
Insights into Transforming a Linux Wireless Device Driver to Run
on a Bare Machine

William Agosto-Padilla, Ramesh Karne and Alexander Wijesinha
Department of Computer & Information Sciences, Towson University, Towson, U.S.A.

Keywords: Linux, 802.11 Wireless, Device Driver, Bare Machine, Transformation.

Abstract: Developing device drivers is often tedious and error-prone. Drivers for bare machine applications that run
without an OS have been previously written by directly using specification documents. Transformation is an
alternate approach that attempts to develop a bare machine driver by using existing code for an OS driver.
We investigate the transformation of a Broadcom Linux 802.11n wireless device driver to a bare machine
driver. As a first step towards understanding the transformation, we study the functions and OS
dependencies of the Linux driver. The driver module is analyzed by examining its interaction with other
modules, providing details of its key elements and code sizes, and by comparing code sizes with its
counterpart Windows driver. We also discuss design issues that will be useful for developing device drivers
that are independent of any operating system, kernel, or embedded system.

1 INTRODUCTION

Bare machine computing applications (Karne et al.,
2005; Karne et al., 2013a) run on the hardware
without any operating system (OS) support. Device
drivers they use must therefore be written so that
they are independent of any OS. Many bare machine
drivers have been written by directly using the
relevant standards or specification documents. They
include a USB device driver, 3Com/Intel network
interface card drivers, and an audio card driver
(Karne et al., 2013b; He et al., 2008; Ford et al.,
2009; Khaksari et al., 2007; Appiah-Kubi et al.,
2012; Rawal et al., 2011). We investigate an
alternate approach for developing bare machine
drivers that transforms an existing OS driver to run
on a bare machine. It is possible to use a driver for
one OS with another OS. For example,
NDISwrapper (NDISwrapper) enables Linux to use
a Windows driver.

Transforming an OS driver to a bare driver
requires that OS calls in the driver be eliminated or
replaced with bare interfaces. We have previously
transformed a Windows SQLite database engine to
run on a bare machine (Okafor et al. 2013).
However, transforming a typical OS-based driver
such as a network driver to run without OS support
appears to be harder. To gain insight into the driver

transformation problem, we have undertaken a study
of a popular wireless Linux driver: 802.11n
Broadcom b43 (b43-Linux Wireless). This particular
wireless driver was selected for transformation since
its source code is readily available. Source code for
wireless drivers is often proprietary; as a result,
some Linux drivers have been reverse-engineered
from their Windows equivalents (Broadcom
Wireless-Arch Wiki; Corbet, 2011).

An important goal in driver transformation is to
avoid understanding low-level functionality and
details of the driver source code as much as possible.
Yet, it is first necessary to determine how the driver
module (b43.ko in this case) communicates with
external modules and the Linux kernel. In this paper,
we analyze and classify system-related aspects of the
Linux b43xx wireless driver in order to gain insight
into this question. The rest of the paper is organized
as follows. The Linux wireless driver module system
view is presented in Section 2. The key code details
and structures are illustrated in Section 3. The
module interactions are described in Section 4. The
OS/device driver interfaces and system calls are
shown in Section 5. Related work is discussed in
Section 6, and driver design issues are outlined in
Section 7. The conclusions are given in Section 8.

295Agosto-Padilla W., Karne R. and Wijesinha A..
Insights into Transforming a Linux Wireless Device Driver to Run on a Bare Machine.
DOI: 10.5220/0005470002950300
In Proceedings of the 10th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2015), pages 295-300
ISBN: 978-989-758-100-7
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

2 SYSTEM VIEW

Linux OS modules are based on object code
interfaces instead of a binary executable. That is, a
module is not linked until its run time, or is
dynamically inserted into the kernel. While the
module approach is very convenient and efficient for
kernel management, it is not suited for bare machine
transformation. The dependencies of a Linux driver
module are somewhat complex and it is not possible
to easily decouple the module from the Linux kernel.
In general, the kernel provides a variety of services
including process management, memory
management, module management, dynamic linking
and error checking. There is no kernel in a bare
machine and a bare application manages memory
and implements its own task scheduler.

