaller than L(G'), the newly generated sub-graph 
G'' cannot be a quasi-clique. 
Example 4: As shown in Figure. 5, let γ be 0.6 and 
the target vertex v1. The sub-graph G' = (V', E') is 
not a quasi-clique QC(0.6, v1), where V' = {v1, v2, v3, 
v5, v6} and E' = {(v1, v2), (v1, v5), (v2, v3), (v3, v6), (v5, 
v6)}. Also, we have in_degmin(G') = 2, and L(G') = 1. 
G' is extended to form G'' by adding v10 as shown in 

Figure. 6. Since G'' is a quasi-clique, |V''| ≥ |V'| + 
L(G'). 

 
Figure 5: G' is not a QC(0.6, v1). 

 
Figure 6: G'' is a QC(0.6, v1). 

Definition 3 (critical vertices) (Liu, 2008)): Given a 
sub-graph G' = (V', E') of G = (V, E), if there is a 
vertex u ∈ V' such that |NG'(u)| < ⌈(|V'| − 1) × γ⌉, then 
u is defined as a critical vertex of G'. The set of the 
critical vertices of G' is denoted CritV(G'). 

 
Figure 7: G' is not a QC(0.6, v1). 

Example 5: As shown in Figure. 7, let γ be 0.6 and 
the target vertex v1. The sub-graph G' = (V', E'), 
where V' = {v1, v2, v3, v5, v6} and E' = {(v1, v2), (v1, 
v5), (v2, v3), (v2, v6), (v3, v5), (v3, v6), (v5, v6)} is not a 
quasi-clique QC(0.6, v1). The vertex v1 is a critical 
vertex of G' since |NG'(v1)| = 2 < ⌈(5 − 1) × 0.6⌉ = 3. 
Lemma 3: (Liu, 2008) Given a sub-graph G'' = (V'', 
E'') which is extended from G' = (V', E') where |V''| 
> |V'| and G' has some critical vertices. If G'' is a 
quasi-clique then at least ⌈(|V''| − 1) × γ⌉ - |NG'(u)| of 
the neighbor vertices of u must be contained in V''- 
V', ∀ u ∈ CritV(G'). 
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Proof. Assume that a quasi-clique G'' = (V'', E'') 
extended from G' = (V', E') and there is a critical 
vertex u with N neightbor vertices in V''- V', where N 
< ⌈(|V''| − 1) × γ⌉ - |NG'(u)|. Then, the degree of u in 
G'', i.e., |NG''(u)|, is equal to N + |NG'(u)| < ⌈(|V''| − 1) 
× γ⌉. By Condition 3 of quasi-cliques, if G'' is a 
quasi-clique, |NG''(v)| ≥ ⌈(|V'' | − 1) × γ⌉, ∀ v ∈ V''. A 
contradiction occurs. Accordingly, G'' is not a quasi-
clique.  

The above three lemmas are used in (Liu, 2008) 
to prune candidate vertices for each sub-graph 
before they are extended. The detailed proofs are 
described in (Liu, 2008). We focus on the quasi-
cliques regarding a target vertex. The Quick 
algorithm can be modified to solve our problem as 
follows. The target vertex v is used as the root node 
of the depth-first search tree in (Liu, 2008). Then, we 
renumber the other vertices in V – {v} and apply the 
original Quick algorithm. This modified Quick 
algorithm will be used to compare with our solutions 
in the experiments. 

4.2 The Target-extending Algorithm 

Given a graph G = (V, E), a target vertex v ∈ V and a 
parameter γ, any subsets of V – {v} and v may form 
a quasi-clique of v with respect to γ if G is 
connected. Therefore, the search space of finding 
maximal quasi-cliques for a target vertex in G is the 
power set of V. 

Our baseline algorithm is described as follows. 
We set the target vertex v as the root node to form a 
sub-graph and select the neighbors of v to extend 
this sub-graph. We use the neighbors of v to 
generate combinations by the exhaustive method and 
then extend the root node to form the new sub-
graphs using adding these combinations as shown in 
Figure. 8. We detail the whole extending process as 
follows, by which, maximal quasi-cliques for v can 
be found if they exist. In the extending process, a 
vertex being processed to extend a sub-graph G' to a 
new sub-graph G'' is called the extending vertex of 
G', and the set of the extending vertices denoted 
EV(G'). For example, initially, the target vertex v is 
the extending vertex. The neighbors (with vertex ids 
larger than the extending vertices) of the extending 
vertices of G' will be considered to extend the sub-
graph G', called the candidate vertices of G', and the 
set of the candidate vertices of G' denoted CV(G'). 
For example, while v is the extending vertex, the set 
of the candidate vertices is {v2, v3}. If G' adds some 
candidate vertices to extend to G'' = (V'', E''), then 
these candidate vertices of G' will become the 
extending vertices of G'' for a further extension.  

