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Abstract: Developing device drivers is often tedious and error-prone. Drivers for bare machine applications that run 
without an OS have been previously written by directly using specification documents. Transformation is an 
alternate approach that attempts to develop a bare machine driver by using existing code for an OS driver. 
We investigate the transformation of a Broadcom Linux 802.11n wireless device driver to a bare machine 
driver. As a first step towards understanding the transformation, we study the functions and OS 
dependencies of the Linux driver. The driver module is analyzed by examining its interaction with other 
modules, providing details of its key elements and code sizes, and by comparing code sizes with its 
counterpart Windows driver. We also discuss design issues that will be useful for developing device drivers 
that are independent of any operating system, kernel, or embedded system. 

1 INTRODUCTION 

Bare machine computing applications (Karne et al., 
2005; Karne et al., 2013a) run on the hardware 
without any operating system (OS) support. Device 
drivers they use must therefore be written so that 
they are independent of any OS. Many bare machine 
drivers have been written by directly using the 
relevant standards or specification documents. They 
include a USB device driver, 3Com/Intel network 
interface card drivers, and an audio card driver 
(Karne et al., 2013b; He et al., 2008; Ford et al., 
2009; Khaksari et al., 2007; Appiah-Kubi et al., 
2012; Rawal et al., 2011). We investigate an 
alternate approach for developing bare machine 
drivers that transforms an existing OS driver to run 
on a bare machine. It is possible to use a driver for 
one OS with another OS. For example, 
NDISwrapper (NDISwrapper) enables Linux to use 
a Windows driver. 

Transforming an OS driver to a bare driver 
requires that OS calls in the driver be eliminated or 
replaced with bare interfaces. We have previously 
transformed a Windows SQLite database engine to 
run on a bare machine (Okafor et al. 2013). 
However, transforming a typical OS-based driver 
such as a network driver to run without OS support 
appears to be harder. To gain insight into the driver 

transformation problem, we have undertaken a study 
of a popular wireless Linux driver: 802.11n 
Broadcom b43 (b43-Linux Wireless). This particular 
wireless driver was selected for transformation since 
its source code is readily available. Source code for 
wireless drivers is often proprietary; as a result, 
some Linux drivers have been reverse-engineered 
from their Windows equivalents (Broadcom 
Wireless-Arch Wiki; Corbet, 2011).  

An important goal in driver transformation is to 
avoid understanding low-level functionality and 
details of the driver source code as much as possible. 
Yet, it is first necessary to determine how the driver 
module (b43.ko in this case) communicates with 
external modules and the Linux kernel. In this paper, 
we analyze and classify system-related aspects of the 
Linux b43xx wireless driver in order to gain insight 
into this question. The rest of the paper is organized 
as follows. The Linux wireless driver module system 
view is presented in Section 2. The key code details 
and structures are illustrated in Section 3. The 
module interactions are described in Section 4. The 
OS/device driver interfaces and system calls are 
shown in Section 5. Related work is discussed in 
Section 6, and driver design issues are outlined in 
Section 7. The conclusions are given in Section 8. 
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2 SYSTEM VIEW 

Linux OS modules are based on object code 
interfaces instead of a binary executable. That is, a 
module is not linked until its run time, or is 
dynamically inserted into the kernel. While the 
module approach is very convenient and efficient for 
kernel management, it is not suited for bare machine 
transformation. The dependencies of a Linux driver 
module are somewhat complex and it is not possible 
to easily decouple the module from the Linux kernel. 
In general, the kernel provides a variety of services 
including process management, memory 
management, module management, dynamic linking 
and error checking. There is no kernel in a bare 
machine and a bare application manages memory 
and implements its own task scheduler. 

Fig. 1 shows a system view of the Broadcom b43 
wireless driver for Ubuntu 3.9.3. In this figure, we 
have labeled the key interfaces as #KSC and #EMC 
and the data symbols as #EDO for convenience. The 
significance of the numbers shown alongside the 
edges is explained later. The wireless module 
b43.ko, which incorporates essential driver 
functionality, has many dependencies on other 
modules and the kernel. In particular, b43.ko 
interacts with BCMA (Broadcom Microcontroller 
Architecture), SSB (Sonics Silicon Backplane), 
skbuf (socket buffer structure), LED (Light Emitting 
Diode), DMA (direct memory access), PRINT (print 
facilities) and IEEE802.11 (wireless standard). In 
addition, b43.ko also uses some system calls that are 
provided by the OS. 

 

Figure 1: System View (Linux Module). 

The b43.ko module exports symbol names 
(functions and variables) in order to provide a global 
scope so that other modules can use these interfaces. 

