Database Evolution for Software Product Lines

Kai Herrmann, Jan Reimar) Hannes Voigh, Birgit Demutt?, Stefan Fromry, Robert Stelzmarfn
and Wolfgang Lehnér
1Database Technology Group, Technische Universitét Dresden, Germany
25oftware Technology Group, Technische Universitét Dresden, Germany
3Dresden-Informatik GmbH, Dresden, Germany
4SAX GmbH & Co. KG, Dresden, Germany

Keywords: Database, Software Product Lines, Evolution.

Abstract: Software product lines (SPLs) allow creating a multitude of individual but similar products based on one
common software model. Software components can be developed independently and new products can be
generated easily. Inevitably, software evolves, a new version has to be deployed, and the data already existing
in the database has to be transformed accordingly. As independently developed components are compiled
into an individual SPL product, the local evolution script of every involved component has to be weaved into
a single global database evolution script for the product. In this paper, we report on the database evolution
toolkit DAVE in the context of an industry project. DAVE solves the weaving problem and provides a feasible
solution for database evolution in SPLs.

1 INTRODUCTION their obligations.

Independent of the application field, life cycle
With the directives 2008/43/EG and 2012/4/EU, the tracking confronts the involved parties with liabilities,
European Commission made the tracking of explo- Which can only be handled feasibly with IT support.
sives mandatory in the European Union (EU) froth 5 All participants need basically the same software to
April 2015 on. All explosives for civil use, including ~ track specific goods. However, their detailed require-
detonators, primers, boosters, cords, etc., have to bements vary considerably. Participants (small business
tracked during their whole life cycle in the EU. This to large enterprise, producer to dealer to carrier to
has to be applied from the manufacturing location or consumer) significantly differ regarding their finan-
import into the EU towards the end user. For instance, cial constraints, followed processes, implemented IT
a company producing black powder has to attach alandscapes, and national legislations.
unigue identifier to every unit it produces. A freight With such a diverse customer base, it is econom-
shipping company transfers such units of black pow- ically infeasible to try designing and implementing
der to distributors. Another manufacturer buys a unit one software product that satisfies the requirements
of black powder to make primers, each getting a new of all potential customers. Likewise, it is uncompeti-
identifier. The life cycle of the primer and the black tive to implement a specialized solution for each cus-
powder continues to include further dealers and carri- tomer. Software product line engineering is a long
ers until they are eventually put in use in e.g. a small studied but rarely implemented technique to gain the
stone quarry. All participants in the life cycle of ex- necessary flexibility in software development for han-
plosives are required to store the tracking information dling a very diverse customer base. An SPL is defined
of each item as it passes their domain. The track- by a common software model, which decouples the
ing information includes the identifier of each item development from the deployment. That allows dis-
together with the time stamp and partner of the in- tributing the development of the software components
coming and outgoing events. In the research-orientedamong multiple parties. Ultimately, concrete software
industry project euroTRACKex (http://www.tt-e.eu) products can be generated from the SPL according to
(eTe), we develop a demonstrator of a tracking soft- an individual configuration for each customer. Soft-
ware for explosives that will help companies to fulfill ware technology research provides tooling and meth-

Herrmann K., Reimann J., Voigt H., Demuth B., Fromm S., Stelzmann R. and Lehner W.. 125
Database Evolution for Software Product Lines.

DOI: 10.5220/0005484101250133

In Proceedings of 4th International Conference on Data Management Technologies and Applications (DATA-2015), pages 125-133

ISBN: 978-989-758-103-8

Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)

DATA 2015 - 4th International Conference on Data Management Technologies and Applications

odsto realize SPLs. Hence, SPLs are the technologies
of choice in the eTe project.
The problem of economic feasibility in the de- %{J w%d
velopment process aggravates as software evolves in-
evitably (Lehman, 1980). SPL components are en- [FCERFTEE | FDECERtalzea” | "CUstomer Dete | Stock Meme et

hanced, fixed, and updated. While evolution is an constraint: Stock Mgmt. Data implies Stock Mgmt.
important aspect of SPL research, the database layer " Bl O @y A sereres Ao |
is typically not considered and vice versa. However, Figure 1. Subset of the eTe feature tree.