For example, in Figure 8, to extend the sub-graph 
G' denoted {v, v3}, we have EV(G') = {v3} and 
CV(G') = {v4}. Repeat this extending step until no 
vertex can be added to form a new sub-graph, or all 
vertices have been used. 
Example 6: Given a sub-graph G' = (V', E') which 
only contains the target vertex v. Assume that the 
neighbors of v are {v1, v2, v3}, which form CV(G'). 
We generate the combinations of {v1}, {v2}, {v3}, 
{v1, v2}, {v1, v3}, {v2, v3}, {v1, v2, v3} from CV(G'), 
and then add to G' to form the new sub-graphs. 

To avoid enumerating the whole search tree of the 
target vertex, in the following, we present some 
pruning strategies. Lemmas 1-3 mentioned above are 
also used in our solution. However, Lemma 1 needs 
to be modified to match our baseline method, thus 
generating the following Lemma 4. 

 

Figure 8: A graph G and the corresponding search tree of 
our baseline algorithm. 

Lemma 4: Given a sub-graph G' = (V', E') of G, let 
in_degmin(G') be min(|NG'(v)|), ∀v ∈ V' − EV(G'), 
ex_degmin(G') be min(|NG(u)|), ∀u ∈ EV(G'), and 
degmin(G') be min(in_degmin(G'), ex_degmin(G')). If 
G'' = (V'', E'') is a quasi-clique extended from G', 
|V''| ≤ ⌊degmin (G') / γ⌋ +1. 
Proof. Assume that a quasi-clique G'' extended from 
G' exists and |V''| > ⌊degmin(G') / γ⌋ +1. Then, there 
must be a vertex u ∈ V', with the degree |NG''(u)| = 
degmin(G'). We know that |NG''(u)| < ⌈(|V'| − 1) × γ⌉. 
By Condition 3 of quasi-cliques, if G'' is a quasi-
clique, |NG''(u)| ≥ ⌈(|V' | − 1) × γ⌉, ∀ v ∈ V'. A 
contradiction occurs. Accordingly, G'' is not a quasi-
clique. 

For each sub-graph G' = (V', E'), we can compute 
U(G') and L(G') from Lemma 4 and Lemma 2, 
respectively. These two boundaries U(G') and L(G') 
can help to prune the combinations being extended 
from a sub-graph G' if the number of vertices of the 
combinations is larger than U(G') or less than L(G'). 
Suppose that a vertex u in V' is a critical vertex of 
G'. If G' can be extended to form a quasi-clique G'' = 
(V'', E''), at least one of the neighbors of u belongs to 
{V''− V'}. In addition, if u is not the extending vertex 
of G', G' cannot be extended to form a quasi-clique 
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by Lemma 3. By applying Lemmas 2-4 to our 
baseline algorithm, the number of sub-graphs can be 
reduced and the depth of the search tree can be 
limited. 
Definition 4 (HopG'(v)): Given a sub-graph G' = (V', 
E') of G and let the target vertex be v, HopG'(v) 
denotes the maximum length of the shortest 
distances between the target vertex v and all vertices 
u ∈ V', i.e. max(distG'(u, v)), ∀ u ∈ V', where 
distG'(u, v) is the shortest distance between u and v in 
G'. 

 

Figure 9: (Left) HopG' (v1) is equal to 2 in a QC(0.6, v1) G'. 

 

Figure 10: (Right) G'' is a QC(0.2, v). 

Example 7: As shown in Figure. 9, let γ and the 
target vertex be 0.6 and v1, respectively. The sub-
graph G' = (V', E'), where V' = {v1, v2, v3, v5} and E' 
= {(v1, v2), (v1, v3), (v2, v3), (v2, v5), (v3, v5)} is a 
quasi-clique QC(0.6, v1). HopG'(v1) = 2 is the 
maximum length of the shortest distances between 
the target vertex v1 and {v2, v3, v5} in G'. 

