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Abstract: The Oracle RDBMS In-memory Option (DBIM), introduced in 2014, is an industry-first distributed dual 
format in-memory RDBMS that allows a database object to be stored in columnar format purely in-memory, 
simultaneously maintaining transactional consistency with the corresponding row-major format persisted in 
storage and accessed through in-memory database buffer cache. The in-memory columnar format is highly 
optimized to break performance barriers in analytic query workloads while the row format is most suitable 
for OLTP workloads. In this paper, we present the distributed architecture of the Oracle Database In- 
memory Option that enables the in-memory RDBMS to transparently scale out across a set of Oracle 
database server instances in an Oracle RAC cluster, both in terms of memory capacity and query processing 
throughput. The architecture allows complete application-transparent, extremely scalable and automated in- 
memory distribution of Oracle RDBMS objects across multiple instances in a cluster. It seamlessly provides 
distribution awareness to the Oracle SQL execution framework, ensuring completely local memory scans 
through affinitized fault-tolerant parallel execution within and across servers without explicit optimizer plan 
changes or query rewrites. 

1 INTRODUCTION 

Oracle Database In-memory Option (DBIM) 
(Oracle, 2014, Lahiri et al., 2015) is the industry-
first dual format main-memory database architected 
to provide breakthrough performance for analytic 
workloads in pure OLAP as well as mixed OLTAP 
environments, without compromising or even 
improving OLTP performance by alleviating the 
constraints  in creating and maintaining analytic 
indexes (Lahiri et al., 2015). The dual-format in-
memory representation allows an Oracle RDBMS 
object (table, table partition, composite table 
subpartition) to be simultaneously maintained in 
traditional row format logged and persisted in 
underlying storage,  as well as in column format 
maintained purely in-memory without additional 
logging. The row format is maintained as a set of 
on-disk pages or blocks that are accessed through an 
in-memory buffer cache (Bridge et al., 1997), while 
the columnarized format is maintained as a set of 
compressed in-memory granules called in-memory 
compression units or IMCUs (Oracle, 2014, Lahiri 
et al., 2015) in an in-memory column store (Lahiri et 
al., 2015) transactionally consistent with the row 

format. By building the column store into the 
existing row format based database  engine, it is 
ensured that all of the rich set of features of 
Oracle Database (Bridge et al., 1997, Oracle, 2013) 
such as database recovery, disaster recovery, 
backup, replication, storage mirroring, and node 
clustering work transparently with the IM column 
store enabled, without any change in mid-tier and 
application layers. 

The dual format representation is highly 
optimized for maximal utilization of main memory 
capacity. The Oracle Database buffer cache used to 
access the row format has been optimized over 
decades to achieve extremely high hit-rates even 
with a very small size compared to the database 
size. As the in-memory column store replaces 
analytic indexes, the buffer cache gets better 
utilized by actual row-organized data pages. 
Besides providing query performance optimized 
compression schemes, Oracle DBIM also allows 
the columnar format to be compressed using 
techniques suited for higher capacity utilization 
(Lahiri et al., 2015).  

Unlike a pure in-memory database, the dual 
format DBIM does not require the entire database 
to have to fit in the in-memory column store to 
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become operational. While the row format is 
maintained for all database objects, the user is 
allowed to specify whether an individual object 
(Oracle RDBMS table, partition or composite 
subpartition) should be simultaneously maintained 
in the in-memory columnar format. At an object 
level, Oracle DBIM also allows users to specify a 
subset of its co lumns  to be maintained in-memory. 
This allows for the highest levels of capacity 
utilization of the database through data storage 
tiering across main-memory, flash cache, solid state 
drives, high capacity disk drives, etc. 

Section 2 presents a detailed description of the 
distributed architecture, with precise focus on a) 
complete application-transparent, extremely scalable 
and automated in-memory distribution mechanism 
of Oracle RDBMS objects across multiple instances 
in a cluster, and b) seamless provision of distribution 
awareness to the Oracle SQL execution framework.  

