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Abstract: State of the art Driving Assistance Systems and Autonomous Driving applications are employing sensor 
fusion in order to achieve trustable obstacle detection and classification under any meteorological and 
illumination condition. Fusion between laser and camera is widely used in ADAS applications in order to 
overcome the difficulties and limitations inherent to each of the sensors. In the system presented, some 
novel techniques for automatic and unattended data alignment are used and laser point clouds are exploited 
using Artificial Intelligence techniques to improve the reliability of the obstacle classification. New 
approaches to the problem of clustering sparse point clouds have been adopted, maximizing the information 
obtained from low resolution lasers. After improving cluster detection, AI techniques have been used to 
classify the obstacle not only with vision, but also with laser information. The fusion of the information 
acquired from both sensors, adding the classification capabilities of the laser, improves the reliability of the 
system.

1 INTRODUCTION 

About 1.2 million people die every year in the world 
as a consequence of traffic accidents (WHO, 2009). 
ADAS use widely lasers and cameras to detect and 
classify obstacles on the road. These sensors are 
complementary, as the laser’s ability to detect 
obstacles regardless of the light quality and to select 
Regions of Interest (ROI) for camera classification, 
improves remarkably the speed and accuracy of the 
CV classification in the images from the camera. 

The present work has been developed using the 
Intelligent Vehicle based on Visual Information 2.0 
(IVVI 2.0) (Figure 1), the Intelligent Systems Lab’s 
research platform (Martín et al., 2014). 

The article is divided in the following sections: 
Section 2 provides scientific context of the state of 
the art in the related domain. Section 3 is a general 
description of the system. Section 4 describes the 
method for laser point cloud (PC) clustering, which 
is the initial part of obstacle detection. Section 5 
outlines the data alignment process, essential for a 
correct data association between the camera and the 
laser system. Section 6 depicts the strategy for 
obstacle classification with a Support Vector 
Machine (SVM). Finally, conclusions for the present 
work are presented. 

2 RELATED WORK 

The work described in the present paper covers 
several fields with interesting state of the art. 
Regarding the automatic and unattended data 
alignment phase in our system, (Li et al., 2011) 
proposed a method for calibration using a 
chessboard pattern, (Rodríguez-Garavito et al., 
2014) proposed a method for automatic camera and 
laser calibration, based on PC reconstruction of the 
road surface. Other approaches such as (Li et al., 
2011)  and (Kwak et al., 2011) projects the features 
into a 2D plane to minimize the distance among the 
features in the different sensors. (Lisca et al., 2010) 
presents a CAD model based calibration system for 
inter-sensor matching. Similar approach based on 
triangular model is presented in (Debattisti et al., 
2013) and based on circular models in (Fremont and 
Bonnifait, 2008). 
Data fusion detection approaches can be divided in 
centralized and decentralized schemes. Some 
examples of decentralized schemes can be found in 
(Premebida et al., 2009) and (Premebida et al., 2010) 
with different algorithms to combine the features 
from computer vision and laser , such as Naïve 
Bayes, GMMC, NN, FLDA. Decentralized  schemes  
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Figure 1: IVVI 2.0 research platform. 

implements detection and classification on each 
sensor independently and a further fusion stage 
combines the detection according to the certainty 
provided by each sensor. (Spinello and Siegwart, 
2008) provides high level fusion based on 
multidimensional features for laser and Histogram of 
Oriented Gradients (HOG) for computer vision. 
(García et al., 2012) provides pedestrian detection 
based on pedestrian's leg model for laser and HOG 
features for computer vision for distributed 
pedestrian detection and danger evaluation. (García 
et al., 2014) takes advantage of advance fusion 
techniques (i.e. Joint Probabilistic Data Association 
Filter) to enhance decentralised pedestrian detection.  

3 GENERAL DESCRIPTION 

This work is included in the IVVI 2.0 project 
(Figure 1). IVVI 2.0 is the second platform for 
development and research of ADAS technologies of 
the Intelligent Systems Lab, at Universidad Carlos 
III de Madrid. 