Given a sub-graph G' = (V', E') of G and the 
parameter γ, let the target vertex be v. There are 
U(G') vertices able to be added to G' to form a 
quasi-clique G'' = (V'', E''). We use Fdist(G') to 
denote the maximum length of the shortest distances 
between v and u, for all u ∈ V''.  
Lemma 5: Given a sub-graph G' = (V', E') of G and 
let the target vertex be v, if G'' = (V'', E'') is a quasi-
clique extended from G', distG(v, u) is equal to or 
less than Fdist(G'), for all u ∈ V''. 
Proof. If we want to find the quasi-clique QC(γ, v) 
extended from G', we can add at most U(G') vertices 
into the sub-graph G' by Lemma 4. Consider the 

connecting relation shown in Figure. 10. Given 
U(G') vertices and U(G') − 1 edges, we use these 
vertices and edges to form a simple path as the path 
shown in Figure. 10. Obviously, the distance of any 
two vertices in the path is maximized as the path 
shown in Fig. 10 is the minimal requirement of a 
connected graph. Since we need to satisfy the 
requirement of degmin(G'), the last vertex in the path 
needs to connect to the other vertices as the arc lines 
in Figure. 10. We add an edge between G' and the 
path to form G''. 

Suppose that a vertex w exists to be added to 
form a quasi-clique G'' and distG(v, w) > Fdist(G'). 
The vertex w must connect to the last vertex to form 
a longer path due to distG(v, w) > Fdist(G'). 
Therefore, the number of vertices of G'' becomes |V'| 
+ U(G') + 1. By Lemma 4, U(G') is the upper bound 
which denotes the number of vertices can be added 
to G' to form a quasi-clique. Therefore, G'' is not a 
quasi-clique. A contradiction occurs. Accordingly, if 
G'' = (V'', E'') is a quasi-clique extended from G', 
distG(v, u) is equal to or less than Fdist(G'), for all u 
∈ V''. 

 

Figure 11: G' is a QC(0.2, v). 

From different situations of G', Fdist(G') has the 
following three cases. (Case 1) If U(G') ≥ degmin(G'), 
Fdist(G') = HopG'(v) + U(G') − degmin(G') + 1. (Case 
2) If U(G') < degmin(G') and U(G') + |EV(V')| ≥ 
degmin(G'), Fdist(G') = HopG'(v) + 1. (Case 3) If 
U(G') + |EV(V')| ≤ degmin(G'), the sub-graph G' 
cannot be extended to form a quasi-clique and 
Fdist(G') = -1. 
Example 8 (Case 1): As shown in Figure. 11, let γ 
and the target vertex be 0.2 and v, respectively. The 
sub-graph G' = (V', E'), where V' = {v, v2, v3, v4, v5} 
and E' = {(v, v2), (v, v4), (v2, v3), (v2, v5), (v3, v5), (v4, 
v5)} is a quasi-clique QC(0.2, v). The extending 
vertices of G' are v3 and v5. By Lemma4, U(G') = ⌊degmin(G') / γ⌋ + 1 – |V'| = ⌊2 / 0.2⌋ + 1 – 5 = 6. 
Since U(G') is larger than degmin(G'), there are 
enough new vertices able to connect to the last 
vertex w to let NG''(w) ≥ degmin(G'). Therefore, 
Fdist(G') = distG(v, w) = HopG'(v) + U(G') − 
degmin(G') + 1 = 7. 
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Example 9 (Case 2): As shown in Figure. 12, let γ 
and the target vertex be 0.4 and v, respectively. The 
sub-graph G' = (V', E'), where V' = {v, v2, v3, v4, v5} 
and E' = {(v, v2), (v, v4), (v2, v3), (v2, v5), (v3, v5), (v4, 
v5)} is a quasi-clique QC(0.4, v). The extending 
vertices of G' are v3 and v5. |EV(V')| = 2. degmin(G') = 
2 is bigger than U(G') = ⌊2 / 0.4⌋ +1 − 3 = 1 and less 
than U(G') + |EV(V')| = 3. Since there are not enough 
new vertices able to connect to the last vertex w, w 
needs to connect to the extending vertices of G' to 
let |NG''(w)| ≥ degmin(G'). Therefore, Fdist(G') = 
HopG'(v) + 1 = 2. 

 

Figure 12: (Left) G' is a QC(0.4, v). 