Fig. 1 shows a system view of the Broadcom b43
wireless driver for Ubuntu 3.9.3. In this figure, we
have labeled the key interfaces as #KSC and #EMC
and the data symbols as #EDO for convenience. The
significance of the numbers shown alongside the
edges is explained later. The wireless module
b43.ko, which incorporates essential driver
functionality, has many dependencies on other
modules and the kernel. In particular, b43.ko
interacts with BCMA (Broadcom Microcontroller
Architecture), SSB (Sonics Silicon Backplane),
skbuf (socket buffer structure), LED (Light Emitting
Diode), DMA (direct memory access), PRINT (print
facilities) and IEEE802.11 (wireless standard). In
addition, b43.ko also uses some system calls that are
provided by the OS.

Figure 1: System View (Linux Module).

The b43.ko module exports symbol names
(functions and variables) in order to provide a global
scope so that other modules can use these interfaces.

The module also has certain parameters defined
externally and passed to the module when it is
instantiated. These variables can change the internal
behavior of the module using #ifdef statements.

Table 1: B43 Source Files.

bus.c Bus Abstraction
debugfs.c Debug
dma.c DMA
leds.c LED Control
lo.c Local Oscillator
main.c Main
pcmcia.c PCMCIA Card Interface
phy_a.c PHY -a
phy_common.c PHY common
phy_g.c PHY -g
phy_ht.c PHY -h
phy_lcn.c PHY -l
phy_lp.c PHY -lp
phy_n.c PHY -n
pio.c Parallel I/O
radio_2055.c Radio Dev Data Tables
radio_2056.c Radio Dev Data Tables
radio_2057.c Radio Dev Data Tables
radio_2059.c Radio Dev Data Tables
rfkill.c Radio Enable
sdio.c Secure Data Card Int
sysfs.c Virtual File System
tables.c Radio Device Data Tables
tables_lpphy.c Radio Device Data Tables
tables_nphy.c Radio Device Data Tables
tables_phy_ht.c Radio Device Data Tables
tables_phy_lcn.c Radio Device Data Tables
wa.c Work arounds
xmit.c TX/RX Functions

In order to test the b43.ko module, we need the
whole system running as a single monolithic
executable. A variety of techniques were used to test
the module including PRINTK statements, log
traces, Objdump, KGDB, and intercepting interrupts
using sys_call_table.

3 CODE VIEW

The “linux-source-3.9.3” version for Ubuntu 12.10
version has 29 “C” source code files and “30”
header files. Each source file has a corresponding
header file and the extra header file b43.h consists of
data definitions, constants and inline functions for
the b43 module. In addition, there are 41 header files
for libraries and system calls. The b43 source files
are classified into groups based on their functionality
in Table 1. The total source code size is 45,483 lines

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

296

and the header code size is 7,446 lines, amounting to
a total of 52,929 lines. In Fig. 2, the code
percentages for the b43 code groups identified in
Table 1 are shown. It can be seen that this device
driver covers many features and options that are not
required for a typical usage of the driver. For
example, LED Control, Debug, and PCMCIA were
not used when we tested the module with a desktop
PC running Ubuntu. When we eliminate code sizes
that are not relevant to a typical application, the total
code size becomes 35,943 lines (that is 68% of the
original code).

Figure 2: Percentage of Code Sizes per Group.

We also analyzed the b43.ko module using the
Source Insight tool (sourceinsight.com). The module
summary it gave for b43.ko is shown in Table 2. It
indicates the number of functions (899), function
prototypes (220) and external variables (43).
Constants, functions and structure members are seen
to be the largest contributors to b43. The b43.h
header file contains many data structures, definitions
and system header files. The components of this
header file and their relationships can be analyzed
by using the Doxygen tool (stack.nl) as shown in
Fig. 3.

Table 2: B43 Module Dissection.

Summary of Items on b43 driver

Structures (109) Macros (68)

Unions (10) Function Prototypes (220)

Enumerations (24) Method Prototypes (23)

Constants (4275) Structure Members (891)

Enum Constants (118)

Variables (257)

External Variables (43)

Functions (899)

There are 18 system header files in this header

including 802.11mac.h, ssb.h, and kernel.h. The
relation between the 802.11 physical layer header
files phy_a.h, phy_g.h, phy_common.h, and
nl802.11.h is shown on the right side of the figure.

Figure 3: b43.h Header Structure.

The 899 functions found in Table 2 were also
classified based on their functional unit as defined in
Table 1. The number of functions in each unit is
shown in Fig. 4.

