
Towards a High Configurable SaaS
To Deploy and Bind Auser-aware Tenancy of the SaaS

Houda Kriouile, Zineb Mcharfi and Bouchra El Asri
IMS Team, SIME Laboratory, ENSIAS, Mohammed V University, Rabat, Morocco

Keywords: SaaS Application, Rich-variant Component, Algorithm, Graph Theory.

Abstract: User-aware tenancy approach integrates the flexibility of the Rich-Variant Component with the high
configurability of multi-tenant applications. Multi-tenancy is the notion of sharing instances among a large
group of customers, called tenants. Multi-tenancy is a key enabler to exploit economies of scale for
Software as a Service (SaaS) approaches. However, the ability of a SaaS application to be adapted to
individual tenant’s needs seem to be a major requirement. Thus, our approach proposes a more flexible and
reusable SaaS system for Multi-tenant SaaS application using Rich-Variant Components. The approach
consists in a user-aware tenancy for SaaS environments. In this paper, an algorithm is established to derive
the necessary instances of Rich-Variant Components building the application and access to them in a
scalable and performing manner. The algorithm is based on fundamental concepts from the graph theory.

1 INTRODUCTION

Software as a Service (SaaS) is a form of Cloud
computing that refers to software distribution model
in which applications are hosted by a service
provider and made availability to customers over a
network, typically the Internet. The user-aware
concept consists in considering the end-user
connected while deciding of systems behavior. As a
key enabler to exploit the economies of scale, SaaS
promotes the multi-tenancy, the notion of sharing
resources among a large group of customer
organizations, called tenants. An advantage of multi-
tenancy is that the infrastructure may be used most
efficiently as it is feasible to host as many tenants as
possible on the same instance. However, multi-
tenants application only satisfies the requirements
that are common to all tenants.

To tackle this problem, a plethora of research
work has been performed to facilitate SaaS
applications customization according to the tenant-
specific requirements by exploiting the benefits of
multi-tenancy, variability management and
improving tenants’ isolation on a single instance
(Mietzner, 2010; Walraven et al., 2014; Zaremba et
al., 2012). In the same direction, our approach aims
to create a flexible and reusable environment
enabling greater flexibility and suppleness for
customers while leveraging the economies of scale.

The approach is a solution integrating a functional
variability in application components level using
Rich-Variant Component (RVC), with the high
configurability benefit of multi-tenancy. The RVCs
are multiview components that allow applications,
dynamically, to change the behaviour according to
the enabled user's role or viewpoint.

This paper presents our contribution, the user-
aware tenancy, and addresses the algorithmic
problem of deriving an optimal distribution of RVC
instances. The remainder of this paper is structured
as follows. Section 2 introduces the approach by
presenting the multi-functional and the multi-
tenancy notions and treats some challenges of the
user-aware tenancy, essentially the high
configurability and the performance. Section 3
provides some fundamental concepts from the graph
theory, which are relevant to the work presented in
this paper as well as it presents the main contribution
of the paper consisting in the algorithm which
derives the necessary instances of a RVC. Section 4
presents several approaches studied as related work
and positions our approach. Finally, Section 5 is a
conclusion of the paper.

674 Kriouile H., Mcharfi Z. and El Asri B..
Towards a High Configurable SaaS - To Deploy and Bind Auser-aware Tenancy of the SaaS.
DOI: 10.5220/0005468206740679
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 674-679
ISBN: 978-989-758-097-0
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

2 USER-AWARE SaaS: TOWARDS
HIGHT CONFIGURABILITY
OF MULTI-TENANCY FOR
SaaS

2.1 On the Multi-functionality

The main activities and goals of a system are
described by functional areas. System
decomposition into a set of functional areas already
existed in the field of database resulting the concept
of view. Multifunctional systems have been
introduced to overcome problems of inconsistency
and overlap between different system perspectives.
The multi-functionality notion was introduced under
closely related terms such as role, subject, aspect,
and view (Kriouile, El Asri and El Haloui, 2014).
Our work is rather interested in the notion of view as
a mechanism of functional separation. It uses the
view concept to take into account the variability of
service customers' needs. Moreover, our contribution
takes into account the end-user based on the
Multiview component concept. Functional concern
separation is an important concept for our work, but
we also have to be able to dynamically and
efficiently configure systems, too.