In the presented application, a Sick LDMRS 4-
layer Laser and a stereo camera are used. Laser for 
primary obstacle detection and later for 
classification and stereo capability from the camera 
is used for PC ground representation and data 
alignment parameters estimation; later one of the 
cameras is used for image capturing. 

The laser generates a PC from which the system 
extracts the obstacles as clusters of points. These 
clusters are used both for ROI generation in the 
images and as information for obstacle 
classification. The extracted ROIs in the image are 
processed for obstacle classification using AI 
methods applied to CV. The last step in the process 
performs further information fusion between laser 
and camera for a final obstacle classification based 
on machine learning. 

4 POINT CLOUD CLUSTERING 
FOR LASER DETECION 

The first step in our system is the obstacle detection 
using laser generated PCs. The laser obtains a PC 
representing some of the reality in front of the 
vehicle. Obstacles are part of this reality and can be 
located as local concentrations of points in the PC 
that can be mathematically categorized as clusters. 
Several clustering techniques have been studied in 
order to obtain the highest and most reliable amount 
of information from the PC. It is important to note 
that obstacles to be detected will be represented by 
very few points in the PC, typically from four points 
to not much more than fifty depending on the 
distance to the vehicle, due to laser limitations. Most 
of the clustering strategies already available are 
designed for highly populated PC, obtained from 
high definition multilayer laser scanners or stereo 
cameras, and do not adapt well to our outdoor, 
sparse PCs offering limited information. 

 

Figure 2: Angular resolutions by sector in the laser. 
Maximum resolution front, minimum in the sides. 

4.1 Adapted Euclidean Distance and 
Geometrically Constrained 
Clusters 

In this approach, a classical Euclidean distance 
clustering strategy has been adopted, modulated by 
several parameters in order to modify the clustering 
behaviour, such as distance from the sensor to the 
obstacle, geometrical constraints, allowed number of 
points in every cluster, etc. 

In this approach, clusters are defined as the set of 
points separated a distance variable as a function of 
several parameters, plus some points meeting some 
geometric constraints, such as belonging to the same 
line in the space than some of the points in the 
cluster. 
The strategy is defined as an iterative addition of 
points to the cluster with the following steps: 
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Figure 3: Axis representation: X=laser-obstacle distance, 
Z=detection height, Y=horizontal deviation. 

First point in the PC is taken as the first point in 
the cluster. 

All the other points in the PC are checked to 
have a distance smaller than the cluster threshold 
ClusterTh ܶݎ݁ݐݏݑ݈ܥℎ = ℎܶ݁ݏܽܤ +  (ݔ)ݎݎ݋ܥݐݏ݅ܦ

(ݔ)ݎݎ݋ܥݐݏ݅ܦ  = ට൫ݔ	݊ܽݐ	(ߙ௬)൯ଶ +  ଶ((௭ߙ)	݊ܽݐ	ݔ)

 if	 ቚܽ݊ܽݐܿݎ ቀݔݕቁቚ 	൏ 	ߨ2 10360 		then	ߙ௬ = 2π 0.125360 	
 if	2π	 10360 	൑ 	 ቚܽ݊ܽݐܿݎ ቀݔݕቁቚ 	൏ 	ߨ2 30360 		then	ߙ௬= 2π 0.25360	
 if	2π	 30360 	൑ 	 ቚܽ݊ܽݐܿݎ ቀݔݕቁቚ 	൏ 	ߨ2 60360 		then	ߙ௬ = 2π 0.5360
 

(1) 

where x,y,z are point’s coordinates. Due to laser 
restrictions, ߙ௭ is always 0.8º, BaseTh is a parameter 
experimentally determined as the base threshold. 
DistCorr(x)  is a function of the x coordinate which 
ensures that no distance smaller than the minimum 
physically possible distance will be required, as seen 
in Equation (1), and depending on the different 
angular resolutions seen in Figure 2. DistCorr(x) is 
computed as the minimum distance possible 
between two consecutive points in z and y 
coordinates. ߙ௬	Represents the angle between two 
consecutive laser reads in horizontal (y axis) and ߙ௭	is the angle between two consecutive laser reads 
in vertical (z axis). 