2 DISTRIBUTED DBIM 

The distributed architecture of Oracle DBIM is 
demonstrated through Figure 1. 

 

Figure 1: Distributed architecture of DBIM on Oracle 
RAC.  

Oracle DBIM employs Oracle Real Application 
Cluster (RAC) (Oracle 2014) configuration for 
scaling out across multiple machines. RAC allows a 
user to configure a cluster of database server 
instances that execute Oracle RDBMS software 
while accessing a single database persisted in shared 
storage. Data of an Oracle object is persisted in 
traditional row major format in shared-storage as a 
set of extents, where each extent is a set of 

contiguous fixed-size on-disk pages (Oracle Data 
Blocks) as shown in Figure 2. These data blocks are 
accessed and modified through a shared Database 
Buffer Cache. Each individual instance can be 
configured with a shared-nothing in- memory 
column store. For an object that is configured to be 
maintained in-memory, the distribution manager is 
responsible for maintaining the corresponding in-
memory object as a set of In- memory 
Compression Units (IMCUs) (Oracle 2014) 
distributed across all in-memory column  stores in 
the cluster, with each IMCU containing data from 
mutually exclusive subsets of data blocks (Figure 2). 
Transactional consistency between an IMCU and its 
underlying data blocks is guaranteed by the IM 
transaction manager. 

 

Figure 2: A 3-column Oracle RDBMS table in both row- 
major and in-memory columnar formats. 

2.1 In-Memory Compression Unit 

An In-Memory Compression Unit (IMCU) is 
‘populated’ by columnarizing rows from a subset of 
blocks of an RDBMS object and subsequently 
applying intelligent data transformation and 
compression methods on the columnarized data. The 
IMCU serves as the unit of distribution across the 
cluster as well as the unit of scan within a local 
node.  An IMCU is a collection of contiguous in- 
memory extents allocated from the in-memory area, 
where each column is stored contiguously as a 
column Compression Unit (CU). The column vector 
itself is compressed with user selectable 
compression levels; either optimized for DMLS, or 
optimized for fast scan performance, or for capacity 
utilization (Lahiri et al., 2015). 

Scans against the column store are optimized 
using vector processing (SIMD) instructions (Lahiri 
et al., 2015) which can process multiple operands in 
a single CPU instruction. For instance, finding the 
occurrences of a value in a set of values, adding 
successive values as part of an aggregation 
operation, etc., can all be vectorized down to one or 

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

40



two instructions. A further reduction in the amount 
of data accessed is possible due to the In-Memory 
Storage Indexes (Lahiri et al., 2015) that are 
automatically created and maintained on each of 
the CUs in the IMCU. Storage Indexes allow data 
pruning to occur based on the filter predicates 
supplied in a SQL statement. If the predicate value 
is outside the minimum and maximum range for a 
CU, the scan of that CU is avoided in entirety. For 
equality, in-list, and some range predicates an 
additional level of data pruning is possible via the 
metadata dictionary when dictionary-based 
compression is used. All of these optimizations 
combine to provide scan rates exceeding billions of 
rows per second per CPU core. Apart from 
accelerating scans, the IM column store also 
provides substantial performance benefits for joins 
by allowing the optimizer to select Bloom filter 
based joins more frequently due to the massive 
reduction in the underlying table scan costs. A new 
optimizer transformation, called Vector Group By 
(Lahiri et al., 2015), is also used to compute multi- 
dimensional aggregates in real-time. 

 

Figure 3: In-memory segments with IMCUs indexed by 
Oracle data block addresses (2-instance cluster). 

2.2 In-Memory Column Store 

The In-Memory column store is carved out from the 
Oracle System Global Area (SGA) (Oracle 2014) 
per database instance based on a size provided  by 
the user. Logically, it is a shared-nothing container 
of in-memory segments, where each in-memory 
segment comprises of a set of IMCUs populated in 
the instance. Each in-memory segment is equipped 
with a data block address based in-memory home 
location index that is used for efficient lookup of an 
IMCU containing data from a particular underlying 
data block. Depending on the distribution of IMCUs, 
an in-memory object constitutes a set of one or more 
in-memory segments across the cluster (Figure 3). 