The module also has certain parameters defined 
externally and passed to the module when it is 
instantiated. These variables can change the internal 
behavior of the module using #ifdef statements. 

Table 1: B43 Source Files. 

bus.c Bus Abstraction 
debugfs.c Debug 
dma.c DMA 
leds.c LED Control 
lo.c Local Oscillator 
main.c Main 
pcmcia.c PCMCIA Card Interface 
phy_a.c PHY -a 
phy_common.c PHY  common 
phy_g.c PHY -g 
phy_ht.c PHY -h 
phy_lcn.c PHY -l 
phy_lp.c PHY -lp 
phy_n.c PHY  -n 
pio.c Parallel I/O 
radio_2055.c Radio Dev Data Tables 
radio_2056.c Radio Dev Data Tables 
radio_2057.c Radio Dev Data Tables 
radio_2059.c Radio Dev Data Tables 
rfkill.c Radio Enable 
sdio.c Secure Data Card Int 
sysfs.c Virtual File System 
tables.c Radio Device Data Tables 
tables_lpphy.c Radio Device Data Tables 
tables_nphy.c Radio Device Data Tables 
tables_phy_ht.c Radio Device Data Tables 
tables_phy_lcn.c Radio Device Data Tables 
wa.c Work arounds 
xmit.c TX/RX Functions 

 

In order to test the b43.ko module, we need the 
whole system running as a single monolithic 
executable. A variety of techniques were used to test 
the module including PRINTK statements, log 
traces, Objdump, KGDB, and intercepting interrupts 
using sys_call_table. 

3 CODE VIEW 

The “linux-source-3.9.3” version for Ubuntu 12.10 
version has 29 “C” source code files and “30” 
header files. Each source file has a corresponding 
header file and the extra header file b43.h consists of 
data definitions, constants and inline functions for 
the b43 module. In addition, there are 41 header files 
for libraries and system calls. The b43 source files 
are classified into groups based on their functionality 
in Table 1. The total source code size is 45,483 lines 
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and the header code size is 7,446 lines, amounting to 
a total of 52,929 lines. In Fig. 2, the code 
percentages for the b43 code groups identified in 
Table 1 are shown. It can be seen that this device 
driver covers many features and options that are not 
required for a typical usage of the driver. For 
example, LED Control, Debug, and PCMCIA were 
not used when we tested the module with a desktop 
PC running Ubuntu. When we eliminate code sizes 
that are not relevant to a typical application, the total 
code size becomes 35,943 lines (that is 68% of the 
original code). 

 

Figure 2: Percentage of Code Sizes per Group. 

We also analyzed the b43.ko module using the 
Source Insight tool (sourceinsight.com). The module 
summary it gave for b43.ko is shown in Table 2. It 
indicates the number of functions (899), function 
prototypes (220) and external variables (43). 
Constants, functions and structure members are seen 
to be the largest contributors to b43. The b43.h 
header file contains many data structures, definitions 
and system header files. The components of this 
header file and their relationships can be analyzed 
by using the Doxygen tool (stack.nl) as shown in 
Fig. 3.  

Table 2: B43 Module Dissection. 

Summary of Items on b43 driver 

Structures (109) Macros (68) 

Unions (10) Function Prototypes (220) 

Enumerations (24) Method Prototypes (23) 

Constants (4275) Structure Members (891) 

Enum Constants (118) 

Variables (257) 

External Variables (43) 

Functions (899) 
 

There are 18 system header files in this header 

including 802.11mac.h, ssb.h, and kernel.h. The 
relation between the 802.11 physical layer header 
files phy_a.h, phy_g.h, phy_common.h, and 
nl802.11.h is shown on the right side of the figure. 
 

 

Figure 3: b43.h Header Structure. 

The 899 functions found in Table 2 were also 
classified based on their functional unit as defined in 
Table 1. The number of functions in each unit is 
shown in Fig. 4.  

 

 

Figure 4: Percentage of Functions per Group. 

In this classification, the largest unit is phy 
(42%). If we ignore functions that are not used in 
our desktop PC and b43.ko wireless module 
connection with security turned off, we only need 
583 functions (which are 65% of total functions 
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implemented in the module). We also generated a 
log file with PRINTK statements in each function 
and found that only functions in the files dma.c, 
leds.c, main.c, phy_common.c, phy_n.c, xmit.c, and 
b43.h (inline) were activated. These functions 
include a total of 440 out of 899, which is 49% of 
the total functions implemented in the module. This 
implies that the b43.ko module has about 50% of 
functions that may not be used at a given time for a 
given setup. 

