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We propose some novel computational approaches to analyzing historical student transcript data to help im-

prove course sequencing and generate default pathways for students to complete a college degree. Addition-
ally, we examine whether there are “hidden prerequisites” to courses and whether there are courses which,
when taken early in a student’s career, may improve their chances of graduation. Our analysis was done on a
dataset consisting of all student-course enrollments for a period of 10 years at Montana State University.

1 INTRODUCTION

In this work, we propose some novel computational
approaches to analyzing historical student transcript
data to help improve course sequencing and generate
default pathways for students to complete a college
degree. Our analyses were done on a dataset consist-
ing of all student-course enrollments for a period of
10 years at Montana State University (MSU). We first
introduce the concept of a centroid student for a given
major; these students can provide a prototype for de-
signing a typical course pathway for the major. We
also examined the data set to identify “hidden prereg-
uisites” to courses; these are course pairs (A; B) where
course A is not an official prerequisite but for which
there is statistical evidence that it helps pass course B.
Finally, we also looked at course ordering and grad-
uation using course pair statistical analysis. Our re-
sults indicate that there are courses which, when taken
early in a student’s career, tend to improve the gradu-
ation rate.

2 METHODS

We collected a data set consisting of all student-
course enrollments at MSU from Academic Year
(AY) 2004 through AY 2013. MSU’s AY consists
of two main semesters, Fall and Spring, as well as
a Summer term. We restricted attention to students
that entered their initial semester as first-time, full-
time students. Transfer students were also not consid-
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ered. There were 437,967 student-course enrollment
records in total. Additionally, the data set included
student declared majors by term as well as gradua-
tions. We used Java to implement all of the analy-
sis procedures described; all analyses could be per-
formed in a several minutes on a fast laptop computer.

3 FINDING TYPICAL STUDENTS

In this section we consider the problem of determin-
ing typical students in particular programs at our uni-
versity. We define typical as being the most similar to
all of the other students in the program. Our approach
is to first define a similarity score S(i; j) between stu-
dents i and j based on how similar their transcripts
are. This score is based on the courses taken in the
transcript as well as which semester (relative to their
starting year) that they took them in. Let L; be the
list of courses passed by student i and for each course
c 2 L, lett(c;i) be the term (relative to the year that
student i first enrolled) that i first passed c.

To evaluate the similarity between students i and
j, we define a weighted bipartite graph G = (V;E)
whereV =L [Lj,E Lj Lj,and the weight of an
edge (c;c") 2 E is defined by

M(c;c%)

WED = i) (@D .

where M is a course similarity matrix and k is a con-
stant. The course similarity matrix M was defined by
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Table 1: The centroid student computed for the Mechanical Engineering major at Montana State University.

Fall-Y1 Spring-Y1 | Fall-Y2 Spring-Y2 | Fall-Y3 Spring-Y3 | Fall-Y4 Spring-Y4
ANTY-101 | CHMY-141 | EGEN-201 | EELE-250 | EGEN-335 | EMEC-321 | EMEC-405 EGEN-488
CLS-101 EGEN-117 | EMAT-251 | EGEN-202 | EGEN-350 | EMEC-326 | EMEC-425 EMAT-350
EMEC-100 | EGEN-118 | EMAT-252 | EGEN-205 | EMEC-303 | EMEC-342 | EMEC-445 EMEC-402
M-171 M-172 M-273 ETME-215 | EMEC-320 | EMEC-360 | EMEC-489R | EMEC-403
PHSX-103 | PHSX-220 | ME-102 ETME-217 | EMEC-341 | EMEC-443 | MUSI-203 EMEC-499
WRIT-101 PHSX-222 | M-274 FCS-101

Table 2: The centroid student computed for the History of Religious Studies major at Montana State University.

Fall-Y1 Spring-Y1 | Fall-Y2 Spring-Y2 | Fall-Y3 Spring-Y3 | Fall-Y4 Spring-Y4
ACT-151 ARTH-201 | ART-310 ART-320 ARTH-426 | ARTH-440 | ARTH-451 | ARTH-492
GRMN-101 | EQUH-110 | ARTH-200 | HIST-489 | ARTH-430 | HONR-450 | HSTA-408 | HSTR-480
HIST-104 GRMN-102 | HSTR-145 | HSTA-311 | ARTH-438 | NASX-304 | RELS-223 | PSYX-100
HONR-201 | HSTR-130 HSTR-322 | HSTR-434 | RLST-220. | RLST-203 RLST-321 | RLST-492
RLST-110 PSCI-230 RLST-202 | HSTR-490 | RLST-325 | RLST-405 | UH-400 UH-492
UH-202 RLST-204 RELS-335

RLST-410

the following simple rule: for each pair of courses
(c;c"), we let

8
%1:0

0:7
=0:5
-0:0
For the constant k, larger values deminish the rela-
tive importance of how close the terms were when the
students took the courses. After some empirical test-
ing, we choose the value k = 3. While both M and k
could likely be tweaked and improved, these defaults
seemed to lead to reasonable results.