2.2 On the Multi-tenancy

Multi-tenancy is the notion of sharing resources
among a large group of customer organizations,
called tenants. That is, a single application instance
serves multiple customers. But, even though that
multiple customers use the same instance, each of
which has the impression that the instance is
designated only to them. This is achieved by
isolating the tenants’ data from each other. Contrary
to the single-tenancy where customization is often
done by creating branches in the development tree,
in the multi-tenancy configuration options must be
integrated in the product design as in software
product line engineering. However, multi-tenancy
has the advantage that infrastructure may be used
most efficiently as it is feasible to host as many
tenants as possible on the same instance. Thus,
maintenance and operational cost of the application
decreases (Bezemer and Zaidman, 2010).

2.3 On the Challenges of User-aware
Tenancy: High Configurability and
Performance

Between the multi-functionality and the multi-

tenancy, our contribution aims to benefit from the
multi-functional notion of multiview as well as the
high configurability characteristic of multi-tenancy.
The user-aware tenancy consists in a multi-tenancy
SaaS approach using Rich-Variant Components
(RVC). The RVCs are multiview components that
allow applications to dynamically change the
behavior according to the enabled user's role or
viewpoint (Kriouile et al., 2014). The goals of our
work is to ensure the relevance of information for
end-users as well as the control of access rights.
When thinking how user-aware tenancy affects an
application, we came up with an architectural
overview as showed in Figure 1. It comes to a layers
architecture. After an authentication, tenants may
express their requests. The configuration module
does the features matchmaking based on tenants
requirements as well as access permissions. Then,
the instantiation module instantiates a high
configurable instance, which changes the behavior
dynamically. It is decompose into two parts: a
shared part which is common and a dynamic part
consisting of features which could be bind or not
according to the point of view enabled.

Figure 1: Architectural overview of user-aware tenancy.

Unfortunately, user-aware tenancy also has its

Towards�a�High�Configurable�SaaS�-�To�Deploy�and�Bind�Auser-aware�Tenancy�of�the�SaaS

675

challenges. Some challenges come from the multi-
tenancy characteristics such as the high
configurability. Other challenges are general as
performance, security and maintenance. In this
paper, we focus on two essential challenges for the
user-aware tenancy which are the performance and
the high configurability.

In multi-tenancy, tenants share the same
application instance, while it must appear to them as
if they are using a specific instance dedicated to.
Because of this, a key requirement of user-aware
tenancy approach is the possibility to configure and
customize the application to a tenant's specific need.
Moreover, because of the high degree of
configurability of user-aware tenant software
systems, it may be necessary to run multiple
versions of an application next to each other.

While multiple tenants share the same resources
and hardware utilization is higher on average, we
must make sure that all tenants can consume these
resources as required. If one tenant obstructs
resources, the performance of all other tenants may
be compromised.

For an example, we consider a SaaS application
for a private school management. Some features of
this application have been presented in later work
(Kriouile, El Asri & El Haloui, 2014).

Each feature is realized over a number of
components' views. Sharing a feature means sharing
RVC's views used for the realization of the feature.
So, for remainder of the paper, we will work on the
sharing of RVCs' views and we will work on a RVC
at a time. For example, we consider the component
"Schedules". This component has four views as it is
shown by Figure 2. Also, we consider six private
schools tenants of the application T1,T2,T3,T4,T5
and T6.

Figure 2: The RVC "Schedules".

3 TO DEPLOY AND BIND A
USER-AWARE TENANCY OF
THE SaaS

3.1 Fundamentals from Graph Theory

To formulate our problem we had to think about a
suitable deployment information representation.
Since a graph in mathematics and computer science
is an abstract representation of a set of objects where
some pairs of these objects may be connected, we
have chosen to use graphs to analyze our problem as
it has serve to many concrete problems in the real-
world. The objects in graphs are represented by
abstractions called vertices, and connections
between vertices are called edges. A graph is defined
as a pair G = (V,E), with a finite set of vertices V
and a set of edges E � V × V (Diestel, 2012).