We have also compared the Linux wireless 
driver with a Windows version of its counterpart 
(WMP300Nv1.sys). The source code for this 
Windows driver is not available.  

Table 3 shows a comparison of assembly source 
lines of code and number of “call” statements in the 
Windows and Linux drivers. The Linux driver 
assembly code is almost three times smaller as it is a 
module and requires other interfaces at execution. 
The number of CALL statements in the code 
includes local calls and external interfaces. 

Table 3: (LoC, # of Calls) for Linux and Windows. 

Driver Assembly LoC Number of CALLs  

Linux  53,863 7340 

Windows 160,490 9798 

4 EXTERNAL INTERACTIONS 

While the code views shown in the previous section 
show the structure of the b43.ko module, they do not 
reflect module dependencies and kernel interactions. 
There are many tools that can be used to identify the 
external interactions and OS related calls for this 
module. For example, “objdump” (available in 
Linux and Windows) has a variety of options that 
give useful information about the object module. 
Similarly, GNU’s “nm” utility provides undefined 
symbols (UND) that indicate system calls and other 
library interfaces. In addition, the Linux command 
“/proc/kallsyms” in Linux lists all symbols in the 
kernel. 

The parameters passed to the module can be 
obtained using: “ls –l /sys/module/b43/parameters”. 
In this module there are nine parameters that can be 
passed to the module (bad_frames_preempt, btcoex, 
fwpostfix, hwpctl, hwtkip, nohwcrypt, pio, qos, and 
verbose). We removed the module from the kernel 
using “sudo rmmod b43”, and checked the exported 
symbols using “cat  /proc/kallsyms | grep b43_”. 

Surprisingly, we found that three symbols 
(b43_pci_bridge_driver, b43_pci_bridge_tbl, and 
b43_pci_ssb_bridge_exit) still remained in the 
“/proc/kallsyms” file after removal of the module. It 
is possible that these three symbols may have been 
defined by other modules using the b43_ label since 
there are no such symbols referred to in the b43.ko 
module. We inserted the module into the kernel 
using “sudo modprobe b43” and checked the 
exported symbols again. This time, there were 771 
symbols in the exported table. These symbols 
consist of 471 functions, the rest being data symbols. 
The 471 functions are exported from the b43.ko 
module for other modules to use. We did not find 
any EXPORT statements in the b43 source code. So 
it appears that the command “modprobe” generated 
these EXPORT symbols during the insert or 
dynamic link time.  

To understand the 471 functions above and to get 
more details on b43.ko, we used “objdump” and 
“nm”. The command “objdump –t b43.ko > 
objdump.txt” gives all symbols in the b43.ko 
module. There were 998 lines captured in the 
objdump.txt file. Likewise, the command “grep g 
objdump.txt > globals.txt” gives all global symbols 
in the b43.ko module, which amounted to 195 
symbols. The command “grep .text globals.txt > 
globalfun.txt” showed that there are 147 functions in 
the module. The rest of the global symbols (195-147 
= 48) are global data parameters that consist of the 
.data and .rodata sections of the module (#EDO in 
Fig. 1). The command “grep UND objdump.txt > 
syscalls.txt” identified 127 system calls that were 
needed in the module. Similar results were also 
obtained by using the “nm” command. The 
command “nm –g b43.ko > nmext.txt” resulted in 
322 global symbols. The command “grep U 
nmext.txt > nmsyscalls.txt” also showed that there 
are 127 system calls in the module, which served to 
confirm this number. The 127 external system calls 
include all the interfaces shown in Fig. 1 except 
#EDO. The equivalents of these 127 kernel/system 
calls (#KSC and #EMC interfaces in Fig. 1) must be 
provided to transform the Linux b43 wireless driver 
into a wireless driver that can run on a bare machine. 

We also collected more data for the BCM43xx 
Windows wireless driver WMP300Nv1.sys, which is 
not open source. Fig. 5 shows its system view and 
relation to HAL (hardware abstraction layer), NDIS 
(network driver interface specification) and Kernel. 
All these components are DLL elements that work 
with the wireless driver. The HAL component has 3 
interfaces: acquire spin lock, release spin lock and 
stall processor. NDIS has 41 interfaces, which are 
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wrapper interfaces enabling the driver to run in a 
Linux environment. There are 29 kernel interfaces, 
which are similar to the #KSC interfaces in Fig. 1. 
The Windows driver has 73 external interfaces or 
system calls compared to 127 for the Linux driver. 
More interfaces are needed in Linux, although it is a 
module and not an executable. We determined that 8 
interfaces here are similar to #KSC in Fig. 1, while 
the rest are unique to Windows. There are less 
system calls in the Windows driver compared to the 
Linux driver since Windows encapsulates more 
functions into its driver. The DLL approach in 
Windows is based on executable modules instead of 
object modules, enabling the driver to be more self-
contained. 