Figure 4: Percentage of Functions per Group.

In this classification, the largest unit is phy
(42%). If we ignore functions that are not used in
our desktop PC and b43.ko wireless module
connection with security turned off, we only need
583 functions (which are 65% of total functions

Insights�into�Transforming�a�Linux�Wireless�Device�Driver�to�Run�on�a�Bare�Machine

297

implemented in the module). We also generated a
log file with PRINTK statements in each function
and found that only functions in the files dma.c,
leds.c, main.c, phy_common.c, phy_n.c, xmit.c, and
b43.h (inline) were activated. These functions
include a total of 440 out of 899, which is 49% of
the total functions implemented in the module. This
implies that the b43.ko module has about 50% of
functions that may not be used at a given time for a
given setup.

We have also compared the Linux wireless
driver with a Windows version of its counterpart
(WMP300Nv1.sys). The source code for this
Windows driver is not available.

Table 3 shows a comparison of assembly source
lines of code and number of “call” statements in the
Windows and Linux drivers. The Linux driver
assembly code is almost three times smaller as it is a
module and requires other interfaces at execution.
The number of CALL statements in the code
includes local calls and external interfaces.

Table 3: (LoC, # of Calls) for Linux and Windows.

Driver Assembly LoC Number of CALLs

Linux 53,863 7340

Windows 160,490 9798

4 EXTERNAL INTERACTIONS

While the code views shown in the previous section
show the structure of the b43.ko module, they do not
reflect module dependencies and kernel interactions.
There are many tools that can be used to identify the
external interactions and OS related calls for this
module. For example, “objdump” (available in
Linux and Windows) has a variety of options that
give useful information about the object module.
Similarly, GNU’s “nm” utility provides undefined
symbols (UND) that indicate system calls and other
library interfaces. In addition, the Linux command
“/proc/kallsyms” in Linux lists all symbols in the
kernel.

The parameters passed to the module can be
obtained using: “ls –l /sys/module/b43/parameters”.
In this module there are nine parameters that can be
passed to the module (bad_frames_preempt, btcoex,
fwpostfix, hwpctl, hwtkip, nohwcrypt, pio, qos, and
verbose). We removed the module from the kernel
using “sudo rmmod b43”, and checked the exported
symbols using “cat /proc/kallsyms | grep b43_”.

Surprisingly, we found that three symbols
(b43_pci_bridge_driver, b43_pci_bridge_tbl, and
b43_pci_ssb_bridge_exit) still remained in the
“/proc/kallsyms” file after removal of the module. It
is possible that these three symbols may have been
defined by other modules using the b43_ label since
there are no such symbols referred to in the b43.ko
module. We inserted the module into the kernel
using “sudo modprobe b43” and checked the
exported symbols again. This time, there were 771
symbols in the exported table. These symbols
consist of 471 functions, the rest being data symbols.
The 471 functions are exported from the b43.ko
module for other modules to use. We did not find
any EXPORT statements in the b43 source code. So
it appears that the command “modprobe” generated
these EXPORT symbols during the insert or
dynamic link time.

To understand the 471 functions above and to get
more details on b43.ko, we used “objdump” and
“nm”. The command “objdump –t b43.ko >
objdump.txt” gives all symbols in the b43.ko
module. There were 998 lines captured in the
objdump.txt file. Likewise, the command “grep g
objdump.txt > globals.txt” gives all global symbols
in the b43.ko module, which amounted to 195
symbols. The command “grep .text globals.txt >
globalfun.txt” showed that there are 147 functions in
the module. The rest of the global symbols (195-147
= 48) are global data parameters that consist of the
.data and .rodata sections of the module (#EDO in
Fig. 1). The command “grep UND objdump.txt >
syscalls.txt” identified 127 system calls that were
needed in the module. Similar results were also
obtained by using the “nm” command. The
command “nm –g b43.ko > nmext.txt” resulted in
322 global symbols. The command “grep U
nmext.txt > nmsyscalls.txt” also showed that there
are 127 system calls in the module, which served to
confirm this number. The 127 external system calls
include all the interfaces shown in Fig. 1 except
#EDO. The equivalents of these 127 kernel/system
calls (#KSC and #EMC interfaces in Fig. 1) must be
provided to transform the Linux b43 wireless driver
into a wireless driver that can run on a bare machine.

