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Abstract: With the growing use of user-oriented perspectives at requirements engineering, transforming requirements 
models into executable models is considered to be significant. One of the key elements in this perspective is 
the notion of scenarios; scenarios are used to describe specific behaviors of the application through a flow of 
events based on user-perspective. Since scenarios are often stated in natural languages, they have the 
advantage to be easy to adopt, but the requirements can then hardly be processed for further purposes like 
analysis or test generation; partly because interactions among scenarios are rarely represented explicitly. In 
this work, we propose a transformation method that takes textual description of scenarios as input and 
generates an equivalent Petri-Net model as output. The resulting Petri-Net model can be further processed 
and analyzed using Petri-Net tools to verify model properties, to identify concurrency problems and to 
optimize the input and output models. Demonstration of the feasibility of the proposed method is based on 
two examples using a supporting tool. 

1 INTRODUCTION 

Scenario-based representations are used in 
Requirements Engineering mainly because it 
improves communication among clients and 
developers. In this context, requirements are stated 
as a collection of scenarios and described by specific 
flows of events in the system. The use of scenarios 
helps in understanding a specific situation in an 
application, prioritizing their behavior. The most 
prominent languages to describe scenarios are 
restricted-form of use case descriptions (Cockburn, 
2001; Gutiérrez et al., 2008), UML dynamic 
behavior diagrams and Message Sequence Charts 
(Andersson and Bergstrand, 1995). 

The graphical notation based languages are very 
attractive and user-friendlyç however, they can be 
difficult to design, and domain experts cannot 
reasonably asked to draw them (Gutiérrez et al., 
2008). Although the mentioned languages provide 
an accessible visualization of models, they lack 
formal semantics to support the analysis of structural 
and behavioral properties of the application.  

For practical reasons, and in order to allow for an 
easy communication with stakeholders, requirements 
are written using natural language-based textual 

templates. Textual scenario-based approaches offer 
several practical advantages: (1) Scenarios are easy 
to describe and understand. (2) They are scalable; 
the behavior of a large and complex system can be 
stated as a collection of independently and 
incrementally developed scenarios. (3) It is easy to 
provide requirements traceability throughout the 
design and implementation (Lee et al., 1998). 

Unfortunately, textual scenarios exhibit some 
shortcomings: (1) Scenarios informally specified are 
usually hard to analyze, because natural language is 
by definition ambiguous. (2) Modularity is poorly 
supported because the interactions among scenarios 
are rarely represented explicitly. (3) There are 
currently no systematic approaches to make explicit 
interactions by concurrency among textual 
scenarios. Requirements are rarely truly 
independent, they interact (Lee et al., 1998).  

Scenario languages are either informal or semi-
formal and cannot be used for further analysis of the 
application. In order to automatically analyze the 
requirements it is necessary to translate them from 
informal languages to formal languages like Petri 
Nets. Thus before developing, requirements engineer 
needs to create requirements specification in two 
formats. One format is to communicate with 
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customers (textual scenarios) and other format is for 
analysis or testing (Petri-Nets).  

The original contribution of this work is an 
automated transformation method that takes textual 
description of scenarios (conform to a metamodel 
defined in this work) as input and generates an 
equivalent Petri-Net model (conform to a restricted 
Petri-Net metamodel) as output. The generation is 
performed by a model transformation, defined as 
mapping rules and implemented in the C&L (C&L, 
2014) prototype tool. It might eliminate the 
redundancy of writing specification twice. 

This transformation allows to benefit both from 
graphical and textual scenario advantages, and it 
allows an easier integration to available Petri-Net 
tools (PIPE2, 2014). On the basis of this 
transformation, it is possible: (1) Analyze some 
properties of the executable model, i.e. to verify 
whether the scenario is consistent, complete and 
correct. (2) Identify concurrency problems such as 
deadlocks among concurrent scenarios that compete 
with each other for common resources. (3) Use the 
Petri-Net for further treatments like test generation.  

The details of our proposal are presented in 6 
Sections, from the related work, the description of 
the source and target metamodels, the strategy we 
propose, to the case study and conclusions. 

2 RELATED WORK 

Many researches have shown the importance to 
formalize the informal aspects of scenarios in order 
to be useful in automated analysis. Some researches 
focused on developing the formal semantics for 
scenario representations, recent researches focus on 
developing techniques to transform scenarios into 
executable models with rigorous semantics. 

