
How does Oracle Database In-Memory Scale out?

Niloy Mukherjee, Kartik Kulkarni, Hui Jin, Jesse Kamp and Tirthankar Lahiri
Oracle Corporation, Redwood Shores, U.S.A.

Keywords: Oracle RDBMS in-Memory Option, Dual-format Distributed in-Memory Database, Scale-out, in -Memory
Compression Units (IMCUs), Automated Distribution, Distributed SQL Execution.

Abstract: The Oracle RDBMS In-memory Option (DBIM), introduced in 2014, is an industry-first distributed dual
format in-memory RDBMS that allows a database object to be stored in columnar format purely in-memory,
simultaneously maintaining transactional consistency with the corresponding row-major format persisted in
storage and accessed through in-memory database buffer cache. The in-memory columnar format is highly
optimized to break performance barriers in analytic query workloads while the row format is most suitable
for OLTP workloads. In this paper, we present the distributed architecture of the Oracle Database In-
memory Option that enables the in-memory RDBMS to transparently scale out across a set of Oracle
database server instances in an Oracle RAC cluster, both in terms of memory capacity and query processing
throughput. The architecture allows complete application-transparent, extremely scalable and automated in-
memory distribution of Oracle RDBMS objects across multiple instances in a cluster. It seamlessly provides
distribution awareness to the Oracle SQL execution framework, ensuring completely local memory scans
through affinitized fault-tolerant parallel execution within and across servers without explicit optimizer plan
changes or query rewrites.

1 INTRODUCTION

Oracle Database In-memory Option (DBIM)
(Oracle, 2014, Lahiri et al., 2015) is the industry-
first dual format main-memory database architected
to provide breakthrough performance for analytic
workloads in pure OLAP as well as mixed OLTAP
environments, without compromising or even
improving OLTP performance by alleviating the
constraints in creating and maintaining analytic
indexes (Lahiri et al., 2015). The dual-format in-
memory representation allows an Oracle RDBMS
object (table, table partition, composite table
subpartition) to be simultaneously maintained in
traditional row format logged and persisted in
underlying storage, as well as in column format
maintained purely in-memory without additional
logging. The row format is maintained as a set of
on-disk pages or blocks that are accessed through an
in-memory buffer cache (Bridge et al., 1997), while
the columnarized format is maintained as a set of
compressed in-memory granules called in-memory
compression units or IMCUs (Oracle, 2014, Lahiri
et al., 2015) in an in-memory column store (Lahiri et
al., 2015) transactionally consistent with the row

format. By building the column store into the
existing row format based database engine, it is
ensured that all of the rich set of features of
Oracle Database (Bridge et al., 1997, Oracle, 2013)
such as database recovery, disaster recovery,
backup, replication, storage mirroring, and node
clustering work transparently with the IM column
store enabled, without any change in mid-tier and
application layers.

The dual format representation is highly
optimized for maximal utilization of main memory
capacity. The Oracle Database buffer cache used to
access the row format has been optimized over
decades to achieve extremely high hit-rates even
with a very small size compared to the database
size. As the in-memory column store replaces
analytic indexes, the buffer cache gets better
utilized by actual row-organized data pages.
Besides providing query performance optimized
compression schemes, Oracle DBIM also allows
the columnar format to be compressed using
techniques suited for higher capacity utilization
(Lahiri et al., 2015).

Unlike a pure in-memory database, the dual
format DBIM does not require the entire database
to have to fit in the in-memory column store to

39Mukherjee N., Kulkarni K., Jin H., Kamp J. and Lahiri T..
How does Oracle Database In-Memory Scale out?.
DOI: 10.5220/0005497900390044
In Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages 39-44
ISBN: 978-989-758-114-4
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

become operational. While the row format is
maintained for all database objects, the user is
allowed to specify whether an individual object
(Oracle RDBMS table, partition or composite
subpartition) should be simultaneously maintained
in the in-memory columnar format. At an object
level, Oracle DBIM also allows users to specify a
subset of its co lumns to be maintained in-memory.
This allows for the highest levels of capacity
utilization of the database through data storage
tiering across main-memory, flash cache, solid state
drives, high capacity disk drives, etc.