 

 

Figure 5: System View (Windows Driver). 

5 KERNEL INTERACTIONS 

The #KSC, #EMC interfaces and #EDO data 
symbols identified in the previous section enable the 
b43.ko module to interact with the Linux kernel and 
other modules. The 127 system interfaces identified 
for b43 consist of 63 #KSC and 64 other interfaces 
(15 SSB, 23 IEEE802.11, 5 SKBUFF, 6 DMA, 2 
LED, 11 BCMA, and 2 LED) as shown in Fig. 1. 
Similarly, the 48 EDO interfaces consist of 4 .data 
objects, 43 .rodata (read-only data) objects, and 1 
.gnu.linkonce.this_module object. These objects 
represent local and remote data objects. 

6 RELATED WORK 

Many studies have been conducted to understand the 
design and internals of device drivers. In (Kadav and 
Swift 2012), an in-depth study of Linux device 

drivers is undertaken. Static analysis tools are used 
to analyze driver code and determine how drivers 
interact with the OS and the hardware. The study 
does not consider a particular driver or wireless 
driver. In (Amar et al., n.d.), driver development 
using hardware abstraction and APIs for hardware 
and software interfaces are discussed. While their 
Device Object Model is useful for separating OS and 
device-specific components of drivers, it does not 
provide any insights for transforming an OS driver 
so that it becomes OS independent. The focus of 
(Boyd-Wickizer and Zeldovich 2010) is a system 
that enables Linux drivers to run in user space so 
that they are able to limit the impact of attacks on 
drivers. In (Chipounov and Candea 2006), a 
technique for reverse engineering drivers is given. 
However, the technique cannot be easily adapted to 
reverse engineer an existing OS driver to run on a 
bare machine. The approach suggested for driver 
reuse in (LeVasseur et al., 2004) is to run an existing 
driver and the original OS inside a virtual machine 
using pre-virtualization to construct the virtual 
machine. This requires some modifications to the 
OS. None of these techniques can be used to develop 
bare machine drivers by transforming existing OS 
drivers.  

7 DRIVER DESIGN ISSUES 

The b43.ko module is designed to operate with the 
Linux OS. Instead of using an NDIS-like wrapper, 
an alternate approach that will enable a b43 driver 
for one OS to be used with another OS and on a bare 
machine is to provide appropriate and equivalent 
interfaces to #KSC, #EMC, and #EDO. Ideally, the 
wireless device driver specification can be an 
abstract data model that is analogous to other 
standards such as the USB standard or SCSI 
standard. The USB standard is particularly 
convenient as many devices already use USB 
interfaces. This will allow all wireless commands to 
be wrapped inside a USB command payload and the 
driver to execute these commands while hiding the 
complexity. 

A wireless device driver can then be designed as 
a self-contained object that provides a high-level 
API to applications including the kernel. This API 
does not micro-manage the wireless driver. That is, 
its API can be directly invoked by an application 
programmer, and there is no kernel or embedded 
system running in the machine. Also, providing a 
standard set of operations such as Initialize(), 
Reset(), Read(), Write() and Configure() will 
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simplify the design of both wireless and wired 
network interface device drivers. 

Another issue related to Linux and b43.ko 
interdependencies is the complexity of the module 
architecture. The b43.ko module has a large number 
of external interfaces making it difficult to decouple 
the driver module from its operating environment. 
By modeling a wireless device driver as a self-
contained object it becomes possible to eliminate all 
other module interactions and provide a standard 
interface directly to the application programmer. 
This approach was used to develop device drivers 
for a variety of bare machine applications. These 
drivers require no OS, kernel, or embedded system 
to support their operation. 

The b43.ko module also incorporates general 
functionality that is rarely used in a typical operating 
environment. Such functionality makes the module 
itself complex and large in size. This in turn makes it 
harder to understand the driver, port it, and test its 
operations. Bare machine drivers can solve these 
problems; however, more research is required to 
understand how to transform existing OS drivers so 
that their OS dependencies are removed. 

8 CONCLUSIONS 

We studied the b43.ko Linux wireless driver module 
and discussed its system view and code view, and 
also its external interactions with other modules. The 
code and functions used in the module were 
classified based on their type of operation and 
functionality. Design issues identified with the 
design of b43.ko provide a starting point for future 
development of device drivers that are independent 
of any OS. The driver details provided in the paper 
will be useful for developing techniques that can 
transform OS drivers to bare machine drivers. 
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