in evolving SPLs the evolution of the database layer)

becomes a central problem (Terwilliger et al., 2012; Ilar software systems. All of them contain the same
Roddick, 1995). With every deployed new product functional core but. may differ in quantity or pres-
version, the database schema may change and the exgnce of other functional components. All customers
isting data has to be transformed accordingly. The ¢&n decide independently which components to se-
problem aggravates if the SPL components are imple- lect for their business. Such .related.softwarel sys-
mented by independent parties, each having a locall€Ms are called software family Obviously, this
view. The database has to evolve globally, in one step, SC€nario contains-a dimension of variability which is
as the product evolves. The decoupling of develop- Nécessary to be controlled and managed. It has to be

ment and deploymentin SPLs poses a new challengef”‘VOide_d that, for a new customer, an existing produ_ct
to database evolution: When a customer's product S replicated and then customized because of the sin-
evolves, many locally specified evolution steps have 9/€ source principle. Itis hardly possible to consis-

to be weaved into a single global database evolution €Ntly fix potential bugs in each and every customer
script. This is called theeaving problem product which may differ only slightly. This un-

The actual extent of the weaving problem signif- managed redundancy results in huge maintenance ef-
icantly depends on the chosen database system. Ret(?rt (Mure:jet al‘ﬁ 231|0)'_AS afconseque_nce, _the tec?l'l
lational systems ensure a strictly structured schema,n'quleszglé1 MeRyo ?. 03'.65 OﬂVSVPL %ngmleermg (Po
hence, the weaving of evolving components becomes®t & 5) are app ied In Soltware deve ppment.
very complex. On the contrary, NoSQL systems keep Software product line engineering deﬂneg a fam-
the data in a more flexible structure, which simplifies ily of closely reIaFed software sy§te_ms consisting of
the weaving problem by design. However, NoSQL common and variable functionality in order to man-

stores are still subject to the weaving problem. We 29€ variability. It aims at separating configuration
use a relational database, since many of its well estab-Knowledge, regarding what functionalities belong to

lished features are indispensable for our project and & concrete product, from the actual realization of that
worth the effort to solve the weaving problem for re- product. Thus, one main benefit of SPL engineering is

lational databases. Another requirement posed by ourthat configuration knowledge is captured on a concep-
industry partners is a lean architecture at runtime. The tu@l non-technical level, and hence can be accessed by

products generated by the SPL are normal databasd'On-Programmers easily. Therefoggpblem space
applications without any additional layers. andsolution spaceare distinguished. The former con-

In this paper, we report on the eTe database evolu-Sists of the conceptual configuration knowledge and

tion toolkit DAVE (DAtabase eVolution for tracking the latter contains the artifacts realizing desired func-
of Explosives). DAVE solves the logical level of the 110nS (Czarneckiand Eisenecker, 2000).

weaving problem, hence, performance optimization _ 1he variability in the problem space is commonly
and evaluations are out of scope. We introduce SPLsdescribed withfeature modelgKang et al., 1990)
as known in the software technology community in Whereinfeaturesare arranged in &eature treg(Chen
Section 2. In Section 3, we describe the evolution of €t @l 2005). Selecting one feature in the tree auto-
SPLs and the resulting weaving problem. We presentma‘ucally selects its parent feature. To determine if

DAVE in Section 4. Finally, we discuss related work 2 feature ismandatoryor optionalit can be marked
in Section 5 and conclude the paper in Section 6. as such. Furthermore, features can be combined into

or groupsor alternative groups The former allows
selecting at least one child feature, whereas exactly
one feature must be selected (in terms ofkan se-
2 SPL ENGINEERING lection among the child features) from the latter. Be-
yond thatcross-tree constraintsan be specified over
As explained in the previous section, the initial situ- the features to express relations not being able to be
ation of the eTe project was, that the software ven- reflected in the tree structure (Batory, 2005).
dor has many different customers each requiring sim- In Figure 1, a small subset of the eTe feature

126

Components

X

Component
Developer

Time

Development
uonn|on3
juauodwo)

SPL
Feature Model

Configuration
Partner

Time
uolIn|ony
Jnpoud

X

Products

Generation

HRCHRCHRT)

BEBD X
5000 ﬁ QU

Figure 2: SPL engineering process.