All the points in the PC are checked for cluster 
inclusion. The same iteration is performed for every 
point added to the cluster until all cross checks are 
performed. Then, points close to the obstacle but not 

belonging to the cluster are included into a 
temporary new PC together with the obtained 
cluster, and then lines are searched in the new 
cluster using RANSAC. If lines are found containing 
a determined minimum of points belonging to the 
original cluster and points not belonging to it, then 
these points are added to the cluster. This strategy 
has proven to be effective for oblique obstacles. 

Figure 4 shows the result of the algorithm. Red 
dots are the cluster created by Euclidean Adapted 
distance. Blue dots are the points close to the cluster 
but not belonging to it. Yellow lines are 3D lines 
found by RANSAC, including points from the 
original cluster and points from the extended cluster.  

 

Figure 4: Extended cluster. Blue points are added to the 
cluster as they share a line with points in the cluster.  

Upon completion of cluster extraction, it is 
checked against the parameters ClusterTolerance for 
maximum width of cluster in meters, and 
minClusterSize and maxClusterSize for minimum 
and maximum number of points, respectively. These 
parameters are also a function of the distance to the 
obstacle. 

The strategy is addressed to obtain the most 
populated clusters possible, taking into account that 
we are using a low resolution multilayer laser. The 
threshold distance must be adapted to the distance x 
from the laser sensor to the obstacle, as the distance 
between consecutive laser points grows with x. Due 
to laser construction limitations, the minimum 
distance detected in y and z in consecutive points 
will be greater than the initial threshold if not 
adapted following Equation (1). 

4.2 Ground Detection and Removal 
from Point Cloud 

As outlined in Section 5, our system can compute 
the plane corresponding to the road surface, so it is 
possible to remove ground plane points from the list 
of detected clusters.  
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5 DATA ALIGNMENT 

Our system is based in data fusion between several 
sensors, based on different physical phenomena. 
Thus each of these sensors has its own system of 
reference, and extrinsic parameters between sensors 
system of reference must be estimated in order to 
perform the data alignment. 

To achieve the necessary alignment, rotation and 
translation between sensors must be estimated. Some 
methods have already been proposed by other 
authors, involving chessboards or specific patterns 
(Li et al., 2007) detectable by all of the sensors 
involved in the fusion (Kwak et al., 2011). This is 
cumbersome and requires driver implication or some 
help from others, needs specific and stationary 
environment and to be performed manually again in 
case of change of orientation or translation between 
sensors. 

 

Figure 5: Obstacle detection based on cluster computation. 
Dark blue is the cluster, cyan is the ROI for vision 
classification. 

Our approach estimates the extrinsic parameters 
of all the sensors involved, and calibration between 
them, assuming flat surface in front of the vehicle, 
thus sensor’s height and two rotation angles can 
already be determined. For the third angle 
computation, any identifiable obstacle located in the 
road surface can be used. 

Applying the M-estimator-Sample-Consensus 
(MSAC) algorithm for plane detection in the PCs 
obtained from the stereo camera and from the laser, 
the most populated planes are found from the clouds 
in the form ߨ(௑):	ܽݔ௖ + ௖ݕܾ + ௖ݖܿ + ݀ = 0 (2) 

which can be written in the Hessian form ߨ(௑): ሬ݊Ԧ. pሬറ = ℎ (3) 

where ሬ݊Ԧ is the vector normal to the road plane, and 
the relation between this vector and the camera and 
laser rotation angles can be computed as in 
(Rodríguez-Garavito et al., 2014). 

Once all the calibration parameters, i.e. roll, 
pitch, yaw and x,y,z translations between sensors 
have been computed, the system is able to translate 
from laser coordinates into camera coordinates in the 
image for obstacle classification using Computer 
Vision.  