Hsia et al., (1994) used a BNF-like grammar to 
formally describe scenarios. Scenarios are 
represented like scenario trees and scenario schema. 
A tree is constructed to represent all the scenarios 
for a particular user view. While scenario trees are 
defined, each of scenarios is converted into an 
equivalent regular grammar. This approach is only 
effective when applied to a small number of 
relatively simple scenarios (Lee et al., 2001). 

UML Sequence Diagrams (Lee et al., 2001) and 
Message Sequence Charts - MSCs (Andersson and 
Bergstrand, 1995) are frequently used as formalisms 
for scenarios. The main problem tackled by these 
approaches is the interactions among scenarios, and 
these have advantages over the grammar-based 
approach in terms of scalability/understandability. 

However, these models are either informal or semi-
formal and can not be used for automated analysis. 

In our work, we describe scenarios using a 
restricted form of the natural language; then, 
scenarios are transformed into Petri-Nets, which are 
used as the mechanism to enable the analysis. Other 
approaches based on natural language include (Lee 
et al., 1998; Somé, 2007; Zhao and Duan, 2009). 

In (Lee et al., 1998), is proposed a systematic 
procedure to convert use case descriptions into 
Constraint-based Modular Petri-net models, and to 
analyze use cases. To facilitate the transformation, 
use cases are described in relation to formal 
definition of pre and post-conditions (like Action-
Condition tables). Use cases are considered as a 
collection of interacting and concurrently executing 
units of functionalities. However, intermediate 
models are created and alternative/exception flows 
of use cases are not considered. 

In (Somé, 2007), is proposed a semantics for use 
cases based on Petri-Nets. However, the syntax to 
describe use cases does not deal with non-sequential 
relationships (concurrency) and only deals with 
sequential relationships (include and extend). 

In (Zhao and Duan, 2009), is proposed an 
approach to formalize use cases with Petri-Nets. A 
semi-formal language is proposed for use case 
syntax. This syntax is based on message sender and 
receiver objects, and the events in use cases can be 
sequential, selection, iteration and concurrent. Petri-
Nets are derived extracting objects and messages 
between objects. However, it is necessary to create 
“event frames” for the extraction of the objects and 
the message from each one the sentence events. 

The related Petri-Net based approaches exhibit 
the following shortcoming: (1) Scenarios are 
described in relation to formal definition of pre and 
post-conditions. (2) There is a lack of systematic 
procedures on how to represent the given scenarios. 
(3) The transformation of scenarios to Petri-Nets is 
not automated (intermediate models). (4) Scenarios 
do not provide constructs to support modularity. 

On opposite, our approach: (1) Use a semi-
structured natural language to write scenarios. (2) 
Define an abstract and concrete syntax for scenarios. 
(3) Implement automated mapping rules. (4) Provide 
powerful characteristics to deal with modularity and 
identify concurrency problems.  

3 BACKGROUD 

The natural language representation of scenarios is 
based on a previous work where were defined an 
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abstract syntax (metamodel) and a concrete syntax 
(restricted form of natural language) for scenarios 
(leite et al., 2000). Differently to previous work, in 
this work our focus is the transformation of 
scenarios to executable models.  For further 
purposes like analysis or test generation, the syntax 
was updated: the result attribute (or expected result) 
was added to the scenario syntax. 

3.1 Scenario 

Scenario is a language used to help the 
understanding of the requirements of the application; 
it is easy to understand by the developers and other 
stakeholders. Scenario represents a partial 
description of the application behavior that occurs at 
a given moment in a specific geographical context - 
a situation (Leite et al., 2000). 

In this work, the scenario modelling is based on a 
semi-structured natural language proposed by Leite 
et al., (2000), and it is composed of the entities 
described in Table 1. 

Use case (Cockburn, 2001) is a particular model 
of scenario. Use cases describe the interaction 
between the users and the system through its 
interface. Scenarios describe: (1) situations in the 
environment and the system, (2) interactions among 
objects or modules and (3) procedures or methods. 
Table 1 explains how a scenario (Leite et al., 2000) 
can be also used as a use case (Cockburn, 2001). 

Table 1: Comparing scenario and use case. 