Deployment
Partner

Deployment
Time
uolnjoAy
aseqeleq

tree is illustrated. It contains the root featur®e
Syst em having the mandatory child featuhst er
Data Mynt. Its children Cust oner Data andSt ock

Mynt . Dat a) reside in aror group, thus at least one of
them must be selected. The two featuRegorti ng
System and St ock Mynt are optional. If the for-
mer is selected, then either aentralized or a
decentralized reporting system needs to he se-
lected, since both features are contained within an
alternative group Furthermore, the cross-tree con-
straint ensures that if th&t ock Mynt. Dat a feature

is selected, th&t ock Mynt feature must be selected,
too. A feature tree represents all possible configura-
tions whereas aonfigurationis a valid subset of all
features satisfying all constraints and selection rules.

Database Evolution for Software Product Lines

time, as illustrated in Figure 2. All three phases are
decoupled regarding when they happen (time) and in
whose domain they are performed (space).

At development time, aomponent developém-
plements a component that realizes a specific feature
in the SPL. Components are purely additive and do
not alter the other components, but they may extend
others. If a component requires persistence, the de-
veloper defines the corresponding data model for the
component. To make a component available, the de-
veloper submits the code and a formal component de-
scription (hame and its dependencies to other compo-
nents) to a central component repository.

Atgeneration time, aonfiguration partneselects
a specific set of features required by a customer. A
configurator tool provides a convenient Ul for this
task. Once a variant of the SPL is configured, the
configurator compiles the product desired by the in-
dividual customer by resolving the selected features
to software components w.r.t. the mapping between
problem and solution space. The database schema
for the product results from the union of the database
schemas of the selected components.

At deployment time, adeployment partnede-
ploys an individual product on its runtime platform
and makes it available to the customer. Since prod-
uct deployment is decoupled from component devel-
opment, many individual products can be deployed
easily for very different customers. During product

Thus, a feature model is a compact and concise nota-deployment, the database is set up and tables are cre-

tion of a large number of possible configurations.
Transforming a conceptual configuration into an

executable software system poses two prerequisites

First, amappingfrom problem space to solution space

must be specified to define the semantics of the par-

ticular features. Within the eTe project, we decided

ated according to the product’s database schema.
Evolution can occur in all three phases. At de-
velopmenttime, developers improve, update, refactor,
and debug their components including the underlying
data model. We call thisomponent evolution At
generation time, customers request reconfiguration of

to establish a 1:1 mapping of feature (problem space) y,qir products, because they want to add/remove com-

to software component (solution space) for the sake
of simplicity. Second, aariability realization mech-
anismis needed producing the final product w.r.t the
configuration. The final product is calledvariant

3 EVOLUTION OF SPLs

SPLs allow generating new products whenever the

ponents or update to a new component version, re-
sulting inproduct evolution At deployment time, we
have to consistently evolve an existing database, in-
cluding schema and data, according to the new prod-
uct version. This igdatabase evolutian Database
evolution is necessary if the data model of a product
changes in component or product evolution and these
changes are actually rolled out to the customer.

Consider the small example in Figure 3. It shows

customer’s requirements change or new versions ofthe componentevolution of the compone®iandC,

chosen features are published. This flexibility hits the
wall at the database layer. Typically, customers want
to keep their data when updating their products. In-
evitably, evolution in SPLs includes the evolution of
databases, which is still a major headache in practice
SPLs involve three major program life cycle phases:
development timegeneration time and deployment

with their respective data models. The data model of
C, consists of a tablérticl e with three columns.
C, builds on that data model and adds the column
wei ght to Article. Say a customer runs a product

.with configuration{C; } and wants to change to con-

figuration{C1,C;}. In case of this product evolution,
the database has to evolve, too. After adding the col-

127

DATA 2015 - 4th International Conference on Data Management Technologies and Applications

{C1} = {C1,Ca} cally at development time with a scope limited to the
€1} = {C1,.&} new component, its predecessor, and all components
&)= {1} the new component depends on.
ﬁ G}~ {C. G} At deployment time, when database evolution ac-
(el o) lly h the locally defined evoluti ipt
(L0} () tually happens, the locally defined evolution scripts

(LG} - {C1.C) form one global evolution script. The global evolu-
E (C1.Co} = (L. tion script carries out the database evolution for one

