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Abstract: Artificial Neural Networks have been widely used in several decision devices systems and typical signal 
processing applications. This paper proposes an equalizer for wireless channels using radial basis function 
neural networks. An equalizer is a device used in communication systems for compensating the non-ideal 
characteristics of the channel. The main motivation for such an application is their capability to form 
complex decision regions which are of paramount importance for estimating the transmitted symbols 
efficiently. The proposed equalizer is trained by means of an extended Kalman filter guaranteeing a fast 
training for the radio basis function neural network. Simulation results are presented comparing the 
proposed equalizer with traditional ones indicating the efficiency of the scheme. 

1 INTRODUCTION 

Channel equalization purpose is to remove the 
effects of the channel on the transmitted symbol 
sequence, namely the inter-symbol interference 
(ISI). Typically, this task can be done either by 
inverse filtering, Decision-Feedback-Equalization 
(DFE) or by means of sequential detection usually 
using Viterbi algorithm. Wireless channels can 
exhibit delay dispersion, in other words, Multi Path 
Components (MPCs) can have different runtimes 
from the transmitter (TX) to the receiver (RX). 
Delay dispersion causes ISI, which can greatly 
degrade the transmission of digital signals. Even a 
delay spread that is smaller than the symbol duration 
can cause a considerable Bit Error Rate (BER) 
degradation. If the delay spread becomes 
comparable with or larger than the symbol duration, 
as occurs often in second and third generation 
cellular systems, then the BER becomes 
unacceptably large if no countermeasures are taken. 
Also when a signal is transmitted through wireless 
medium then due to multipath effect there is 
fluctuation in signal amplitude, phase, and time 
delay. This effect is often known as fading (Proakis, 
2001). Coding and diversity can decrease, but not 
completely eliminate, errors due to ISI. On the other 
hand, delay dispersion can also be a positive effect. 
Since fading of the different MPCs is statistically 

independent, resolvable MPCs can be interpreted as 
diversity paths. Delay dispersion thus gives the 
possibility of delay diversity, if the RX can separate, 
and exploit, the resolvable MPCs. Equalizers are RX 
structures that work both ways - they reduce or 
eliminate ISI, and at the same time exploit the delay 
diversity inherent in the channel. The operational 
principle of an equalizer can be visualized either in 
the time domain or the frequency domain. In this 
paper the time-domain approach is pursued. For an 
interpretation in the frequency domain, remember 
that delay dispersion corresponds to frequency 
selectivity. In other words, ISI arises from the fact 
that the transfer function is not constant over the 
considered system bandwidth. The objective of an 
equalizer is thus to reverse distortions by the 
channel. That is, the product of the transfer functions 
of channel and equalizer should be constant 
(Proakis, 2001).  The channel dynamics may not be 
known at startup. Moreover the channel may vary 
with time, so an adaptive implementation of the 
equalizer is essential. The following different modes 
of adaptation can be listed: 

• Adaptation using a training signal; 
• Decision directed adaptation - An error signal 

is generated by comparing input and output of the 
decision device; 

• Blind adaptation: Exploiting signal properties 
instead of using an error signal for adaptation; 
In this paper a training signal is used for the 
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equalizer adaptation. Summing up, digital 
communication systems operates on time varying 
dispersive channels which often employ a signaling 
format in which customer data are organized in 
blocks preceded by a known training sequence. The 
training sequence at the beginning of each block is 
used to estimate channel or train an adaptive 
equalizer. Depending on the rate at which the 
channel changes with time, there may not be a need 
to further track the channel variations during the 
customer data sequence. This paper proposes a 
channel equalizer for wireless channels using Radial 
Basis Function (RBF) neural networks as the 
equalizer structure on a symbol by symbol decision 
basis. RBFs (Mulgrew, 1996) have been used in the 
area of neural networks where they are applied as a 
replacement for the sigmoidal transfer function. 
Such networks have three layers: the input layer, the 
hidden layer with the RBF nonlinearity, and a linear 
output layer, as shown in Fig. 1(Burse et al, 2010). 
Due to obvious reasons, the most popular choice for 
the nonlinearity is the Gaussian function. The RBF 
equalizer classifies the received signal according to 
the class of the center closest to the received vector 
(Assaf et al, 2005). The output of the RBF equalizer 
supplies an attractive alternative to the Multi-Layer 
Perceptron (MLP) type of Neural Network for 
channel equalization problems because the structure 
of the RBF network has a close relationship to 
Bayesian schemes for channel equalization and 
interference exclusion problems. This paper is 
divided into four sections. Section 2 does a brief 
discussion of RBF artificial neural networks. Section 
3 presents the application of RBF neural networks to 
the equalization problem and section 4 ends the 
paper by presenting conclusions. 