Scenario Description Use Case 
Title Identifies the scenario. Must be unique. Use Case # 
Goal Describe the purpose of the scenario.  Goal In Context

Context 
Describes the scenario initial state.  
Must be described through at least one of these options: 
pre-condition, geographical or temporal location. 

Scope 
Level 

Preconditions 

Resources 
Passive entities used by the scenario to achieve its goal. 
Resources must appear in at least one of the episodes. 

Trigger 

Actors 
Active entities directly involved with the situation. 
Actors must appear in at least one of the episodes. 

Actors 

Episodes 
Sequential sentences in chronological order with the 
participation of actors and use of resources. 

Description 

Exception 
Situations that prevent the proper course of the scenario. 
Its treatment should be described. 

Extensions 
Sub-Variations 

Constraint 
Non-functional aspects that qualify/restrict the quality 
with witch the goal is achieved. These aspects are 
applied to the context, resources or episodes. 

 

Result 
Internal condition satisfied by an episode/exception, and 
described as a message or information of the state of 
some resource. 

 

 

Figure 1 shows a metamodel for scenario 
description used in this work. It defines an abstract 
syntax for a scenario using a class diagram. 

Definition 1: According to our metamodel, a 
scenario is a 7-tuple S = (Title, Goal, Context, 
Resources, Actors, Episodes and Exceptions) and the 
attributes Constraint and Result. 

A scenario S must satisfy a goal that is reached 

by performing its episodes. The episodes describe 
the operational behavior of the situation, which 
includes the main course of action and possible 
alternatives. An exception can arise during the 
execution of episodes, and indicates that there is an 
obstacle to satisfy the goal. The treatment to this 
exception does not need to satisfy the scenario goal. 

 

Figure 1: Scenario metamodel. 

The episodes of a scenario can be of three 
different types: simple, conditional and optional. 
Simple episodes are those necessary to complete the 
scenario; Conditional episodes are those whose 
occurrence depends on internal or external 
condition, internal conditions can come from 
scenario pre-conditions, resources, actors, 
constraints or previous episodes; Optional episodes 
are those that may or may not take place depending 
on conditions that cannot be detailed.  

A sequence of episodes implies a precedence 
order, but a non-sequential order can be bounded by 
the symbol “#”. This is used to describe parallel or 
concurrent episodes (#<Episode Series>#). 

The scenario language makes explicit the 
sequential interactions among scenarios. Scenarios 
can be connected to other scenarios through links, 
yielding a complex network of relationships:  
Integration Scenario gives an overview of the 
relationship among several scenarios of the 
application, since each integration scenario episode 
corresponds to a scenario. 
Sub-scenario is defined when an episode of a 
scenario can be described by another scenario. This 
allows the decomposition of complex scenarios, 
facilitating both its writing and understanding.  
Pre-condition is a relationship defined within the 
context element of a scenario. A scenario that is pre-
condition to other must be executed first and so on.  
Exception relationship is defined when a scenario is 
used to detail the exceptional behavior of another. 
The main scenario should be executed and an 
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exception must occur to execute the other one.  
Constraint relationship is defined when a scenario is 
used to detail non-functional aspects that prevent the 
proper execution of another, which also give us an 
order among the scenarios. 

3.2 Linguistic Pattern Syntax 

In order to reduce ambiguity in natural language 
requirements descriptions, we have defined a 
concrete syntax based on linguistic patterns for 
describing scenario elements conform to this 
metamodel (Figure 1).  

Table 2 shows the different linguistic patterns 
(template) for describing scenarios based on natural 
language. The scenario model should be seen as a 
syntax and structural guidelines to facilitate the 
automated analysis (Leite et al., 2000). 

In Table 2, + means composition, {x} means 0 or 
more occurrences of x, () is used for grouping, | 
stands for or and [x] denotes that x is optional. 

Table 2: Linguistic patterns for describing scenarios. 