 

Figure 13: (Right) G' is a QC(0.4, v). 

 

Figure 14: The search tree for {v, v2, v3, v4}. 

Example 10 (Case 3): As shown in Figure. 13, let γ 
and the target vertex be 0.4 and v, respectively. The 
sub-graph G' = (V', E'), where V' = {v, v2, v3, v4, v5} 
and E' = {(v, v2), (v, v4), (v, v5), (v2, v3), (v2, v5), (v3, 
v5), (v4, v5)} is a quasi-clique QC(0.4, v). The 
extending vertex of G' is v3 and U(G') = ⌊2 / 0.4⌋ + 1 
− 3 = 1. degmin(G') = 2 is equal to U(G') + |EV(V')|. 
Since there are not enough neighbors of w in G', the 
sub-graph G' cannot be extended to form a larger 
quasi-clique. Therefore, we set Fdist(G') = -1. 

Algorithm 1: The Target-Extending algorithm. 
Input: A graph G = (V, E), a target vertex vp, and a 
parameter γ. 
Output: A result list RL, the set of maximal quasi-cliques 
of vp with respect to γ in G. 
1. Keep G into a two-dimensional array D[|V|][|V|]. 

D[i][j] = 1 means vi and vj are adjacent. 
2. RL = φ and dist = 0 
3. Put vp into the vertex set A 
4. for j = 1 to |V| do 
5.     if D[p][j] = 1 then 
6.         Put vj into the set of candidate vertices CV(A).  
7. Put vp into the set of extending vertices EV(A) 
8. Recursive function RF(A, CV(A), EV(A), dist) 
9.     Compute the upper bound U(A) from Lemma 4 
10.     Compute the lower bound L(A) from Lemma 2 
11. Select the critical vertices for A and put into 

CritV(A) by Lemma 3 
12.     for each vertex vu in CritV(A) do 
13.         if vu ∈ (A − EV(A)) 
14.             Return 
15.     Compute Fdist(A) by Lemma 5. 
16. if |A| = the maximal size A may have (from 

Lemma 4) and dist > Fdist(A) then 
17.         return  
18.     else 
19.         Put CritV(A) into A 
20.         for i = L(A) to U(A) do 
21.         From EV(A) we choose i  vertices to form a  

combination and in this selection, at least one 
vertex in CritV(A) should be contained. All 
of these combinations generated are 
individually merged with A and then put into 
S.  

22.         for each vertex set U in S do 
23.             if U is a quasi-clique QC(γ, p) then 
24.                 Add U to RL and update CV(U) and EV(U) 
25.                    RF(U, CV(U), EV(U), dist + 1) 
26.    Return RL 

Lemmas 2-5 can be used in our methods to 
reduce the search space. The corresponding pruning 
strategies are named Strategies 2-5. Since we only 
focus on the maximal quasi-cliques, a sub-graph G' 
= (V', E') need not be checked whether it is a QC(γ, 
v) if we can find another quasi-clique G'' to contain 
G' earlier. Therefore, we verify the sub-graphs with 
the larger sizes and extend them in the search tree as 
early as possible to find the large enough quasi-
clique quickly. This strategy is called Strategy 6 in 
the following discussion. As shown in Figure. 14, 
we first check whether the sub-graph corresponding 
to N4 is a quasi-clique, and then move to a larger 
sub-graph corresponding to N7. If the sub-graph 
corresponding to N7 is a QC(γ, v), then the sub-
graphs contained in {v, v2, v3, v4} need not be 
checked as they have no chances to be the maximal 
quasi-cliques. By combining the baseline algorithm 
with Strategies 2-6, the Target-Extending algorithm 
is proposed. The pseudo code of this algorithm is 
shown in Algorithm 1. 
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4.3 A Special Case 

The quasi-clique G' is a complete graph when γ is 
equal to 1. We only need to focus on the cliques 
containing the target vertex in G. In fact, all vertices 
in the cliques are the 1-hop neighbors of the target 
vertex in G. We design another algorithm for the 
special case on γ = 1, based on this concept. 

4.3.1 The Target-clique Algorithm 

 

Figure 15: The illustration of the Target-Clique Algorithm. 