Software Product Line

o {C1.Cp} - {Cu} specific product evolution. The key challenge to im-
{c1.c} - {ci} plement database evolution for SPLs is to weave all
i E {C1.G} — {C1.G5} relevant local evolution scripts to one global evolu-
@)= fc C’z’} tion script. We call this the weaving problem.
Legend: | Component Evolution «— Dependency {c.cz} - {a} Consider an evolution fronﬁcl’clz} to {Ci’cg}
from Figure 3. The local script for the evolution
C1 — Cj creates the two new tabl€sner al _Car go
and Bul k_Cargo, moves the data fromArticle
to the new tables, and drogsticle. The local
script for the evolutiorC, — C; creates the columns
val ue and neasure in the General _Cargo table,
moves data from thart i cl e table to the new tables,
and removes the columnsl ue andneasure from
Articl e table. Obviously, these local evolutions have
dependencies, which prohibit sequential execution.
The weaving problem has two aspects. On the
logical level the global evolution script has to be cor-
rect. It must not result in a database different from
the component developers’ intent. For each compo-
. . nent of the new product the resulting database has
I';' anothc?r component evolutio, is Upd?‘ted to provide the expected structures. On the physical
to C;. ForCy, the component developer decides to level the global evolution script has to be efficient. It
change the data model. Because general cargo an qs efficient if it performs the necessary change to the
bulk cargo are often handled separately, the devel- database in the shortest possible time with a minimum
oper horizontally partitions ths ti cl e tableintothe 0\t of resources. DAVE solves the weaving prob-
tablesG_eneraI_ _Car_go and Bul I_<_C/argo G, is not lem on the logical level. The physical optimization
com/panble with this new versioD,. The develo/eer of a global evolution script could not be addressed
of G reacts and updates the componerfoin C3, in the eTe project so far and is open for future work.
the additional columns only exter@meral _Cgrgo Hence, there is no evaluation containing e.g. perfor-
since bulk cargo does not have any fixed weight. mance measures. We focus on the logical level and

As shown in the example, the data transformation \ gjigate the feasibility within our industry project.
for an evolution step, e.g., inferring new values or

splitting existing values, depends on the application

logic that uses the data. In the context of SPLs, only

the component developer knows the specifics of the4 DATABASE EVOLUTION
application logic and is able to specify the data trans- TOOLKIT DAVE

formation necessary for the component’s evolution.

The example in Figure 3 already involves five pos- DAVE implements a demonstrator for the eTe SPL in-
sible configurations of a product and thirteen possible cluding a solution for the logical level of the weaving
product evolutions, in total. The large — in the ex- problem. In this section, we describe the developed
treme case exponential — number of possible config- process and its tool support. Well in line with SPL
urations and product evolutions in SPLs is intended engineering, DAVE stores all required information for
by design. The combinatorial explosion is the true data managementin an abstract format locally within
power of SPLs and allows providing highly individual each component. During the configuration and gen-
products to customers. Nevertheless, it is absolutely eration of a customized product, this information is
infeasible for a component developer to consider all simply collected from all participating components.
product evolutions a component may be involved in. Finally, DAVE generates one global database evolu-
In SPLs, database evolution can be specified only lo- tion script for each deployment, depending on the pre-

r

uonnjonj usuodwo)

Figure 3: Example for evolution in SPLs.

umnwei ght, the evolution has to adeki ght values
for all existing articles, e.g., by inferringei ght val-
ues from the product description.

Later on, a new version of;, calledC,, is re-
leased. Instead ofei ght , C, uses the two columns
val ue and neasure to represent the weight of an
article. This component evolution does not cause a
database evolution as long as no productis evolved to
includeC;. If a product evolves to includg,, the new
columnsval ue andneasur e of already existing arti-
cles must be populated, e.g., splitting existiegght
values (e.g. 5kg, 500 g) inta@l ue andneasur e.

128

Database Evolution for Software Product Lines

¢, Previous version, layer of an application, which is responsible for per-
<> java :
= Depaglencies § sisting and accessing data in a relational database.
T #)HIBER DB Database Folder o H o oo
) E> Development E> Tounmst || - 3 HEDL has a concise syntax for defining the persis
Tool Component 2 tence layer of a specific domain. A HEDL document
_______________________________ ’ is transformed to Java entity classes and data access
5B — @ object classes automatically. HEDL can be used for
Component Configuration Database [} K . . .
Falklas 2 Hibernate or any other JPA implementation. For in-
P resoston B, configurator Wy | Lo [2 stance, the compone@y from the example in Fig-
________________________ ure 3 is described as shown in Listing 1.
L Current Configuration 9 1| Article {
Ejlt;:rasse DB E> LIQUISBASE, | = 2 String identifier;
E> Deployment 3 3 String nane;
Customer Product Tool = 4 String description;
Figure 4: Data management process for SPL engineering. ° }

Listing 1: HEDL model forC;.

vious and the new configuration.