TYPE DESCRIPTION 
Title Phrase | ([Actor | Resource] + Verb + Predicate) 
Goal [Actor | Resource] + Verb + Predicate 
Context {Geographical Location}+{Temporal Location}+{Pre-condition}

Geographical Loc. Phrase + {Constraint} 
Temporal Location Phrase + {Constraint}
Pre-condition [Subject | Actor | Resource] + Verb + Predicate + {Constraint}

Resources {Name} + {Constraint} 
Actors {Name} 
Episodes { ( <Sequential Group> | <Non-Sequential Group> ) } 
Sequential Group <Basic Sentence> <Basic Sentence> | <Sequential Group><Basic Sentence>

Non-Sequential Group #<Episode Series># 
Episode Series <Basic Sentence> <Basic Sentence> | < Episode Series><Basic Sentence> 

Basic Sentence <Simple Episode> | <Conditional Episode> | <Optional Episode> 
Simple Episode <Id> <Episode Sentence> CR 
Conditional Episode <Id> IF <Condition> THEN  <Episode Sentence> CR 
Optional Episode <Id> [<Episode Sentence>] CR 

Exceptions {Exception} 
Exception <Id> IF <Cause> THEN <Solution> 

Id Identifier 

Episode Sentence 
(([Actor | Resource] + Verb + Predicate) | ([Actor | Resource] +
[Verb] + Title)) + [(“with the result” | “such that”) {Result}] + 
{Constraint} 

Solution 
((Verb + Predicate) | Title) + [(“with the result” | “such that”)
{Result}] 

Condition/Cause/ 
Result 

([Subject | Actor | Resource ] + [Verb] + Predicate) | Phrase  

Constraint 
([Subject | Actor | Resource ] + Must [Not] [Verb] + Predicate) | 
Phrase 

 

A simple episode is described as follows: 

<Id> (([Actor | Resource] + (Verb + Predicate) | 
([Actor | Resource] + [Verb] + Title)) + [(“with the 
result” | “such that”) {Result}] + {Constraint} 

An episode accesses or modifies resources and it is 
executed by Actors. The relevant information for an 
episode is the action performed (episode sentence). 
Optionally, it is possible to add non-functional 
requirements (Constraint) related to the episode and 
to add expected results (Result). 

A result is not a post-condition, because a post-

condition is a successful response of the system 
when the main flow of episodes is carried out. A 
Result or expected result is an internal condition and 
it is important in Model-based Testing context. 

An exception is described as follows: 

<Id> IF <Cause> THEN ((Verb + Predicate) | Title) 
+ [(“with the result” | “such that”) {Result}] 

The first element of an exception is the identifier. 
This is composed by the identifier of the episode 
followed by the number of the exception (an episode 
can throw several exceptions). The second element 
is the Cause that triggers the exception, the third 
element is the Solution to treat the exception, and 
the Result attribute are the expected results at the 
end of performs the Solution. 

3.3 Analyzable Petri-Net Model 

Petri-Net is a graphical and mathematical modeling 
and analysis language for describing and studying 
systems that are characterized as concurrent, 
asynchronous, distributed, parallel, nondeterministic, 
and/or stochastic.  

A Petri-Net (Figure 2) is composed of nodes that 
denote places (Place) or transitions (Transition). 
Nodes are linked together by arcs (Arc).  

 

Figure 2: Petri-Net metamodel. 

Transitions are active components. They model the 
activities that can occur – events, thus changing the 
state of the system. Transitions are only allowed to 
fire if they are enabled, which means that all the pre-
conditions for the activity have been fulfilled. 
Places are passive components and placeholders for 
tokens. They model communication medium, buffer, 
geographical location or a possible state (condition). 
The current state of the system being modeled is 
called marking which is given by the number of 
tokens in each place. 
Arcs are of two types: Input arcs start from places 
and ends at transitions, while output arcs start at a 
transition and end at a place. 

When the transition fires, it removes tokens from 
its input places and adds some at all of its output 
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places. The number of tokens removed/added 
depends on the cardinality (weight) of each arc.  

Definition 2. A place-transition Petri-Net is a five-
tuple PN = (P, T, F, W, M0) where P = {p1, p2, ..., 
pn} is a finite set of places, T = {t1, t2, ..., tm} is a set 
of transitions, F  (P×T)  (T×P) is a set of arcs, W 
: F → {1, 2, ...} is a weight function, M0 : P → {0, 1, 
2, ...} is the initial marking and P  T = .  

4 MAPPING RULES 

This section defines the transformation (Figure 3) to 
generate a place-transition Petri-Net (instance of the 
metamodel of Figure 2) from a scenario description 
(instance of the metamodel of Figure 1). By an 
automatic transformation, we can have more precise 
requirements through the analysis of Petri-Nets. 
Detailed mapping rules are described below. 
 