Given a graph G = (V, E) and a target vertex v ∈ V, 
first, we put v into a vertex set A1 and put the 
neighbors of v in G to the candidate set CS(A1). Each 
vertex in CS(A1) has a corresponding flag cv equal to 
0 initially, which shows whether the vertex is 
checked. The vertices in CS(A1) are sorted in a 
descending order of their degree in G. Second, we 
select a vertex u with cv equal to 0 from the first of 
the sorted CS(A1), put it into a new vertex set A2, and 
merge A2 with A1. Then, we create a new candidate 
set CS(A2) which collects vertices adjacent to u in 
CS(A1). Those vertices are the common neighbors of 
u and v in G. cv of u is set to 1 in CS(A1). 

Algorithm 2: The Target-Clique algorithm. 
Input: A graph G = (V, E), a target vertex vp 
Output: A result list RL, the set of maximal quasi-cliques 
of vp with respect to γ in G.  
1. Keep G into a two-dimensional array D[|V|][|V|]. 

D[i][j] = 1 means vi and vj are adjacent. 
2. RL = φ 
3. Put vp into the vertex set A1 
4. for j = 1 to |V| do 
5.     if D[p][j] == 1 then 
6.         Put vj into CS(A1) and set vj.cv = 0  
7. Recursive function RF(A1, CS(A1))  
8.     if |CS(A1)| ≤ 0 then 
9.         Put A1 ∪ CS(A1) into RL and  return 
10.     else 
11.     Sort all vertices in CS(A1) into a decreasing 

order of degree in G 
12.         for each vertex vi in CS(A1) do 
13.             if vi.cv = 0 then 
14.                 Copy A1 and vi into a new vertex set A2 
15.                 Set vi.cv = 1 
16.             for each vertex vj in CS(A1) do 

17.             if D[i][j] = 1 then  
18.                     Add the vertex vj into CS(A2) 
19.         RF(A2, CS(A2)) 
20.         return RL 

We repeat the second step and create the new 
vertex set Ai until all the corresponding values 
become 1 in CS(A1). Ai merging with CS(Ai) is a 
clique that we want. We need not check whether the 
obtained cliques are contained by some others 
because this case will not be produced by our 
method. The pseudo codes of the Target-Clique 
algorithm are shown in Algorithm 2.  

Example 11: As shown in Figure. 15, given a 
graph G = (V, E), let the target vertex be v1, the table 
shows the steps of the Target-Clique algorithm. We 
add v1 to A1 and CS(A1) collects the neighbors of v1 
in G. Thereafter, CS(A1) is sorted according to the 
degree to have the order list of <v3, v6, v2, v5>. We 
select v3 to join A1 to form A2 and CS(A2) collects the 
common neighbors of v1 and v3 in G, that is <v6, v2>. 
The vertex set A2 is not an answer if CS(A2) contains 
more than one vertex. Then, we select v6 to join with 
A2 to form A4 but CS(A4) is empty. The vertex set A4 

is a clique we demand because there are no common 
neighbors of v1, v3 and v6, and A4 is not contained by 
any other clique. Finally, we obtain three maximal 
cliques {v1, v5}, {v1, v3, v6}, and {v1, v3, v2}, which 
contain the target vertex v1 in the graph G. 

5 EXPERIMENTS 

In this section, a series of experiments are performed 
to evaluate our approach and the experiment results 
are also presented and analyzed. 

5.1 Experiment Setup 

Table 1: The description of the experiment factors. 

Factors Default Range Description 
number of 

vertices 
5K 4K-8K 

number of vertices in the 
graph 

average 
degree 

20 5-25 
average degree of vertices 

(the first dataset) 

average 
degree 

300 100-500
average degree of vertices 

(the second dataset) 

Γ 0.5 0.1-0.9 parameter of quasi-cliques

Table 2: The description of the real data. 

Vertices Edges Average degree Maximum degree
8,298 100,764 24 743 
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Since there are no approaches focusing on finding 
maximal quasi-cliques from a graph, which contain 
a specific target vertex, we compare the proposed 
algorithms with the Quick algorithm. We use two 
synthetic datasets for testing the proposed 
algorithms. The first dataset is used to test the 
methods for quasi-cliques and the second dataset is 
used to test the Target-Clique algorithm. To generate 
a synthetic graph G = (V, E), we first generate a 
sufficient amount of vertices and randomly add 
edges between any two vertices to make the sum of 
edges equal to N × D / 2, were N is the number of 
vertices and D is the average degree of vertices, both 
of which are experiment factors. All of the 
experiment factors are descripted in Table 1. 
Moreover, we also use a real dataset named 
Wikipedia vote network in the experiments, which is 
related to a social network graph and obtained from 
Stanford Large Network Dataset Collection 
(https://snap.stanford.edu/data/). Its description is 
shown in Table 2. All of the proposed algorithms are 
implemented using C++ and performed on a PC with 
the Intel i5-3210M 2.50GHz CPU, 8 GB of memory, 
and under the windows7 64bits operating system. To 
obtain a result point shown in the experiment, we 
perform the process ten times to compute the 
average value. For easily showing the experiment 
results, we use a few symbols to indicate the 
baseline algorithm and pruning lemmas. For 
example, the baseline algorithm plus Strategy 2 and 
Strategy 3 is denoted B+23.  