The in-memory home location index allows for 

seamless integration of the in-memory column store 
with the traditional row-store based instance- local 
Oracle data access engine (Oracle 2013) that iterates 
over a set of row-major block address ranges. Using 
the same scan engine as-is allows an RDBMS object 
to be perpetually online for queries. For a given set 
of block address ranges, the access engine employs 
the index to detect and scan an IMCU if an IMCU 
covering these ranges exists locally; otherwise it 
falls back to the buffer cache or underlying storage. 
As and when IMCUs get locally populated and 
registered with the index, the access engine shifts 
from performing block based accesses to utilizing 
IMCUs for faster analytic query proceesing. 

2.3 Distribution Manager 

The primary component of the distributed 
architecture is the Distribution Manager. We have 
uniquely designed the component to provide 
extremely scalable, application-transparent 
distribution of IMCUs across a RAC  cluster 
allowing for efficient utilization of collective 
memory across in-memory column stores, and 
seamless interaction with Oracle’s SQL execution 
engine (Parallel 2013) ensuring affinitized high 
performance parallel scan execution at local memory 
bandwidths, without explicit optimizer plan changes 
or query rewrites. 

The distribution manager uses a generic 
mechanism for population of IMCUs for a given 
database object. The mechanism is two-phase, 
comprising of a very brief centralized consensus 
generation phase followed by a decentralized 
distributed population phase. A completely 
centralized approach requires the coordinating 
instance to undergo non-trivial cross-instance 
communication of distribution contexts per IMCU 
with the rest of the instances. On the other hand, a 
purely de-centralized approach allows maximal 
scale-out of IMCU population, but the lack of 
consensus in a constantly changing row-store may 
result in a globally inconsistent distribution across 
the cluster. 

Our two-phase mechanism aims to combine the 
best of both worlds. While the centralized phase 
generates and broadcasts a minimal distribution 
consensus payload, the decentralized phase allows 
each instance to independently populate relevant 
IMCUs using locally computed yet globally 
consistent agreements on IMCU home locations 
based on the broadcast consensus. In this approach, 
at any given time for a given object, an instance can 
be either a ‘leader’ that coordinates the consensus 
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gathering and broadcast, or a ‘to-be follower’ that 
waits to initiate IMCU population, or a ‘follower’ 
that coordinates the decentralized population, or 
‘inactive’. 

The remainder of the subsection explains our 
approach in details. The on-disk hypothetical non- 
partitioned table illustrated in Figure 2 in Section 2 
is used to demonstrate the various steps of the 
distribution mechanism in a hypothetical RAC 
cluster of 4 instances. 

2.3.1 Centralized Phase 

Distribution of a given object can be triggered 
simultaneously from multiple instances as and when 
any of the managers detects portions of an in- 
memory enabled object not represented by either 
local or remote IMCUs. Leader selection therefore 
becomes necessary to prevent concurrent duplicate 
distribution of the same object. For each object, a set 
of dedicated background processes per instance 
compete for an exclusive global object distribution 
lock in no-wait mode. The instance where the 
background process successfully acquires the object 
lock becomes the leader instance with respect to the 
distribution of that object while rest of the 
backgrounds bail out. Therefore, at any given time 
for a given object, only one instance can serve as the 
leader (figure 4). At this point, all other instances 
remain inactive as far as the given object is 
concerned. 