Our work will be based on Undirected Edge
Labelled graph. A Edge labelled graph is a graph
where the edges are associated with labels. Besides,
an undirected graph is a graph with undirected
edges, edges which have no direction. Also, we will
use, in this work, terms from graph theory such as
the inverse graph and the clique. An inverse
graphG of graph G contains all vertices of G but
those vertices adjacent -that are connected by an
edge- in G will not be adjacent inG and those
vertices not adjacent in G will be adjacent inG.
Further, a clique is a complete sub graph of a given
graph, while a complete graph is a graph in which
every vertex is adjacent to every other vertex. Every
clique in a given graph G is an independent set in the
inverse graphG and every independent set in a
given graph G is a clique in the inverse graph G,
such that an independent set is a set of vertices
belonging to the same graph where no two vertices
are adjacent (Diestel, 2012).

In graph theory, there is a plethora of problems
that are well-known in literature, two of them are
essentially related to the work of this paper:
 Vertex Coloring Problem: Is the problem of

segmenting a graph into a number of
independent sets of vertices.

 Clique Cover Problem: Is the problem of
determining a minimum number of sets of
vertices of a graph, so that all sets are disjoint
cliques.

These two problems are the same since a clique
cover of a graph is the same as finding a minimal
colouring of the inverse graph (Karp, 1972). Indeed,
vertices that belong to a clique are an independent
set in the inverse graph. As a result, solving the

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

676

problem of splitting a graph into a disjoint set of
cliques may be solved by determining the chromatic
number of the inverse graph. The first step is to
inverse the graph. The second one is the Vertex
colouring. And the last one that is optional is to
inverse the graph coloured to get the initial graph.

3.2 Some Results from the
Mixed-tenancy Approach

As in the Mixed-Tenancy approach (Ruehl, 2014),
we will use the graph theory, in particular, the clique
cover problems to made up our algorithm to derive
the necessary instances and to access to them in a
scalable and efficient way. However, we are
working on Undirected Edge Labelled graph which
made the definition of the clique cover and the
colouring problems different for our work.

In the Mixed-Tenancy approach (Ruehl, 2014),
the Deployment Information is represented by an
undirected graph. For this graph the vertices
represent tenants and the edges represent whether
two tenants may share infrastructure or not. In case
where two tenants may share resources, they would
be connected by an edge. This is only the case if
neither one of them has Deployment Constraints that
express that they shall not share resources. Such a
graph is needed for each application component.

Ruehl (2014) analyses the Elementary mixed-
tenancy Deployment Problem (a simplified version
of the mixed-tenancy Deployment Problem where
there is only one Application Component), and has
defined a solution of the problem as a Set of Clique
Covers. Actually, from a theoretical point of view,
every instance in a given Deployment corresponds to
a clique in the Deployment Information graph. Thus,
a solution is, in fact, a collection of clique covers,
one per Deployment Level. What is more, Ruehl
(2014) argued that for only one Deployment level,
which is our case, a solution for this problem is
optimal if and only if the clique cover is minimal.
Thus, the problem of finding a Valid and Optimal
Solution for the given Elementary mixed-tenancy
Deployment Problem is equivalent to finding a
minimal clique cover.

3.3 Our Approach: A User-aware
Tenancy

The information about relations of features sharing
between tenants are translated technically in
relations of RVC's views sharing. In our work, we
represent this information by an Undirected Edge
Labelled Graph. While the vertices represent

Tenants, the edges represent whether two Tenants
may share views or not. Also, the labels on the edges
specify the views concerned with the sharing
association represented by the edge. If an edge
doesn't have a label, it means that the sharing
association concerns the RVC with all its views. An
example of these deployment information
represented by a graph is graphically shown in
Figure 3.

Inspired from the Mixed-Tenancy approach, we
deduce that an optimal solution for our problem may
be found as a minimal clique cover for each feature
of the RVC and this is based on our deployment
information graph. However, we have to define our
own inversing graph along with our own coloring
function, too.

Figure 3: Example of deployment information graph.

The steps of our algorithm deriving the necessary
instances are the steps to find a minimal clique cover
for our case and they are as follows:

3.3.1 Step 1: Inversing the Undirected Edge
Labelled Graph

The first step consists in Inversing the Undirected
Edge Labelled Graph, and this by:
 Keeping the same vertices.
 Making each two non-adjacent vertices

become adjacent by an unlabelled edge.
 Making each two vertices that are adjacent

without label become non adjacent.
 Making each two adjacent vertices with a

label become adjacent with a label containing
the complement of views in initial label.