We also collected more data for the BCM43xx
Windows wireless driver WMP300Nv1.sys, which is
not open source. Fig. 5 shows its system view and
relation to HAL (hardware abstraction layer), NDIS
(network driver interface specification) and Kernel.
All these components are DLL elements that work
with the wireless driver. The HAL component has 3
interfaces: acquire spin lock, release spin lock and
stall processor. NDIS has 41 interfaces, which are

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

298

wrapper interfaces enabling the driver to run in a
Linux environment. There are 29 kernel interfaces,
which are similar to the #KSC interfaces in Fig. 1.
The Windows driver has 73 external interfaces or
system calls compared to 127 for the Linux driver.
More interfaces are needed in Linux, although it is a
module and not an executable. We determined that 8
interfaces here are similar to #KSC in Fig. 1, while
the rest are unique to Windows. There are less
system calls in the Windows driver compared to the
Linux driver since Windows encapsulates more
functions into its driver. The DLL approach in
Windows is based on executable modules instead of
object modules, enabling the driver to be more self-
contained.

Figure 5: System View (Windows Driver).

5 KERNEL INTERACTIONS

The #KSC, #EMC interfaces and #EDO data
symbols identified in the previous section enable the
b43.ko module to interact with the Linux kernel and
other modules. The 127 system interfaces identified
for b43 consist of 63 #KSC and 64 other interfaces
(15 SSB, 23 IEEE802.11, 5 SKBUFF, 6 DMA, 2
LED, 11 BCMA, and 2 LED) as shown in Fig. 1.
Similarly, the 48 EDO interfaces consist of 4 .data
objects, 43 .rodata (read-only data) objects, and 1
.gnu.linkonce.this_module object. These objects
represent local and remote data objects.

6 RELATED WORK

Many studies have been conducted to understand the
design and internals of device drivers. In (Kadav and
Swift 2012), an in-depth study of Linux device

drivers is undertaken. Static analysis tools are used
to analyze driver code and determine how drivers
interact with the OS and the hardware. The study
does not consider a particular driver or wireless
driver. In (Amar et al., n.d.), driver development
using hardware abstraction and APIs for hardware
and software interfaces are discussed. While their
Device Object Model is useful for separating OS and
device-specific components of drivers, it does not
provide any insights for transforming an OS driver
so that it becomes OS independent. The focus of
(Boyd-Wickizer and Zeldovich 2010) is a system
that enables Linux drivers to run in user space so
that they are able to limit the impact of attacks on
drivers. In (Chipounov and Candea 2006), a
technique for reverse engineering drivers is given.
However, the technique cannot be easily adapted to
reverse engineer an existing OS driver to run on a
bare machine. The approach suggested for driver
reuse in (LeVasseur et al., 2004) is to run an existing
driver and the original OS inside a virtual machine
using pre-virtualization to construct the virtual
machine. This requires some modifications to the
OS. None of these techniques can be used to develop
bare machine drivers by transforming existing OS
drivers.

7 DRIVER DESIGN ISSUES

The b43.ko module is designed to operate with the
Linux OS. Instead of using an NDIS-like wrapper,
an alternate approach that will enable a b43 driver
for one OS to be used with another OS and on a bare
machine is to provide appropriate and equivalent
interfaces to #KSC, #EMC, and #EDO. Ideally, the
wireless device driver specification can be an
abstract data model that is analogous to other
standards such as the USB standard or SCSI
standard. The USB standard is particularly
convenient as many devices already use USB
interfaces. This will allow all wireless commands to
be wrapped inside a USB command payload and the
driver to execute these commands while hiding the
complexity.

A wireless device driver can then be designed as
a self-contained object that provides a high-level
API to applications including the kernel. This API
does not micro-manage the wireless driver. That is,
its API can be directly invoked by an application
programmer, and there is no kernel or embedded
system running in the machine. Also, providing a
standard set of operations such as Initialize(),
Reset(), Read(), Write() and Configure() will

Insights�into�Transforming�a�Linux�Wireless�Device�Driver�to�Run�on�a�Bare�Machine

299

simplify the design of both wireless and wired
network interface device drivers.