Section 2 presents a detailed description of the
distributed architecture, with precise focus on a)
complete application-transparent, extremely scalable
and automated in-memory distribution mechanism
of Oracle RDBMS objects across multiple instances
in a cluster, and b) seamless provision of distribution
awareness to the Oracle SQL execution framework.

2 DISTRIBUTED DBIM

The distributed architecture of Oracle DBIM is
demonstrated through Figure 1.

Figure 1: Distributed architecture of DBIM on Oracle
RAC.

Oracle DBIM employs Oracle Real Application
Cluster (RAC) (Oracle 2014) configuration for
scaling out across multiple machines. RAC allows a
user to configure a cluster of database server
instances that execute Oracle RDBMS software
while accessing a single database persisted in shared
storage. Data of an Oracle object is persisted in
traditional row major format in shared-storage as a
set of extents, where each extent is a set of

contiguous fixed-size on-disk pages (Oracle Data
Blocks) as shown in Figure 2. These data blocks are
accessed and modified through a shared Database
Buffer Cache. Each individual instance can be
configured with a shared-nothing in- memory
column store. For an object that is configured to be
maintained in-memory, the distribution manager is
responsible for maintaining the corresponding in-
memory object as a set of In- memory
Compression Units (IMCUs) (Oracle 2014)
distributed across all in-memory column stores in
the cluster, with each IMCU containing data from
mutually exclusive subsets of data blocks (Figure 2).
Transactional consistency between an IMCU and its
underlying data blocks is guaranteed by the IM
transaction manager.

Figure 2: A 3-column Oracle RDBMS table in both row-
major and in-memory columnar formats.

2.1 In-Memory Compression Unit

An In-Memory Compression Unit (IMCU) is
‘populated’ by columnarizing rows from a subset of
blocks of an RDBMS object and subsequently
applying intelligent data transformation and
compression methods on the columnarized data. The
IMCU serves as the unit of distribution across the
cluster as well as the unit of scan within a local
node. An IMCU is a collection of contiguous in-
memory extents allocated from the in-memory area,
where each column is stored contiguously as a
column Compression Unit (CU). The column vector
itself is compressed with user selectable
compression levels; either optimized for DMLS, or
optimized for fast scan performance, or for capacity
utilization (Lahiri et al., 2015).

Scans against the column store are optimized
using vector processing (SIMD) instructions (Lahiri
et al., 2015) which can process multiple operands in
a single CPU instruction. For instance, finding the
occurrences of a value in a set of values, adding
successive values as part of an aggregation
operation, etc., can all be vectorized down to one or

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

40

two instructions. A further reduction in the amount
of data accessed is possible due to the In-Memory
Storage Indexes (Lahiri et al., 2015) that are
automatically created and maintained on each of
the CUs in the IMCU. Storage Indexes allow data
pruning to occur based on the filter predicates
supplied in a SQL statement. If the predicate value
is outside the minimum and maximum range for a
CU, the scan of that CU is avoided in entirety. For
equality, in-list, and some range predicates an
additional level of data pruning is possible via the
metadata dictionary when dictionary-based
compression is used. All of these optimizations
combine to provide scan rates exceeding billions of
rows per second per CPU core. Apart from
accelerating scans, the IM column store also
provides substantial performance benefits for joins
by allowing the optimizer to select Bloom filter
based joins more frequently due to the massive
reduction in the underlying table scan costs. A new
optimizer transformation, called Vector Group By
(Lahiri et al., 2015), is also used to compute multi-
dimensional aggregates in real-time.

Figure 3: In-memory segments with IMCUs indexed by
Oracle data block addresses (2-instance cluster).

2.2 In-Memory Column Store

The In-Memory column store is carved out from the
Oracle System Global Area (SGA) (Oracle 2014)
per database instance based on a size provided by
the user. Logically, it is a shared-nothing container
of in-memory segments, where each in-memory
segment comprises of a set of IMCUs populated in
the instance. Each in-memory segment is equipped
with a data block address based in-memory home
location index that is used for efficient lookup of an
IMCU containing data from a particular underlying
data block. Depending on the distribution of IMCUs,
an in-memory object constitutes a set of one or more
in-memory segments across the cluster (Figure 3).