The data management process of DAVE, as shown A major advantage of HEDL is the intuitive
in Figure 4, is based on the general process descrip-and powerful mechanism for data model extensions
tion for SPL engineering in Figure 2. The develop- through composition. Thus, new persistence layers
ers use the domain-specific language (DSL) HEDL t0 can be generated by reusing and extending existing
describe the data model. When developing a com- domain models. Listing 2 shows the HEDL file of the
ponent, we create database foldercontaining the componen€,, which adds further attributes @ .
local database evolution steps, which are defined us-
ing Liquibase(http://www.liquibase.org). Liquibase
simplifies the handling of database evolution, is inde-
pendent of the concrete relational DBMS, and allows
determining the difference between given schemas.
TheDB Development Toareates the database folder Listing 2: HEDL model forCy.
based on the new component and its previous version,

Seation 4.1, Generation tme requires no addiional _ T developer ot directly works with a gener-

database-.re.lated tool support. Basically, all databaseatefJI Java class_ for tifeti cl e, !ncll_Jdmg the deflned_

folders of the selected compo.nents are E:OIIected andattr'bUtes' A Hibernate mapping 1S generated, which

included in the final customer product. At deployment allows creating and accessing the database schema.
' DAVE's DB Development Tool takes the new schema,

o s e [N VS VSNl e comporent, and l dper
. PL dencies of the new version as input.

described in Section 4.2. The DB Deployment Tool is outout. Th out | i f th
the heart of DAVE,; this is where the weaving problem utput. € output 1S a représentation of the
delta between the previous and the current version

is solved. of the component. The DB Development Tool adds
the database folder to the component’s source, con-
4.1 DB Development Tool sisting of three files and two subfolders. First, the
file dependenci es. xm collects the components and
The single components of an SPL are developed sep-their versions, which are used or extended by the com-
arately. It is unforeseeable, which other components ponent project. Second, thai .| iqui.xn file is
will also be part of a deployed product. Nevertheless, the Liquibase script which creates the component’s
these other components may use or extend the com-schema from scratch or by extending existing depen-
ponent’s data model. The DB Development Tool of dencies. Third, thevol ve. i qui.xm file contains
DAVE ensures, that all necessary information about a Liquibase operations to transform the previous ver-
componentis collected locally at developmenttime to sion of the component into the new one. Fourth, the
deploy any product globally. hi story folder contains the database folders from
Input. Developers specify a component’s all previous versions of the component. This is nec-
data model using Hibernate Entity Definition Lan- essary to perform updates even on older versions
guage (DevBoost, 2013) (HEDL). HEDL is a DSL than the previous one. Fifth and finally, tkgl
being able to generate the Java Persistence APl (JPA¥older contains SQL scripts, which are linked from

1| ext endModel ="c1. hedl "
2|Article {

3 I nt val ue;

4 String measure;

5

129

DATA 2015 - 4th International Conference on Data Management Technologies and Applications

ini.liqui.xm andevolve.!liqui.xm , describing erate the SQL templates for data evolution. When fill-
the evolution of the data. To realize the evolution ing the generated SQL templates, the developer may
of existing data during deployment, the DB Devel- assume the previous version to be still present.
opment Tool generates SQL templates into ¢ige Consider the evolution from@, to CJ, in the gen-
folder for each new column or table. The developer erated evolution script, we add the two attributes to
has to fill these templates manually. Nevertheless, theGener al _Car go. We do not need to remove the pre-
generated templates guide the developer through thisvious columns added # t i cl e, since this whole re-
task. Given the evolution tG,, DAVE generates an Iation is dropped by the evolution & to C;. How-

update statement template for the new columaisie ever, in the SQL statement templates we assumed the
andmeasur e oftheArti cl e table. The developercan Article table to be still present and transform the
assume the old tabke ti cl e to be still present. data to the new version. This database evolution script

is sufficient to execute any deployment including the
initialization file and the evolution file uses two database evolution between arbitrary configurations.

databasesDBrew and DBrer) and Liquibase's fea- Please note, that DAVE does not support evolution to

ture to compare given database schemas. To cre.Predecessor versions of components.