Another issue related to Linux and b43.ko
interdependencies is the complexity of the module
architecture. The b43.ko module has a large number
of external interfaces making it difficult to decouple
the driver module from its operating environment.
By modeling a wireless device driver as a self-
contained object it becomes possible to eliminate all
other module interactions and provide a standard
interface directly to the application programmer.
This approach was used to develop device drivers
for a variety of bare machine applications. These
drivers require no OS, kernel, or embedded system
to support their operation.

The b43.ko module also incorporates general
functionality that is rarely used in a typical operating
environment. Such functionality makes the module
itself complex and large in size. This in turn makes it
harder to understand the driver, port it, and test its
operations. Bare machine drivers can solve these
problems; however, more research is required to
understand how to transform existing OS drivers so
that their OS dependencies are removed.

8 CONCLUSIONS

We studied the b43.ko Linux wireless driver module
and discussed its system view and code view, and
also its external interactions with other modules. The
code and functions used in the module were
classified based on their type of operation and
functionality. Design issues identified with the
design of b43.ko provide a starting point for future
development of device drivers that are independent
of any OS. The driver details provided in the paper
will be useful for developing techniques that can
transform OS drivers to bare machine drivers.

REFERENCES

Appiah-Kubi, P., Karne, R. K., Wijesinha, A. L., 2012. A
bare PC TLS webmail server. In ICNC.

Amar, A., Joshi, S., Wallwork, D., Generic driver model
using hardware abstraction and standard APIs.
Available from: <http://www.design-reuse.com/
articles/18584/generic-driver-model.html>. [12 Dec
2014].

Boyd-Wickizer, S., Zeldovich, N., 2010. Tolerating
malicious device drivers in Linux. In USENIX ATC.

Broadcom Wireless-Arch Wiki. Available from:
<http://wiki.archlinux.org/index.php/broadcom_wirele
ss>. [12 Dec 2014].

b43-Linux Wireless. Available from: <http://wireless.
kernel.org/en/users/Drivers/b43>. [12 Dec 2014].

Chipounov, V., Candea, G., 2006. Reverse engineering of
binary device drivers with RevNIC. In Eurosys.

Corbet, J., 2011. Broadcom's wireless drivers, one year
later. Available from: <http://lwn.net/Articles/
456762/>. [12 Dec 2014].

Doxygen. Available from: <http://www.stack.nl/
~dimitri/doxygen/>. [12 Dec 2014].

Ford, G. H., Karne, R. K., Wijesinha, A. L., Appiah-Kubi,
P., 2009. The design and implementation of a bare PC
email server. In COMPSAC.

He, L., Karne, R. K., Wijesinha, A. L., 2008. Design and
performance of a bare PC web server. International
Journal of Computers and Their Applications (IJCA).

Kadav, A., Swift, M. M., 2012. Understanding modern
device drivers. In ASPLOS XVII.

Karne, R. K., Jaganathan, K. V., Ahmed, T., Rosa, N.,
2005. Dispersed Operating System Computing
(DOSC). In Onward Track OOPSLA.

Karne, R. K., Wijesinha, A. L., Okafor, U., Appiah-Kubi,
P., 2013a. Eliminating the operating system via the
bare machine computing paradigm. In Future
Computing.

Karne, R. K., Liang, S., Wijesinha, A. L., Appiah-Kubi,
P., 2013b. A bare PC mass storage USB driver.
International Journal of Computers and Their
Applications (IJCA).

Khaksari, G. H., Wijesinha, A. L., Karne, R. K., He, L.,
Girumala, S., 2007. A peer-to-peer bare PC VoIP
application. In CCNC.

LeVasseur, J., Uhlig, V., Stoess, J., Gotz, S., 2004.
Unmodified device driver reuse and improved system
dependability via virtual machines. In OSDI.

NDISwrapper. Available from: <http://en.wikipedia.org/
wiki/NDISwrapper>. [12 Dec 2014].

Okafor, U., Karne, R. K., Wijesinha, A. L., Appiah-Kubi,
P., 2013. A methodology to transform OS based
applications to a bare machine application. In
TrustCom/ISPA/IUCC.

Rawal, B., Karne, R., Wijesinha, A. L., 2011. Mini web
server clusters based on HTTP request splitting. In
HPCC.

Source Insight Program Editor and Analyzer. Available
from: <http://www.sourceinsight.com>. [12 Dec
2014].

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

300