 

Figure 3: Overview of the proposed method. 

4.1 Initialization 

The initial state (context) and the resources used by 
the scenario are mapped into a Sub-Petri-Net 
composed of Places generated from geographical 
location, temporal location, pre-conditions and 
constraints as follows: 

Initially, one Place p with an initial token is 
generated for the Scenario S:  
→Place, p with p.name = S.title; p.tokens = 1; 
For every pre-condition pc in Pre-conditions: 
→Place, p with p.name = pc.name; p.tokens=1; 
For every Constraint c in Context: 
→Place, p with p.name = c.name; p.tokens=1; 
For every Constraint c in Resources: 
→Place, p with p.name = c.name; p.tokens=1; 
Places generated from the context and the resources 
are “input places” of the first episode of the 
scenario. 

4.2 Mapping Episodes 

Initially, each one of the episodes is mapped into the 
“transition” t (t.name = episode sentence) and its 
internal “dummy places” (input dummy place pid and 
output dummy place pod) of a Sub-Petri-Net. The 
Conditions or Option to trigger the transition t are 
mapped into “input places” with an initial token. 

When episodes are performed, axception can 
arise. An exception is mapped into the “transition” 
tex (tex.name = solution) and its internal “places” 
(output places for the results). The “output dummy 
place” pod is linked to the transition tex. The 
“condition” or “cause” to trigger the transition t is 
mapped into an “input place” with an initial token. 

A Constraint is an “input place” (non-functional 
requirement, resource and also time constraints) that 
are needed in order to perform the transition t. 

A result is an “output place” satisfied by an 
internal condition of the transition t.  

Places and Transitions are generated as follows: 
For every Episode e in Episodes: 
→Place, pid with pid.name =”IDummy_”+e.id; 
→Transition, t with t.name =e.episode_sentence; 
→Place, pod with pod.name =”ODummy_”+e.id; 
→Arc, a with a.source = pid ; a.target = t; 
→Arc, a with a.source = t ; a.target = pod; 

For every Constraint c in Episode e: 
→Place, p: p.name = c.name; p.tokens = 1; 
→Arc, a with a.source = p; a.target = t; 
For every Result r in Episode e: 
→Place, p with p.name = r.name; 
→Arc, a with a.source = t; a.target = p; 
For every Exception ex in Exceptions: 

IF ex.id starts with e.id: 
→Transition, tex with tex.name =ex.solution; 
→Arc, a with a.source = pod ; a.target = tex; 

IF ex.cause  : 
→Place, p: p.name=e.cause;p.tokens=1; 
→Arc, a: a.source = p; a.target = tex; 
For every Result r in Exception ex: 
→Place, p with p.name = r.name; 
→Arc, a: a.source = tex ; a.target = p; 

→ Remove exception ex from Exceptions; 
IF |e.condition| > 0:  
→Transition, telse with telse.name = “ELSE_” 

+ e.episode_sentence; 
→Arc, a with a.source = pid ; a.target = telse; 
→Arc, a with a.source = telse ; a.target = pod; 

For all Condition cd in Episode e: 
→Place, p: p.name =cd.name; p.tokens=1; 
→Arc, a with a.source = p; a.target = t; 

IF |e.conditions| > 0  e has exceptions: 
→ Remove Arc a between telse and pod; 
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→Transition, td: td.name =”TDummy_”+e.id; 
→Arc, a with a.source = pod ; a.target = td; 
→Place, pod: pod.name =”ODummy2_”+e.id; 
→Arc, a with a.source = td ; a.target = pod; 
→Arc, a with a.source = telse ; a.target = pod; 

Transformation of episodes is shown in Figure 4. 

 

Figure 4: Episode mapping rules. 

4.3 Mapping Exceptions 

Each one of the remaining exceptions are mapped 
into the “transition” t (t.name = solution) and its 
internal “input dummy place” pid of a Sub-Petri-Net. 
The “condition” or “cause” to trigger the transition t 
is mapped into an “input place” with an initial token. 

A result is an “output place” generated at the end 
of perform the transition t. 