The in-memory home location index allows for

seamless integration of the in-memory column store
with the traditional row-store based instance- local
Oracle data access engine (Oracle 2013) that iterates
over a set of row-major block address ranges. Using
the same scan engine as-is allows an RDBMS object
to be perpetually online for queries. For a given set
of block address ranges, the access engine employs
the index to detect and scan an IMCU if an IMCU
covering these ranges exists locally; otherwise it
falls back to the buffer cache or underlying storage.
As and when IMCUs get locally populated and
registered with the index, the access engine shifts
from performing block based accesses to utilizing
IMCUs for faster analytic query proceesing.

2.3 Distribution Manager

The primary component of the distributed
architecture is the Distribution Manager. We have
uniquely designed the component to provide
extremely scalable, application-transparent
distribution of IMCUs across a RAC cluster
allowing for efficient utilization of collective
memory across in-memory column stores, and
seamless interaction with Oracle’s SQL execution
engine (Parallel 2013) ensuring affinitized high
performance parallel scan execution at local memory
bandwidths, without explicit optimizer plan changes
or query rewrites.

The distribution manager uses a generic
mechanism for population of IMCUs for a given
database object. The mechanism is two-phase,
comprising of a very brief centralized consensus
generation phase followed by a decentralized
distributed population phase. A completely
centralized approach requires the coordinating
instance to undergo non-trivial cross-instance
communication of distribution contexts per IMCU
with the rest of the instances. On the other hand, a
purely de-centralized approach allows maximal
scale-out of IMCU population, but the lack of
consensus in a constantly changing row-store may
result in a globally inconsistent distribution across
the cluster.

Our two-phase mechanism aims to combine the
best of both worlds. While the centralized phase
generates and broadcasts a minimal distribution
consensus payload, the decentralized phase allows
each instance to independently populate relevant
IMCUs using locally computed yet globally
consistent agreements on IMCU home locations
based on the broadcast consensus. In this approach,
at any given time for a given object, an instance can
be either a ‘leader’ that coordinates the consensus

How�does�Oracle�Database�In-Memory�Scale�out?

41

gathering and broadcast, or a ‘to-be follower’ that
waits to initiate IMCU population, or a ‘follower’
that coordinates the decentralized population, or
‘inactive’.

The remainder of the subsection explains our
approach in details. The on-disk hypothetical non-
partitioned table illustrated in Figure 2 in Section 2
is used to demonstrate the various steps of the
distribution mechanism in a hypothetical RAC
cluster of 4 instances.

2.3.1 Centralized Phase

Distribution of a given object can be triggered
simultaneously from multiple instances as and when
any of the managers detects portions of an in-
memory enabled object not represented by either
local or remote IMCUs. Leader selection therefore
becomes necessary to prevent concurrent duplicate
distribution of the same object. For each object, a set
of dedicated background processes per instance
compete for an exclusive global object distribution
lock in no-wait mode. The instance where the
background process successfully acquires the object
lock becomes the leader instance with respect to the
distribution of that object while rest of the
backgrounds bail out. Therefore, at any given time
for a given object, only one instance can serve as the
leader (figure 4). At this point, all other instances
remain inactive as far as the given object is
concerned.

The leader is responsible for gathering a set of
snapshot metadata for the object, which it broadcasts
to all nodes excluding itself. This snapshot provides
a consensus to all nodes so that each of them can
carry out IMCU population independently but
through a distributed agreement. The snapshot
information includes a) schema and object
identifier,b) the current system change number
(SCN) (Lahiri et al., 2015) of the database to get
consistent snapshot of the object layout as of that
SCN, c) the SCN used in the previous distribution
(invalid if the object was never distributed
previously), d) the set of instances participating in
the population, e) the packing factor, f) the cluster
incarnation, and g) the partition/subpartition number

Figure 4: Election of a leader background process for an
Oracle RDBMS object.