The conversion between laser and image 
coordinate systems can be performed as in equation 
(4): ቈݖݕݔ቉ = ܴ(൥ݔ଴ݕ଴ݖ଴൩ + ܶ) ܴ = ൥ cos(ߜ) 0 				0				(ߜ)݊݅ݏ 							1									 	(ߜ)݊݅ݏ	−				0		 0		 		1	൩· ൥		(ߜ)ݏ݋ܿ	 				0				 											1											0 (߮)ݏ݋ܿ 	0			(߮)݊݅ݏ− 	(	߮)݊݅ݏ (	߮)ݏ݋ܿ ൩· ൥cos(ߠ) −sin(ߠ) (ߠ)݊݅ݏ0 (ߠ)ݏ݋ܿ 0						0						 				0				 			1	൩ , ܶ = ൥ݔ௧ݕ௧ݖ௧൩, 

(4)

where T represents the translation vector and R the 
rotation matrix  between sensors. 

6 OBSTACLE CLASSIFICATION 
USING LASER AND IMAGE 
INFORMATION FUSION 

Obstacle classification in this work can be 
performed with single sensor information or using 
sensor fusion information.  

6.1 SVM Classification 

Classification is performed using the SVM 
implementation from the Computer Vision OpenCV 
library. SVM algorithm was developed by Vapnik & 
Cortes (Cortes and Vapnik, 1995) and is widely used 
in machine learning. In the present work, a database 
of manually labelled images and clusters is used to 
execute a supervised learning process. After the 
training process, the SVM structures are stored and 
used for classification of images and clusters as seen 
in Figure 6 and Figure 8. 
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6.2 Laser Feature Vector 

Clusters detected in laser generated PCs are used to 
determine a ROI in the image, but can also be used 
for obstacle classification without image support 
(Premebida et al., 2009). 

Clusters are converted into a mesh structure by 
Delaunay triangulation in order to reconstruct the 
shape of the obstacle, as seen in Figure 7. 

 

 

Figure 6: SVM learning process for clusters: Training and 
classification. 

Previous works (Premebida et al., 2009) have 
considered 2D PCs for classification, but the present 
work is intended to extract features from a 3D PC. 
The features considered are described in Table 2. 

 

Figure 7: Mesh representation of a cluster. Triangles 
represent the obstacle surface. 

Table 1: Features considered for cluster classification. 

Concentration: Normalized mean distance (NMD) 
to the centroid 3D 
Y-Z, X-Z, X-Y concentration: NMD to the 
centroid excluding  x,y,z 
Planicity: NMD to the most populated plane  
Sphericity: NMD to the most populated sphere  
Cubicity: Measures how far are the planes 
containing the mesh triangles from being the 
same plane or from being perpendicular . 
Triangularity: Measures the triangles uniformity  
Average deviation from the median in x,y,z 

6.3 Computer Vision Feature Vector 

As pointed before, obstacles found in the Laser PC 
as clusters are used to determine a ROI in the image 
suitable for applying SVM for obstacle classification 
in images. 

These images have been manually labelled as 
frontal view, back view, side view, frontal oblique 
view and back oblique view. Later, Histogram of 
Oriented Gradients (HOG) features are extracted 
from every image, and SVM training is performed 
following the process outlined in Figure 8, in order 
to obtain the SVM classifier. 

 

 

Figure 8: SVM learning process for images: Training and 
classification. 

6.4 Information Fusion 

In poor illumination conditions, when the camera 
offers no help, laser obstacle classification can still 
be used, but the real advantage of the sensor fusion 
resides in the combination of multisensor 
information to obtain a result which is greater than 
the mere sum of the individual contributions. 
(García et al., 2014). Information fusion will be 
performed with SVM and results will be compared 
with individual sensor classifications. 

7 PRELIMINARY RESULTS AND 
DISCUSSION 

The presented work is currently under development 
but its results have been preliminarily tested, 
showing better figures using sensor fusion for 
classification than single sensor classification, as 
presumed, and very promising expectations.  
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