5.2 Experiment Results 

 

Figure 16: The running time on varying γ (the first 
synthetic dataset). 

The running time of the methods for quasi-cliques 
on the synthetic dataset is shown in Figures. 16-19. 
The running time on varying γ is shown in Figure. 
16. As can be seen, our method is always better than 
the modified Quick algorithm. The pruning strategy 
from Lemma 5 works well when γ is small. Since the 
large quasi-cliques may be found quickly, we can 
ignore numerous small sub-graphs contained by the 
large quasi-cliques. The larger γ is, the more the sub-

graphs need to be checked whether they are 
contained by other quasi-cliques, reducing the 
pruning capability of Lemma 5. Similarly, when 
Strategy 6 is used, finding the large quasi-clique in 
the very beginning can reduce the needing of 
checking sub-graphs, making the running time to be 
further reduced. 

The running time on varying the average degree 
of vertices is shown in Figure. 17. While the average 
degree of vertices increases, the running time of our 
method and that of the modified Quick algorithm 
both exponentially grow. Under the condition of the 
small average degree, our method is better than the 
modified Quick algorithm. This is because the 
modified Quick algorithm needs to consider the 
combinations of the target vertex and the other 
vertices in the first layer of the depth-first search 
tree. However, we only consider the combinations of 
the neighbors of the target vertex. Accordingly, we 
generate fewer combinations. The running time on 
varying the number of vertices is shown in Figure. 
18. The number of vertices causes little impact to the 
running time of our method, since more vertices 
connecting to the target vertex need to be considered 
with the growth of the total number of vertices. 

The running time on the real data is shown in 
Figure. 19. As can be seen, our method is still better 
than the modified Quick algorithm. The pruning 
strategy from Strategy 6 works well in this dataset. 
In the experiments, we can see that B+23456 
outperforms the modified Quick algorithm. In most 
cases, the pruning capability of Strategy 6 is better 
than that of Lemma 5.  

 
Figure 17: The running time on varying average degree 
(the first synthetic dataset). 

 
Figure 18: The running time on varying number of 
vertices (the first synthetic dataset). 
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Figure 19: The running time of the real dataset. 

 

Figure 20: The running time on varying γ (the second 
synthetic dataset). 

The running time of the Target-Clique algorithm 
on the second synthetic dataset is shown in Figures. 
20-21. The running time will exponentially grow 
with the increase of the average degree. The number 
of the possible vertex combinations will increase 
with the increase of the vertices. However, the 
number of vertices will not significantly affect the 
running time of the Target-Clique algorithm. This is 
because we only consider the neighbors of the target 
vertex, which may or may not be affected by the 
number of vertices. 

 

Figure 21: The running time of varying number of vertices 
(the second synthetic dataset). 

6 CONCLUSIONS 

In this paper, we solve the problem of finding 
maximal quasi-cliques for a target vertex. Given a 
graph G = (V, E), a parameter γ ∈ (0, 1] and a target 
vertex v ∈ V, we find all of the maximal quasi-

cliques of v with respect to γ in G. We propose an 
algorithm to solve this problem and use five pruning 
techniques to improve the performance. These 
techniques compute the maximum size and 
minimum size of each sub-graph of G based on the 
degrees of relevant vertices. The containment 
relations between sub-graphs are also considered, 
thus making most of the sub-graphs to be pruned 
before quasi-clique checking. Moreover, we modify 
the Quick algorithm (Liu, 2008) to solve our problem 
for a comparison with our method. The experiment 
results, using a real and two synthetic datasets, 
demonstrate that the pruning techniques are effective 
and our algorithm outperforms the modified Quick 
algorithm in most cases. 
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