Places and Transitions are generated as follows: 

For every Exception ex in Exceptions: 
→Place, pid with pid.name =”IDummy_”+ex.id; 
→Transition, t with t.name =ex.solution; 
→Arc, a with a.source = pid ; a.target = t; 

IF ex.cause  : 
→Place, p: p.name = e.cause; p.tokens =1; 
→Arc, a with a.source = p; a.target = t; 
For every Result r in Exception ex: 
→Place, p with p.name = r.name; 
→Arc, a with a.source = t; a.target = p; 

The mapping of the exceptions or alternative flows 
of the episodes is illustrated in Figure 5. 

 

Figure 5: Exception mapping rules. 

4.4 Mapping Concurrency Constructs 

If the episode sentence of an episode e starts or ends 
with the symbol “#”, this symbol describes the start 
or the end (synchonization) of multiple concurrent 
episodes, respectively. These situations are mapped 
into two Sub-Petri-Nets composed of the transition 
fork and the transition join, respectively (and their 
internal input dummy place pid and output dummy 

place pod). 
For every Episode e in Episodes: 

IF e.episode_sentence starts with “#”: 
→Place, pid with pid.name =”IFork_”+e.id; 
→Transition, t with t.name =”Fork_”+e.id; 
→Place, pod with pod.name =”OFork_”+e.id; 
→Arc, a with a.source = pid ; a.target = t; 
→Arc, a with a.source = t ; a.target = pod; 
IF e.episode_sentence ends with “#”: 
→Place, pid with pid.name =”IJoin_”+e.id; 
→Transition, t with t.name =”Join_”+e.id; 
→Place, pod with pod.name =”OJoin_”+e.id; 
→Arc, a with a.source = pid ; a.target = t; 
→Arc, a with a.source = t ; a.target = pod; 

The mapping of concurrency constructs is illustrated 
in Figure 6. 

 

Figure 6: Concurrency mapping rule. 

4.5 Composing the Elements 

This section explains the steps to compose a 
complete Petri-Net model from the Sub-Petri-Nets 
obtained of the elements of a scenario descrition.  

 Fusion Places: If an “input/output place” 
derived from a scenario element appears like 
“input/output place”, it should be merged into 
the “input/output place” of the later one.  

 Linking Concurrent Episodes: The Sub-Petri-
Nets derived from the episodes between a “fork” 
Sub-Petri-Net and a “join” Sub-Petri-Net must be 
linked as concurrent Sub-Petri-Nets and 
composed into a complete Sub-Petri-Net. The 
“input dummy place” of the “Sub-Petri-Nets” of 
the episodes are linked to the “transition” of the 
“fork” Sub-Petri-Net. The “output dummy place” 
of the “Sub-Petri-Nets” of the episodes are 
linked to the “transition” of the “join” Sub-Petri-
Net.  

 Composing The Sub-Petri-Nets: First, all the 
places generated from the context and the 
resources are “input places” of the first transition 
derived of the first episode. Second, the “output 
dummy place” of the previous Sub-Petri-Net is 
merged into the “input dummy place” of the later 
one (Fusion Place). 
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4.6 Integration of Petri-Net Models 

Scenarios are related to other scenarios by sequential 
and non-sequential interactions. Two techniques, 
“Fusion Places” and “Substitution Places” are used 
to obtain a complete Petri-Net model of the 
application (composed of Petri-Net models derived 
from different scenarios). 
Sequential Interactions: As described before, these 
interactions could be of five types (integration 
scenarios, pre-condition, constraint, sub-scenario 
and exception) and determine the order in which the 
scenarios should be executed (Section 3). 
Non-sequential Interactions: Scenarios interact by 
shared resources described as: pre-condition, 
constraint and result. Through these relationships it 
is possible to identify the scenarios that could be 
executed concurrently. 

If an “input/output place” derived from Pre-
Conditions, Constraints or Results of a scenario 
appears like “input/output place” on other Petri-Net 
model derived from other scenario, it should be 
merged into the “input/output place” of the later one 
(Fusion Places). 

5 CASE STUDIES 

In this section is described how the template and 
mapping rules, detailed in Section 3 and 4 were used 
to create the Petri-Net models of some classical 
concurrency problems, using as basis their scenario 
descriptions. The complete Petri-Net models were 
obtained through the interconnection of Sub-Petri-
Nets and the integration of Petri-Net models. 