The leader is responsible for gathering a set of 
snapshot metadata for the object, which it broadcasts 
to all nodes excluding itself. This snapshot provides 
a consensus to all nodes so that each of them can 
carry out IMCU population independently but 
through a distributed agreement. The snapshot 
information includes a) schema and object 
identifier,b) the current system change number 
(SCN) (Lahiri et al., 2015) of the database to get 
consistent snapshot of the object layout as of that 
SCN, c) the SCN used  in the previous distribution 
(invalid if the object was never distributed 
previously), d) the set of instances participating in 
the population, e) the packing factor, f) the cluster 
incarnation, and g) the partition/subpartition number  

 

Figure 4: Election of a leader background process for an 
Oracle RDBMS object. 

(if distribute by partition or subpartition is the 
option used). The extremely compact payload 
implies minimal inter- node communication 
overheads. 

Once an instance receives the message from the 
leader, one of its dedicated background processes 
initiates the population task by queuing a shared 
request on the same object lock, changes its role of 
the instance from ‘inactive’ to ‘to-be follower’, and 
sends an acknowledgement back to the leader. 
However as the leader holds exclusive access on the 
lock, none of the instances can attain ‘follower’ 
status to proceed with the population procedure. 
After the leader receives acknowledgement from all 
instances, it downgrades its own access on the global 
object    lock    from    exclusive    to    shared mode. 

 

 
Figure 5: Consensus broadcast, acknowledgement, 
followed by leader downgrade. 

Once the downgrade happens, the leader itself 
becomes a ‘follower’ and all ‘to-be followers’ get 
shared access on the lock to become ‘followers’ to 
independently proceed with the distributed 
decentralized IMCU population (Figure 5). Until all 
followers release access on the shared object lock, none of 
the instances can compete for being a leader again for the 
object. 

2.3.2 Decentralized Population Phase 

Each follower instance uses the SCN snapshot 
information in the broadcast message to acquire a 
view of the object layout metadata on-disk. Based on 
the previous SCN snapshot and the current one, each 
follower instance determines the same set of block 
ranges that are required to be distributed and then 
uses the packing factor to set up globally consistent 
IMCU population contexts, as demonstrated in 
Figure 6 (assuming a packing factor of 4 blocks). 
Once consistent IMCU contexts have been set up, 
the requirement arises to achieve distributed 
agreement on the assignment of instance home 
locations. 

Figure 6: IMCU population context generation. 
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Each instance is required to independently come 
up with the same assignment answer for the same 
input key, which leads to the need for a uniform 
hash function. Traditional modulo based hashes may 
not be well suited to serve the p u r p o s e  as they 
result in unnecessary rebalancing costs as and when 
cluster topology gets impacted. The distribution 
manager employs a technique called rendezvous 
hashing (Laprie, 1985) that allows each follower 
background process to achieve distributed 
agreement on the instance home location for a given 
IMCU. Given a key, the algorithm computes a hash 
weight over each instance in the set of participating 
instances in the payload broadcast by the leader and 
selects the instance that generates the highest weight 
as the home location. 

f(K, N) = ∑max(h(K, i)), i = 1..N 

Table 1: Hypothetical home location assignments by each 
follower instance. 

IMCU 
Context 

IMCU 
Boundaries 

Assignments

IMCU 1 <E1, E2’> Inst. 1

IMCU 2 <E2’’, E3’> Inst. 2

IMCU 3 <E3’’, E4’> Inst. 3

IMCU 4 <E4’’> Inst. 4

In context of IMCU distribution, the key chosen 
depends on the distribution scheme. If the 
distribution is block range based, then the address of 
the first block in the IMCU context is used as the 
key. Otherwise, the partition number or the relative 
subpartition number is used as the key. As the key is 
chosen in consensus across all follower instances, 
the rendezvous hashing scheme ensures global 
agreement on their home locations (an example is 
demonstrated in Table 1). Besides achieving low 
computation overheads and load balancing, the 
primary benefit of rendezvous hashing scheme is 
minimal disruption on instance failure or restart, as 
only the IMCUs mapped to that particular instance 
need to be redistributed. 