ate theini.liqui.xnl file, three steps are neces-

sary: First, we use the generated Hibernate map-4.2 DB Deployment Tool

ping to create the component’'s database schema to

DBnew The extension mechanism of HEDL inher- after the development and the generation, a concrete
ently initializes all dependencies. Second, we create customer product is ready to being deployed. If the
the schema of a customer product, containing exclu- cystomer already runs an older version of his prod-
sively the component's dependencies, using their ini- yct, the deployment has to keep the old data and
tialization scripts, tdByer. Finally, we use Liquibase transform it according to the new configuration. The
to compare the two database schemas and retrieve thgoncrete evolution script will be derived by DAVE's
ini.li qU| .xn file. To enrich this schema evolution DB Dep|0yment Tool from the generic description in
with data evolution, we create SQL templates for ev- the database folder of each component. As a conse-
ery new column or table, store them in 8w folder, quence, the deployment of products and the develop-

and link them from the Liquibase script. The toolgen- ment of single components are decoupled completely.
erates arUPDATE statement for each table including Input. The SPL contains components, including

new columns and ahNSERT statement for each new their created database folders. After the customer

table. The component developer has to use these temghoses the desired features from the feature model,
plates to specify the new values depending on the old the corresponding components are composed to the fi-
data, provided by the existing dependencies. For in- na| product. The local database folders of these com-
stance, the initialization script of compon@itadds phonents are simply collected and serve as input for
two columns to the tabIArt_| cl e and generatestem- pe deployment step. Another important input is the
plates for the corresponding update statements. Af-previous product and its configuration (the set of pre-
ter completing the SQL templates, the initialization yioysly installed components and their version num-
script is finished and ready to use for any initial de- pers)“This is necessary to determine for each compo-

Implementation. The algorithm to create the

ployment of the component. nent whether it is evolved, added, removed, or stays
If there is a previous version of the component, unchanged.
the evolution is stored in theyol ve. I'i qui . xn file. Output. The DB Deployment Tool creates a

The DB Development Tool creates it by executing the global Liquibase script for the database evolution. It
following four steps: First, we create the schema of ensures the correct evolution of both schema and data
the new component By Using its Hibernate map- of the currently installed product to the new one.

ping. Second, we initialize the previous version using Implementation. To generate a correct database
the initialization script of the predecessor and the pre- evolution script for a customer’s deployment, the DB
decessor’s dependenciesd®s. Third, we adjust Deployment Tool considers the currently installed
the dependencies to match the new component ver-configuration and derives the necessary steps to ob-
sion. This includes three possible scenarios: addingtain the new one. Figure 3 shows possible configu-
a dependencyi (i . I i qui.xnl), removing a depen- rations according to the example in Figure 3. As an
dency (inverse of ni . liqui.xm), and updating a example, let us consider the product evolution from
dependencyefol ve. | i qui . xnl). Finally, we again ~ {Cy,C,} to {C},CJ}. Given the new and the previous
use Liquibase to diff betweddBeyandDBes to Ob- configuration, DAVE determines the sets of added, re-
tain the evolution scriptvol ve. | i qui . xnl and gen- moved, and updated components and collects the re-

130

quired Liquibase operations respectively. These oper-

ations originate either from the initialization scrips it

Database Evolution for Software Product Lines

Articl e table and (7) adds the not-null constraints to
the new tables. This finally creates the desired schema

inverse, or the evolution script. In case a component’s including the transformed data.

update skips versions, the tool also includes the corre-

sponding evolution scripts from thé st or y folder.
DAVE's DB Deployment Tool interleaves the col-

lected database operations, since it is not feasible

to simply execute the whole scripts sequentially.
Evolution steps may influence each other. For in-
stance, the evolution dof; to C] creates the tables
Ceneral _Cargo andBul k_Cargo, inserts the data
from the tabléAr ti cl e accordingly, and finally drops
Article. The evolution of the additional component
from C, to the versiorC; adds the two columns to
Ceneral _Cargo and inserts the data frosrti cl e.

It can be applied neither before nor after the evolution
of the componen€;. If the evolution toC] is ex-
ecuted first, the tabl€eneral Cargo is not created
yet and the addition of the new columns and the in-
sertion of data would fail. If the evolution 165 is
executed last, the origindrticl e table is already
dropped including the data in the additional columns.
This is, in its essence, the weaving problem.