For example, for a RVC which have 5 views V1,
V2, V3, V4, and V5; if the initial label is
"V2,V3,V5" so the label on the inverse graph will be
"V1,V4".

Towards�a�High�Configurable�SaaS�-�To�Deploy�and�Bind�Auser-aware�Tenancy�of�the�SaaS

677

3.3.2 Step 2: Divide the Vertices by the
Number of the RVC Views.

The second step is to divide the vertices by the
number of the RVC views, if the number of views is
n views, there will be n parts on each vertex as
represented in Figure 4. Each part from the vertex
refers to a view of the RVC.

Figure 4: Illustration of the second step.

3.3.3 Step 3: Colouring the Inverse Graph

The third step consists in colouring the inverse
graph. Our colouring function gives for each part of
each vertex a colour such that two adjacent vertices
according to a view have a different colour for the
part referring to that view. This is formalized in the
Algorithm 1 below:

The colouring algorithm returns a set of colours
used. Each colour is a set of parts of vertices
coloured by this colour.

Lemma 1: When instantiating a RVC for a view,
we can use the same instance for the other views.

Taking the Lemma 1 into account, we obviously
deduce that the number of instances needed to

realize the deployment is the number of colour used,
it means that it is the cardinality of the set C.
Moreover, we can also deduce the optimal
distribution of these instances on the different
tenant, and this from the same output of Algorithm1.
Indeed, each colour Ck refers to a specific instance
of the RVC and the elements of that colour Ck refer
to the tenants that will use that instance and for
which view they will use it.

To conclude, our algorithm, which aims to derive
the necessary instances of a RVC, can be simplified
and formalized in Algorithm 2. This algorithm takes
as Input the Undirected Edge Labelled Graph
representing the deployment information concerning
the RVC, and returns as output the set of colour
used.

The next section presents several approaches studied
as related work and positions our approach in
comparison with those approaches.

4 RELATED WORK

Several research works have been performed in the
context of architectural patterns for developing and
deploying customizable multi-tenant applications for
Cloud environment. Fehling and Mietzner (2011)
propose the Composite-as-a-Service (CaaS) model.
They show how applications which are built of
components, using different Cloud service models,
can be composed to form new applications that can
be offered as a new service. These applications have
been designed in the spirit of customization, thus
their variability was modeled using the application
model and variability model from the Cafe
Framework (Mietzner, 2010), which allows
exploiting economies of scale by the use of highly
flexible templates enabling increasing customers
base. Our work aims to exploit economies of scale
from two sides by the use of multi-tenancy and the
introduction of the new concept of Multiview that
has not been used in any of the related work studied.

In the context of the Late Binding Service -
which enables service loose coupling by allowing

--

Algorithm 2: Compute Deployment Algorithm
--

Input : G an Undirected Edge Labelled Graph,
 and n the number of views
Output : C ={C1, ..., Cd}
--

1: Inverse the graph G to G'
2: Divide the vertices of G' by n part
3: Colour the graph G' using Algorithm 1
4: return C ={C1, ..., Cd}
--

--

Algorithm 1: The Coloring Algorithm
--

Input : T1, ...,Tm, and V1, ..., Vn
Output : C ={C1, ..., Cd}
--

1:Give a colour C1 to T1 (for all features) and put d=1
2:For i from i=2 to i=m do
3: For j from j=1 to j=n do
4: For k from k=1 to k=d
5: if Ti isn't adjacent to any T from Ck according Vj
6: then give the colour Ck to Ti.Vj and put j=j+1
7: else if k=d
8: then put d=d+1
9: and give the new colour Cd to Ti.Vj
10: and put j=j+1
11: else put k= k+1
12: end if
13: end if
14: end For
15: end For
16: end For
17: return C ={C1, ..., Cd}
--

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

678

service consumers to dynamically identify services
at runtime - Zaremba et al. (2012) present models of
Expressive Search Requests and Service Offer
Descriptions allowing matchmaking of highly
configurable services that are dynamic and depend
on request. This approach can be applied to several
types of services. This approach does not propose a
solution to exploit economies of scale and only deals
with one variability type, the deployment variability.