Once the follower background process 
determines the instance locations for all IMCU 
contexts, it divides the workload into two sets, one 
where IMCU contexts are assigned to its own 
instance and the other where they are assigned to 
remote instances. For the first set, it hands off the 
IMCU contexts to a pool of local background server 
processes to create IMCUs from the underlying data 
blocks in parallel. If an in-memory segment is not 
present,   the   population   of the   first   local IMCU  

 

Figure 7: Logical view of in-memory home location index 
on completion of distribution across 4 RAC instances. 

creates the in-memory segment within the column 
store. Once the IMCUs are created locally in the 
physical memory, they are registered in the block 
address based home location index described in 
section 2.2. An IMCU becomes visible to the data 
access as well as the transaction management 
components once it has been registered in the index. 
For the second set, the follower process iteratively 
registers only the remote home location metadata 
without undergoing actual IMCU population. 

The follower background process waits for all 
local background processes undergoing IMCU 
population to complete. By the time all instances 
release their accesses on the global object lock, the 
mechanism results in laying out IMCUs consistently 
across all participating home location nodes  
resulting in a globally consistent home location 
index maintained locally on every instance 
(illustrated in Figure 7). 

2.3.3 SQL Execution 

The distribution manager is seamlessly integrated 
with the Oracle SQL execution engine (Parallel 
2013) to provide in-memory distribution awareness 
to traditional SQL queries without explicit query 
rewrites or changes in execution plan. For a given 
query issued from any instance in the cluster, the 
SQL optimizer component first uses the local in- 
memory home location index to extrapolate the cost 
of full object scan across the cluster and compares 
the cost against index based accesses. If the access 
path chooses full object scan, the optimizer 
determines the degree of parallelism (DOP) based on 
the in-memory scan cost. The degree of parallelism 
is rounded up to a multiple of the number of active 
instances in the cluster. This ensures allocation of at 
least one parallel execution server process per 
instance to scan its local IMCUs. 

Once parallel execution server processes have 
been allocated across instances, the Oracle parallel 
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query engine is invoked to coordinate the scan 
context for the given object. The query coordinator 
allocates (N+1) distributors, one for each specific 
instance 1 to N, and one that is not affined to any 
instance. Each distributor has one or more relevant 
parallel execution server processes associated w i t h  
it. The coordinator acquires a consistent version of 
the on-disk object layout metadata to generate a set 
of block range based granules for parallelism.  It 
uses the local in-memory home location index to 
generate granules such that their boundaries are 
aligned to IMCU boundaries residing within the 
same instances. 

 

Figure 8: Home location aware parallel query execution. 

The granules generated are queued up in relevant 
distributors based on the home location affinities. 
Each parallel server process dequeues a granule 
from its assigned distributor and hands it over to 
the Oracle scan engine. As described before, the 
scan engine uses the same in-memory index to 
either process IMCUs if present in the local in-
memory column store, or fall back to buffer cache 
or disk if otherwise. Figure 8 demonstrates home 
location aware parallel execution of a query 
undergoing fully local memory scans across the 
cluster. 

The instance alignment ensures that a granule 
consists of block ranges that are represented by 
IMCUs residing in the same local memory. IMCU 
boundary based alignment alleviates redundant 
access of the same IMCU by multiple parallel server 
processes. The globally consistent local home 
location index that the same set of granules is 
generated irrespective of the instance coordinating 
the query. 

3 CONCLUSIONS 

The necessity to support real-time analytics on huge 
data volumes combined with the rapid advancement 
of hardware systems has served as the ‘mother of 
invention’ of a new breed of main-memory 

databases meant to scale. This paper presents the 
distributed architecture of the Oracle Database In-
memory Option. The architecture is unique among 
all enterprise-strength in-memory databases as it 
allows complete application-transparent and 
extremely scalable automated in-memory 
distribution of Oracle RDBMS objects across 
multiple instances in a cluster. The distributed 
architecture is seamlessly coupled with Oracle’s 
SQL execution framework ensuring completely 
local memory scans through affinitized fault-
tolerant parallel execution within and across servers, 
without explicit optimizer plan changes or query. 
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