2 RBF NEURAL NETWORKS   

RBF neural networks are the second more used 
architecture after feedforward neural networks. 
Denoting the input (vector) as x and the output as 
y(x) (scalar), the architecture of a RBF neural 
network is given by 
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using Gaussian function as basis functions. Note 
that, ci are called centers and  is called the width. 
There are M basis functions centered at ci

 , and wi 
are named weights. 
RBF neural networks are very popular for function 

approximation, curve fitting, time series prediction, 
control and classification problems. The radial basis 
function network differs from other neural networks, 
showing many distinctive features. Due to their 
universal approximation, more concise topology and 
quicker learning speed, RBF networks have attracted 
considerable attention and they have been widely 
used in many science and engineering fields (Oyang 
et al., 2005), (Fu et al., 2005), (Devaraj et al., 2002), 
(Du et al., 2008), (Han et al., 2004). The 
determination of the number of neurons in the 
hidden layer in RBF networks is somewhat 
important because it affects the network complexity 
and the generalizing capability of the network. In 
case the number of the neurons in the hidden layer is 
insufficient, the RBF network cannot learn the data 
adequately. On the other hand, if the number of 
neurons is too high, poor generalization or an 
overlearning situation may take place (Liu et al., 
2004). The position of the centers in the hidden layer 
also influences the network performance 
significantly (Simon, 2002), so determination of the 
optimal locations of centers is an important job. 
Each neuron has an activation function in the hidden 
layer. The Gaussian function, which has a spread 
parameter that controls the behavior of the function, 
is the most preferred activation function. The 
training method of RBF networks also includes the 
optimization of spread parameters of each neuron. 
Later on, the weights between the hidden layer and 
the output layer must be selected suitably. Finally, 
the bias values which are added with each output are 
determined in the RBF network training procedure. 
In the literature, several algorithms were proposed 
for training RBF networks, such as the gradient 
descent (GD) algorithm (Karayiannis, 1999) and 
Extended Kalman filtering (EKF) (Simon, 2002). 
Several global optimization methods have been used 
for training RBF networks for different science and 
engineering problems such as genetic algorithms 
(GA) (Barreto et al., 2002), the particle swarm 
optimization (PSO) algorithm (Liu et al., 2004), the 
artificial immune system (AIS) algorithm (De Castro 
et al., 2001) and the differential evolution (DE) 
algorithm (Yu et al., 2006). The Artificial Bee 
Colony (ABC) algorithm is a population based 
evolutional optimization algorithm that can be used 
to various types of problems. The ABC algorithm 
has been used for training feed forward multi-layer 
perceptron neural networks by using test problems 
such as XOR, 3-bit parity and 4-bit encoder/decoder 
problems (Karaboga et al., 2007). Due to the need of 
fast convergence, EKF training was chosen for the 
RBF equalizer reported in this paper, details on the 
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training process can be found on (Simon, 2002). 

3 RBF NEURAL EQUALIZER  

Radial Basis Function Neural Networks have been 
used for channel equalization purposes (Lee et al., 
1999), (Gan et al., 1999), (Kumar et al. 2000), (Xie 
and Leung, 2005). Typically, such networks have 
three layers: the input layer, the hidden layer with 
the RBF nonlinearity, and a linear output layer, as 
shown in Fig. 1 (Burse et al., 2010).  The RBF 
equalizer classifies the received signal according to 
the class of the center closest to the received vector. 
The output of the RBF NNs gives an attractive 
alternative to traditional equalization methods for 
channel equalization problems because the structure 
of the RBF network has a close relationship to 
Bayesian methods for channel equalization and 
interference rejection problems. Simulations carried 
out on time-varying channels using a Rayleigh 
fading channel model to compare the performance of 
RBF with an adaptive maximum likelihood 
sequence estimator (MLSE) show that the RBF 
equalizer produces superior performance with less 
computational complexity (Mulgrew, 1996). Several 
techniques have been developed in literature to solve 
the problem of blind equalization using RBF (Tan et 
al., 2001), (Uncini et al., 2003) and others. RBF 
equalizers require less computing demands than 
other equalizers (Burse et al., 2010). 