The DB Deployment Tool solves the weaving
problem with the help of operation groups. It

5 RELATED WORK

While software product lines are an exhaustively stud-
ied subject in software engineering, database man-
agement issues in SPLs are underrepresented in re-
search. According to the perception that a database
consists of its schema and its data, we distinguish
database schema evolution and accordant data evolu-
tion in SPLs. Both aspects of database evolution in
SPLs are relevant for the consistent evolution of com-
ponents and products as motivated in Section 3.
Variable database schemas in SPLs are studied
in (Khedri and Khosravi, 2013) and (Abo Zaid and
De Troyer, 2011). Modeling data variability in SPLs
is typically based on feature modeling as used in SPL
engineering. In (Abo Zaid and De Troyer, 2011), a
variable data modeis introduced. Before variability
of data concept@ the variable data model can be de-
fined, persistency featuras the feature model of the
SPL are specified by the extended Feature Assembly

groups database operations of the same kind across alModeling Technique (Abo Zaid et al., 2010). How-
components and arranges these groups sequentiallyever, this technique only considers the initial deriva-

Mainly, there are seven phases in the resulting evolu-

tion script. First, the DB Deployment Tool executes

tion of a product’s database schema.
The evolution of a database schema for an SPL

all database operations that add information capacity product is analyzed in (Khedri and Khosravi, 2013).

to the schema, like (19reating tablesor (2) adding
columns Afterwards, (3) all obsoleteonstraints are
removedo (4) executalata evolution At this point,

Delta-Oriented Programming is used to add delta
modules, defined by SQL DDL statements, to a core
module incrementally, based on the product config-

DML and DQL operations can access new schema el-yration. Database constraints are generated for the
ements and also the old ones. The previously existing delta scripts to ensure a valid global database schema.

data is still fully available and can be inserted into the
also existing new structures. Finally, the DB Deploy-

To the best of our knowledge, there is no research
on data evolution in software product lines. In our un-

ment Tool executes all database operations that reducjerstanding of SPL evolution (cf. Figure 3), compo-

the information capacity, like (5)emoving columns
or (6) dropping tablesto obtain the desired schema.
This also includes (7Adding new constraints

Within an operation group, the DB Deployment
Tool orders all operations according to the topological
order of the original components regarding their de-

nent evolution is closely related to database refactor-
ing (Ambler and Sadalage, 2006). There is sufficient
support for database evolution of one running prod-
uct, like e.g. Liquibase or Rake. However, the SPL
evolution, hence the weaving problem, still requires
in-depth research. It requires the generation of global

pendencies. Multiple operations of one component in evolution scripts from the component’s local scripts.

one group remain in the order specified by the devel-

Since the management of a software product line and

oper. In our example, the previously installed product the derivation of its products is mostly model-based,

uses ther ti cl e table with the additionalal ue and
measur e attributes. The final evolution script would
start by (1) creating the new tabl€sneral _Car go
andBul k_Car go, (2) adding theval ue andneasur e
attribute, and (4) inserting the data 6f into C;
and updating the additional attributes@f using the
original Arti cl e table. Afterwards, it (6) drops the

results from model-driven engineering research are
relevant. In (Milovanovic and Milicev, 2013) it is re-
ported about a pragmatic and efficient solution to the
problem of schema evolution affecting existing pro-
grams, in the domain of model-driven development
of database applications using Unified Modeling Lan-
guage (The Object Management Group, 2010) (UML)

131

DATA 2015 - 4th International Conference on Data Management Technologies and Applications

models. The main contribution of this paper is asemi- ACKNOWLEDGEMENTS

automatic algorithm for differencing structural UML

models and upgrading the relational schema, as wellWe thank our partners of the eTe project. This re-
as a tool that has been evaluated in a large-scale esearch has been co-funded by the European Regional
government human resources management system. Development Fund in the project #100135681/2804.