Next, we define the similarity score S(i; j) be-

tween students i and j as the weight of a maximum
weight matching M in G:

S(i;J) =w(M ): )
(A matching M is subset of the edges such that no two
edges in M share an endpoint; the weight, w(M), of
M is the sum of the weights of the edges in M.) A

maximum weight matching can be found efficiently
using the Hungarian algorithm (Kuhn, 2005).

if c and c’; are the same course,
meet the same core requirement,
are from the same department,
otherwise.

M(c;c") =

3.1 Centroid Students

We define the centroid student c(m) for a particular
major as the student that maximizes the total similar-
ity score to all of other students in the major m. Let
S(m) be the set of students that graduated in major m.
Formally,

c(m) = argmax
i25(m) j2s(m)

S(i; J) @)

We can view the centroid student as the most typical
representative of the given major m.
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We have computed the centroid students for all
majors at MSU. Table 1 shows the centroid student for
the Mechanical Engineering major at Montana State
University, while Table 2 shows the centroid student
for the History of Religious Studies major. By ex-
amining centroid students, departments can see what
sequencing of courses works for a typical students.
These course sequences provide an excellent starting
point to design pathways that lead to degrees for a
given major. Such pathways indicate both required
courses for the major as well as potential electives
term-by-term. There is evidence (Complete College
America, 2012) that indicates that providing incom-
ing students with pathways improves both retention
and graduation rates.

4 HIDDEN PREREQUISITES

Another type of analysis that can be useful in design-
ing student pathways is to look for so-called hidden
prerequisites among pairs of courses. We define a hid-
den prerequisite as a pair of courses (A;B) such that
students that have taken and passed course A have a
statistical advantage when it comes to passing course
B subsequently. To measure this advantage we use the
well-known Fisher exact test (Fisher, 1922), which
tests the null hypothesis that A imparts no advantage
(or disadvantage) in the ability to pass B. For a par-

Table 3: The variables a, b, ¢ and d are the number of stu-
dents in the data set that fall in each category.

pass B | fail B
with A a b
without A c d
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Table 4: Top 5 hidden prerequisites for Business majors. Note CAPP-120 is computer applications course.

without A with A without A with A
A B failB | passB | fail B | passB | p-value | B passrate | B pass rate
CAPP-120 | MUSI-203 | 6 78 0 309 8.3E-5 92.9% 100.0%
CAPP-120 | BGEN-499 | 13 164 8 566 1.3E-4 | 92.7% 98.6%
ACTG-223 | BFIN-322 47 379 12 250 1.2E-3 89.0% 95.4%
CAPP-120 | STAT-216 50 111 74 308 1.3E-3 68.9% 80.6%
CAPP-120 | PHL-110 12 93 4 177 1.4E-3 88.6% 97.8%
ECNS-101 | BMGT-240 | 9 61 14 387 2.4E-3 87.1% 96.5%
M-171Q ECNS-301 | 42 93 0 17 2.8E-3 68.9% 100.0%
ACTG-327 | BFIN-322 58 469 0 51 3.5E-3 89.0% 100.0%
WRIT-201 | BGEN-499 | 22 555 0 165 3.6E-3 96.2% 100.0%
MUSI-211 | ECNS-301 | 41 88 1 20 5.5E-3 68.2% 95.2%

Table 5: Most significant course pairs where order matters. Course pairs (A;B) are listed such that is beneficial to take course

A prior to course B.