 

Figure 1: RBF neural network (from Burse et al., 2010). 

A comprehensive review on channel equalization 

can be found in (Qureshi, 1985). A recent review on 
Neural Equalizers can be found in (Burse et al., 
2010). The equalization scheme can be seen in Fig. 2 
(taken from (Molisch, 2011)). The adaptive 
equalizer in the figure is the RBF Neural equalizer 
trained by EKF according to (Simon, 2002). The 
considered channel uses the Rayleigh model 
(Molisch, 2011) using QPSK modulation. 

 

Figure 2: Equalization procedure (from Molisch, 2011). 

The QPSK ideal constellation symbols are shown in 
figure 3. In other words when the communications 
channel is ideal, there is no distortion or noise so 
that the symbols are always received with no error. 
For a real channel the received symbols will show 
some dispersion as shown in figure 4. 

 
 
 
 
 
 

Figure 3: QPSK ideal constellation. 

 

Figure 4: QPSK real scenario constellation. 

Several simulations were performed for realistic 
channel characteristics. Two case studies were 
carried out.For the first case study, a flat fading 
channel was considered. Flat fading channels have 
amplitude varying channel characteristics and are 
narrowband (Molisch, 2011). A transmission of an 
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image was included in both case studies. The 
transmitted image is depicted in figure 5. 

 
Figure 5: Original transmitted image in case studies. 

The simulations also made possible to plot results 
for comparing the performance in terms of Bit Error 
Rate (BER) against Signal to Noise Ratio (SNR) and 
Symbol Error Rate (SER) against SNR. The 
received image for the RBF – EKF equalizer and the 
Decision Feedback Equalizer (DFE) which is a quite 
popular traditional equalizer is shown in figures 6 
and 7. 

 
Figure 6: RBF-EKF received image for flat fading. 

 

Figure 7: DFB received image for flat fading. 

In a qualitative way, one can see that the EKF-EBF 
equalizes better. For a quantitative description figure 
8 shows the BER x SNR and SER x SNR for 
comparing the two equalizers. The theoretical curve 

is also shown for comparative purposes. One can see 
that the RBF-EKF equalizer performs better as the 
comparison of the received images indicated. It can 
be also seen that for low SNRs the performance of 
the EKF-RBF equalizer is very close the theoretical 
performance. As SNR values increase the equalizer 
begins to get away from the theoretical model. 

 

Figure 8: BER x SNR for case study 1. 

Figure 9 shows a constellation diagram for the 
equalizers in case study 1, and it can be seen a 
cluster formation around the original symbols for 
both equalizers, indicating that errors might occur in 
the receiver output. 

 

Figure 9: BER x SNR for case study 1. 

In case study 2, a frequency selective fading was 
considered which is a more severe type of fading 
(Molisch, 2011). Figures 10 and 11 show the 
received images corresponding to EKF-RFB and 
DFB equalizers. 

 

Figure 10: DFB received image for case study 2. 

One can see a more intensive degradation in the 
image for both equalizers, although the DFB is still 
worse. The performance curves are depicted in 
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figure 12 which shows clearly the degradation in 
performance for both equalizers as far as frequency 
selective fading is concerned. 

 
Figure 11: EKF-RBF received image for case study 2. 

 

Figure 12: BER x SNR for case study 2. 

4 CONCLUSIONS 

This paper proposed a radial basis function (RBF) 
equalizer trained by an extended Kalman filter 
(EKF). The advantages of using a Kalman filter for 
training the RBF neural equalizer are that it provides  
the same performance as gradient descent training, 
but with only a fraction of the computational effort. 
Moreover if the decoupled Kalman filter is used, the 
same performance is guaranteed with further 
decrease on the computational effort for large 
problems. The equalizer was simulated and two case 
studies were reported where its performance was 
compared with the popular Decision feedback 
equalizer and the results indicated the proposed 
equalizer performed better. For future work the 
authors intend to consider improvements on the RBF 
equalizer as far as the tracking of time-variatons is 
concerned. 
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