6 CONCLUSIONS REFERENCES

In the eTe project, we laid our focus on an impor- Abo Zaid, L. and De Troyer, O. (2011). Towards Modeling
tant but widely unstudied problem: database evolu- Data Variability in Software Product Lines. En-

Lo terprise, Business-Process and Information Systems
tion in SPLs. SPLs decouple the development of the Modeling volume 81 ofLecture Notes in Business In-

components from the actual deployment of products. formation ProcessingSpringer Berlin Heidelberg.
The developer of a component specifies its local data pp,, Zaid, L., E., K., and De Troyer, O. (2010). Feature As-
model. According to a customer’s requirements, such sembly Modelling: A New Technique for Modelling
components are composed to a product. The global Variable Software. Irbth International Conference
database schema of such a productis derived by com- - on Software and Data Technologies Proceedijngd-
posing the local schemas of all components. ume 1, pages 29 —35. SciTePress.

Since evolution is inevitable, the customer’s prod- Ambler, S."W. and Sadalage, P. J. (2006Refactoring
uct will evolve, including the addition, removal, or \?vztggasss)'fss‘gg“;g”aw Database Desigitidison-
update of components. The customer relies on a con- y '

sistent database, which has to be evolved accordingIy.Batogi'tighglz?:%sr)rhjggturlﬁ ,\(/DI?)%?AT(%ra;rga;sgh?ng Pg)dp_o-

Consequently, the database evolution during deploy- itors, Software Product Lingsvolume 3714 ofLec-

ment requires to derive the specific global evolution ture Notes in Computer Sciengeages 7-20. Springer

script from given local definitions within the compo- Berlin Heidelberg.

nents. Creating a correct (logical) and efficient (phys- Chen, K., Zhang, W., Zhao, H., and Mei, H. (2005). An

ical) evolution script is called the weaving problem. approach to constructing feature models based on re-
Obviously, this is a general problem, which is not quirements clustering. IRequirements Engineering,

2005. Proceedings. 13th IEEE International Confer-

restricted to the eTe scenario. To achieve a valuable
ence onpages 31-40.

general solution, we first discussed the general prob- . :
lem of (database) evolution in SPLs and formulated Czamecld, K. and E'S?neCker’ U. W. (2000)Genera-
tive Programming: Methods, Tools, and Applica-

general challenges. We presented DAVE, a database tjons ACM Press/Addison-Wesley Publishing Co.,
evolution toolkit for the eTe SPL. It weaves the local New York, NY, USA.
evolution scripts to a global evolution script by group- - pevBoost (2013). HEDL - Hibernate Entity Definition Lan-
ing the single database operations into groups, which guage (Hibernate DSL - User Guide).
are then executed sequentially. Within each group, Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and
the operations follow the topological order according Peterson, A. S. (1990). Feature-oriented domain anal-
to defined dependencies between components. Within ~ ysis (FODA) feasibility study. Technical report, DTIC
each component, the original order is kept. Document. _ _

DAVE solvesthe weaving problem on thelogical <107 %, +74 Kiesen, £ 0019, e Dacbase
Iev_eI. We suc_cessfully tested DAVE_on reahst!c evo- ware Engineering Conference (20th APSEC
lution scenarios based on the detailed experience of .

- . Lehman, M. M. (1980). Programs, life cycles, and laws of
the industry partners. It emerged as being capable of

. . . software evolutionProceedings of the IEEE
realizing database evolution for eTe. DAVE retains Milovanovic, V. and Milicev, D. (2013). An interactive tool

a lean runtime architecture, since DAVE does not in- for UML class model evolution in database applica-
troduce any additional layer at runtime for database tions. Software & Systems Modelingages 1-23.
evolution. Developers can rely on commonly known Murer, S., Bonati, B., and Furrer, F. J. (2010ylanaged
tools and technologies, which was an important re- Evolution: A Strategy for Very Large Information Sys-
quirement of the eTe project. tems Springer Berlin/Heidelberg.

The concepts of DAVE are universal and applica- Pohl, K., Bockle, G., and Van Der Linden, F. (2005oft-
ble to SPLs in general. SPLs and their evolution are ware Product Line Engineering - Foundations, Prin-

promising trends in software and database technology CiPles and Techniquesspringer Berlin/Heidelberg.
Roddick, J. F. (1995). A survey of schema versioning is-

and we consider DAVE as an important contribution -
. . . sues for database systemmformation & Software
particularly because of its practical background. Technology37(7):383-393

132

Database Evolution for Software Product Lines

Terwilliger, J. F., Cleve, A., and Curino, C. A. (2012). How
clean is your sandbox? IEMT, volume 7307.

The Object Management Group (2010). OMG Unified
Modeling Language TM (OMG UML), Superstruc-
ture, Version 2.3.

133