The order which Petri-Net models are 
constructed is: First, for each scenario, transforming 
the context (“Pre-condition”) and the resources of 
the scenario into a Sub-Petri-Net, transforming 
“Episodes” of scenario into Sub-Petri-Nets 
sequentially, linking “output places” (episode’s 
results) into related episodes Sub-Petri-Nets, and 
composing the “Sub-Petri-Nets” into a complete 
Petri-Net model; Second, integration of Petri-Net 
models by sequential & non-sequential interactions. 

5.1 Bounded Producer-consumer 

In multithreaded programs, there is often a division 
of labor between threads. In one common pattern, 
some threads are producers and some are consumers. 
The producer generates one item and puts it in the 
buffer. The consumer gets one item of the buffer and 
extinguishes it (Downey, 2005).  

Problem: Make sure that the producer won't try to 
add an item into the buffer if it is full and that the 
consumer won't try to remove an item from an 
empty buffer. 
 The buffer is shared and it has only N positions 

for items. 
Solution: A “Customer” performs his consume only 
when a “Producer” puts an item in the Buffer 
(“Buffer is not empty”). A “Producer” produces an 
item only when the “Buffer is not full”.  

Figure 7 depicts the scenarios to describe a 
simple solution for the “Producer-Consumer 
Problem” and the corresponding Petri-Net model. 

 

Figure 7: Bounded Producer-Consumer Petri-Net. 

The output place “Buffer is not empty” of the 
“Producer” is merged with the initial input place 
“Buffer is not empty” of the “Consumer”. The 
output place “Buffer is not full” of the “Consumer” 
is merged with the initial input place “Buffer is not 
full” of the “Producer”. 

5.2 Readers-Writers Problem  

The Reader-Writer Problem pertains to any situation 
where a data structure, database, or file system is 
read and modified by concurrent processes: Readers 
and Writers. While the data structure is being written 
or modified it is often necessary to bar other 
processes from reading, in order to prevent a reader 
from interrupting a modification in progress and 
reading inconsistent or invalid data (Downey, 2005). 
Problem: Allow multiple readers to read at the same 
time. Only one single writer can access the shared 
data at the same time. 
 Reader: only read the data set; it does not 

perform any updates. 
 Writer:  can both read and write. 
Solution: Once a “Writer Task” is ready (“Data Set 
is available”), it gets to perform its write as soon as 
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possible and locks (“Data Set is not available”) the 
other “Writer” and “Reader Tasks”.  

Figure 8 depicts the scenarios to describe a 
simple solution for the “Readers-Writers Problem” 
and the corresponding Petri-Net model. 

 

Figure 8: Readers-Writers Problem Petri-Net Model. 

The initial input place “Data Set is available” of 
the “Reader” is merged with the initial input place 
“Data Set is available” of the “Writer”. The output 
place “Data Set is available” of the “Reader” is 
merged with the output place “Data Set is 
available” of the “Writer”. 

6 CONCLUSIONS 

This work proposes mapping rules for transforming 
a specific natural language-based scenario model 
into a Petri-Net model. The resulting Petri-Net 
model can be analyzed using available tools (PIPE2, 
2014). Such tools are able to identify the following 
problems in a Petri Net model: boundedness, safety 
and deadlock. As such, if this earlier feedback is 
available, it is possible to trace backwards to 
scenario descriptions and fix problems earlier on. 

The main contributions of this work are 
summarized as follows: (1) Describe and update an 
abstract and concrete syntax for describing 
scenarios. (2) Define mapping rules from Scenario 
descriptions to Petri-Nets. (3) Express each mapping 
rule in terms of “Data related issues” (Constraints, 
Pre-Conditions and Results). (4) Define rules for 
integrating Petri-Net models derived from different 
scenarios of the application (modularity). (5) 
Provide examples considering concurrent scenarios 
in order to show the interactions by concurrency. 

The contributions of this work provide 
convenient ways to make explicit the non-sequential 
interactions among scenarios by shared resources. 
This fact can be used for further analysis of 

properties (like deadlock and conflict) and testing. 
Our future research plan will consider the 

following tasks: (1) Define criteria to identify 
inconsistency, incompleteness and incorrectness for 
intra-scenario and inter-scenario relationships based 
on analysis of structural and behavioral properties of 
Petri-Nets. (2) Investigate strategies, which 
automatically traverse the Petri-Net model to 
generate the test scenarios based on path analysis 
strategies. This strategy will take into account 
interactions by “shared resources”.  
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