(if distribute by partition or subpartition is the
option used). The extremely compact payload
implies minimal inter- node communication
overheads.

Once an instance receives the message from the
leader, one of its dedicated background processes
initiates the population task by queuing a shared
request on the same object lock, changes its role of
the instance from ‘inactive’ to ‘to-be follower’, and
sends an acknowledgement back to the leader.
However as the leader holds exclusive access on the
lock, none of the instances can attain ‘follower’
status to proceed with the population procedure.
After the leader receives acknowledgement from all
instances, it downgrades its own access on the global
object lock from exclusive to shared mode.

Figure 5: Consensus broadcast, acknowledgement,
followed by leader downgrade.

Once the downgrade happens, the leader itself
becomes a ‘follower’ and all ‘to-be followers’ get
shared access on the lock to become ‘followers’ to
independently proceed with the distributed
decentralized IMCU population (Figure 5). Until all
followers release access on the shared object lock, none of
the instances can compete for being a leader again for the
object.

2.3.2 Decentralized Population Phase

Each follower instance uses the SCN snapshot
information in the broadcast message to acquire a
view of the object layout metadata on-disk. Based on
the previous SCN snapshot and the current one, each
follower instance determines the same set of block
ranges that are required to be distributed and then
uses the packing factor to set up globally consistent
IMCU population contexts, as demonstrated in
Figure 6 (assuming a packing factor of 4 blocks).
Once consistent IMCU contexts have been set up,
the requirement arises to achieve distributed
agreement on the assignment of instance home
locations.

Figure 6: IMCU population context generation.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

42

Each instance is required to independently come
up with the same assignment answer for the same
input key, which leads to the need for a uniform
hash function. Traditional modulo based hashes may
not be well suited to serve the p u r p o s e as they
result in unnecessary rebalancing costs as and when
cluster topology gets impacted. The distribution
manager employs a technique called rendezvous
hashing (Laprie, 1985) that allows each follower
background process to achieve distributed
agreement on the instance home location for a given
IMCU. Given a key, the algorithm computes a hash
weight over each instance in the set of participating
instances in the payload broadcast by the leader and
selects the instance that generates the highest weight
as the home location.

f(K, N) = ∑max(h(K, i)), i = 1..N

Table 1: Hypothetical home location assignments by each
follower instance.

IMCU
Context

IMCU
Boundaries

Assignments

IMCU 1 <E1, E2’> Inst. 1

IMCU 2 <E2’’, E3’> Inst. 2

IMCU 3 <E3’’, E4’> Inst. 3

IMCU 4 <E4’’> Inst. 4

In context of IMCU distribution, the key chosen
depends on the distribution scheme. If the
distribution is block range based, then the address of
the first block in the IMCU context is used as the
key. Otherwise, the partition number or the relative
subpartition number is used as the key. As the key is
chosen in consensus across all follower instances,
the rendezvous hashing scheme ensures global
agreement on their home locations (an example is
demonstrated in Table 1). Besides achieving low
computation overheads and load balancing, the
primary benefit of rendezvous hashing scheme is
minimal disruption on instance failure or restart, as
only the IMCUs mapped to that particular instance
need to be redistributed.

Once the follower background process
determines the instance locations for all IMCU
contexts, it divides the workload into two sets, one
where IMCU contexts are assigned to its own
instance and the other where they are assigned to
remote instances. For the first set, it hands off the
IMCU contexts to a pool of local background server
processes to create IMCUs from the underlying data
blocks in parallel. If an in-memory segment is not
present, the population of the first local IMCU

Figure 7: Logical view of in-memory home location index
on completion of distribution across 4 RAC instances.

creates the in-memory segment within the column
store. Once the IMCUs are created locally in the
physical memory, they are registered in the block
address based home location index described in
section 2.2. An IMCU becomes visible to the data
access as well as the transaction management
components once it has been registered in the index.
For the second set, the follower process iteratively
registers only the remote home location metadata
without undergoing actual IMCU population.