In (Walraven et al., 2014), an integrated service
engineering method, called service line engineering,
is presented. This method supports co-existing
tenant-specific configurations and that facilitates the
development and management of customizable,
multi-tenant SaaS application without compromising
scalability. In contrast to our approach, this method -
as well as the other approaches mentioned - does not
address to the accessibility by roles, which is
allowed in our work by the use of Multiview
concept. The Multiview notion allows applications
to dynamically change the behaviour according to
the enabled user's role or viewpoint.

Ruehl (2014) addresses the deployment
variability based on the SaaS tenants requirements
about sharing infrastructure, application codes or
data with other tenants. Ruehl (2014) proposes a
hybrid solution between multi-tenancy and simple
tenancy, called the mixed-tenancy. The purpose of
this approach is to allow the exploitation of
economies of scale while avoiding the problem of
customers hesitation to share with other tenants. The
author focuses on the deployment variability and
neglects the functional variability management.

5 CONCLUSIONS

Flexibility and reusability are challenging issues for
multi-tenancy SaaS applications. In this regard, our
approach consists in integrating two types of
concepts, the multi-functionality and the multi-
tenancy, to create a more flexible and reusable SaaS
environment while exploiting economies of scale. It
comes to the user-aware tenancy approach.
Moreover, this paper addresses the algorithmic part
of the work, which aims to derive an optimal
distribution of instances for a RVC. For this
purpose, we first introduced in this paper the user-
aware tenancy approach. Then, we presented some
challenges for this approach. Also, we introduced
some background knowledge of our work from the
graph theory concepts. Also, we presented our
algorithm deriving an optimal distribution of RVC
instances over tenants. And finally, we compared

our approach to similar approaches studied as related
work to make clear the benefits brought by our
approach. Our following step will be dedicated to
the implementation of our approach by applying it to
a case study showing its interest and improving it by
tests, as a major instrument of measurement.

REFERENCES

Bezemer, C. P., Zaidman, A., 2010. ‘Multi-tenant SaaS
applications: maintenance dream or nightmare? ’, in
IWPSE-EVOL’10, Antwerp, Belgium, 20-21
September, pp. 88-92.

Diestel, R., 2012. Graph Theory, Graduate texts in
mathematics 173, Springer, 4th Edition. ISBN 978-3-
642-14278-9, pp. I-XVIII, 1-436.

Fehling, C., Mietzner, R., 2011. ‘Composite as a Service:
Cloud Application Structures, Provisioning, and
Management’, it - Information Technology Special
Issue: Cloud Computing, April, pp. 188-194.

Karp, R. M., 1972. Reducibility among combinatorial
problems. Tech. rep. Springer, pp. 85-103.

Kriouile, H., El Asri, B., El Haloui, M., Benali, A., 2014.
‘Towards Implementation and Design of Multi-tenant
SaaS Based on Variabiliy Management Mechanisms’,
in ICSEA’14, the Ninth International Conference on
Software Engineering Advances, Nice, France, 12-16
October, pp. 468-471.

Kriouile, H., El Asri, B., EL Haloui, M., 2014. ‘Towards
Flexible and Reusable SaaS for Multi-tenancy to
design, implement and bind multi-functional
variability for Rich-Variant services’, in WCCS’14, the
Second World Conference on Complex Systems,
Agadir, Morocco, 10-12 November.

Mietzner, R., 2010. ‘A method and implementation to
Define and Provision Variable Composite
Applications, and its Usage in Cloud Computing’,
Dissertation, University of Stuttgart.

Ruehl, S. T., 2014. ‘Mixed-Tenancy Systems A hybrid
Approach between Single and Multi-Tenancy’,
Doctoral Thesis, Department of Informatics, Clausthal
University of Technology, 16 June.

Walraven, S., Landuyt, D. V., Truyen, E., Handekyn, K.,
Joosen, W., 2014. ‘Efficient customization of multi-
tenant Software-as-a-Service applications with service
lines’, Journal of Systems and Software, vol. 91, pp.
48-62.

Zaremba, M., Vitvar, T., Bhiri, S., Derguech, W., Gao, F.,
2012. ‘Service Offer Descriptions and Expressive
Search Requests - Key Enablers of Late Service
Binding’, in Proceeding of the 13th International
Conference on E-Commerce and Web Technologies
(EC-Web), Vienna, Austria, Sept. 2012, pp. 50-62.

Towards�a�High�Configurable�SaaS�-�To�Deploy�and�Bind�Auser-aware�Tenancy�of�the�SaaS

679