A B p-value | graduation (A <B) | graduation (B <A)
PHSX-205 MUSI-203 | 5.2E-9 95.5% 77.5%
ECNS-101 MUSI-203 | 1.9E-6 87.0% 71.7%
WRIT-101 PHL-110 5.5E-6 73.1% 62.6%
CHMY-143 | BIOM-250 | 7.1E-6 93.6% 66.7%
PHSX-220 PHL-110 7.7E-6 93.2% 77.2%
CHMY-141 | BIOM-250 | 1.2E-5 88.2% 59.1%
ACTG-201 | ACT-104 2.1E-5 94.7% 79.8%
ECNS-101 | CHTH-205 | 2.2E-5 92.4% 58.1%
PHSX-220 | ACT-104 3.2E-5 96.8% 71.7%
WRIT-101 ARTH-200 | 3.2E-5 80.3% 58.0%

ticular pair (A;B), the test is computed using Table 3.
Referring to Table 3, a p-value is computed using the
formula,
+ + +b+c+
p:ab cd:abcd: 4)
a c a+c
Table 4 shows the course pairs that had most striking
statistical relationships (lowest p-values). We note
that course pairs for which A is already a prerequi-
site do not show up since ¢ and d will both be zero
and so p=1in (4).

Departments can use the list of hidden prerequi-
sites to improve course sequencing and potentially
make actual prerequisites. For example, in Table 4,
we see that the CAPP-120 course on computer appli-
cations is helpful for business students to take prior to
several other courses.

5 COURSE PAIR ORDERING
AND GRADUATION

Certain classes may be beneficial to take early in an
undergraduate degree; conversely, other classes may
not be helpful to improving a student’s chances of
graduating. We also examined courses pairs (A;B)
to determine whether taking A before B or B before

A influenced the five-year graduation rate. For each
pair of courses in the data set, we computed the five-
year graduation rates for those students that took and
passed A prior to passing B and the opposite order-
ing. For simplicity and to avoid confounding cases,
we limited consideration to those students that passed
both courses on their first attempt. Using a similar
equation to (4), we then computed a p-value to test
the null hypothesis that the ordering of the pair (A; B)
does not affect graduation rates. Table 5 shows the top
10 course pairs where there is significant statistical
evidence (low p-value), taking course A before course
B (as opposed to B before A) improves the chance of
graduation. Figure 1 was generated by looking at all
significant pairs down to a p-value of 1.0E-3 (there
were 76 such pairs). For each unique course in this
list, we then counted the number of times it appeared
as an A course (better to take early) and the number of
times it appeared as a B course (better to take later).
If the count difference was at least 2, we plotted the
A and B values in Figure 1. What the data seems to
indicate is that there are some courses, e.g. WRIT-
101, College Writing for which it is beneficial to take
early in ones college career; it improves the chances
of graduation. Several other courses on the left side of
Figure 1 are also fundamental courses in mathemat-
ics and the sciences. Conversely, we see that some
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M Better early (A)

Better later (B)

Number of Occurrences
[92]

2,

Course
Figure 1: Courses for which the order that students take the courses has an effect on graduation rate. Note that WRIT-101 is

College Writing and ACT-104 is Bowling Fundamentals.

“lighter” courses, e.g. ACT-104 Bowling Fundamen-
tals are better to delay.

6 CONCLUSIONS

In this work, we looked at several types of analy-
ses that can be performed on large historical student
course enrollment data sets. In particular we pro-
posed a method to compute centroid students for ma-
jors; these students provide a template for the course
sequence that a typical student takes on the path to
graduation. We also proposed a method for discover-
ing hidden prerequisite pairs (A; B); these are pairs of
courses where A is not an official prerequisite for B,
but having taken A beforehand improves the chances
of passing B. Finally, we looked at course pair or-
dering and graduation. In particular, we identified
course pairs (A;B) where there was statistical evi-
dence that taking A before taking B improved grad-
uation rates. Among the statistically significant pairs,
certain courses stood out as being either better to take
early on (an A course) or better to take later (a B
course). This type of information is clearly useful for
student advising.

We envision using historical data to build smart
scheduling systems that better advises students. The
analogy is a GPS in your car; “What is the quick-
est and best path (highest likelihood of success) for
me to graduate in major X?” “What if | want to
change my major, how much longer would it take me,
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etc.?” While there is some existing work on gener-
ating schedules (Martin, 2004; Hinkin and Thomp-
son, 2002) and using data mining for course schedul-
ing (Smith, 2005; Bala and Ojha, 2012), to date there
are no systems that we are aware of that use large-
scale historical data to help answer the hypothetical
questions posed in an automated way. Thus, intel-
ligent course scheduling based on historical student
success data seems like a ripe opportunity for future
work.
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