The follower background process waits for all
local background processes undergoing IMCU
population to complete. By the time all instances
release their accesses on the global object lock, the
mechanism results in laying out IMCUs consistently
across all participating home location nodes
resulting in a globally consistent home location
index maintained locally on every instance
(illustrated in Figure 7).

2.3.3 SQL Execution

The distribution manager is seamlessly integrated
with the Oracle SQL execution engine (Parallel
2013) to provide in-memory distribution awareness
to traditional SQL queries without explicit query
rewrites or changes in execution plan. For a given
query issued from any instance in the cluster, the
SQL optimizer component first uses the local in-
memory home location index to extrapolate the cost
of full object scan across the cluster and compares
the cost against index based accesses. If the access
path chooses full object scan, the optimizer
determines the degree of parallelism (DOP) based on
the in-memory scan cost. The degree of parallelism
is rounded up to a multiple of the number of active
instances in the cluster. This ensures allocation of at
least one parallel execution server process per
instance to scan its local IMCUs.

Once parallel execution server processes have
been allocated across instances, the Oracle parallel

How�does�Oracle�Database�In-Memory�Scale�out?

43

query engine is invoked to coordinate the scan
context for the given object. The query coordinator
allocates (N+1) distributors, one for each specific
instance 1 to N, and one that is not affined to any
instance. Each distributor has one or more relevant
parallel execution server processes associated w i t h
it. The coordinator acquires a consistent version of
the on-disk object layout metadata to generate a set
of block range based granules for parallelism. It
uses the local in-memory home location index to
generate granules such that their boundaries are
aligned to IMCU boundaries residing within the
same instances.

Figure 8: Home location aware parallel query execution.

The granules generated are queued up in relevant
distributors based on the home location affinities.
Each parallel server process dequeues a granule
from its assigned distributor and hands it over to
the Oracle scan engine. As described before, the
scan engine uses the same in-memory index to
either process IMCUs if present in the local in-
memory column store, or fall back to buffer cache
or disk if otherwise. Figure 8 demonstrates home
location aware parallel execution of a query
undergoing fully local memory scans across the
cluster.

The instance alignment ensures that a granule
consists of block ranges that are represented by
IMCUs residing in the same local memory. IMCU
boundary based alignment alleviates redundant
access of the same IMCU by multiple parallel server
processes. The globally consistent local home
location index that the same set of granules is
generated irrespective of the instance coordinating
the query.

3 CONCLUSIONS

The necessity to support real-time analytics on huge
data volumes combined with the rapid advancement
of hardware systems has served as the ‘mother of
invention’ of a new breed of main-memory

databases meant to scale. This paper presents the
distributed architecture of the Oracle Database In-
memory Option. The architecture is unique among
all enterprise-strength in-memory databases as it
allows complete application-transparent and
extremely scalable automated in-memory
distribution of Oracle RDBMS objects across
multiple instances in a cluster. The distributed
architecture is seamlessly coupled with Oracle’s
SQL execution framework ensuring completely
local memory scans through affinitized fault-
tolerant parallel execution within and across servers,
without explicit optimizer plan changes or query.

REFERENCES

Oracle Database In-Memory, an Oracle White Paper,
Oracle Openworld, 2014.
Lahiri, T. et. al. Oracle Database In-Memory: A Dual

Format In-Memory Database. Proceedings of the
ICDE (2015).

W. Bridge, A. Joshi, M. Keihl, T. Lahiri, J. Loaiza, and N.
MacNaughton, "The Oracle Universal Server Buffer
Manager", in Proceedings of VLDB ‘97, pp. 590-594,
1997.

Oracle12c Concepts Release 1 (12.0.1). Oracle.
Corporation (2013).

Parallel Execution with Oracle 12c Fundamentals, An
Oracle White Paper, Oracle Openworld, 2014.

Laprie, J. C. (1985). "Dependable Computing and Fault
Tolerance: Concepts and Terminology", Proceedings
of 15th International Symposium on Fault-Tolerant
Computing (FTSC-15), pp. 2–11.

R. Greenwal, M. Bhuller, R. Stackowiak, and M. Alam,
Achieving extreme performance with Oracle Exadata,
McGraw-Hill, 2011.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

44

