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Abstract: Restless bandits model the exploration vs. exploitation trade-off in a changing (non-stationary) world. Restless
bandits have been studied in both the context of continuously-changing (drifting) and change-point (sudden)
restlessness. In this work, we study specific classes of drifting restless bandits selected for their relevance to
modelling an online website optimization process. The contribution in this work is a simple, feasible weighted
least squares technique capable of utilizing contextual arm parameters while considering the parameter space
drifting non-stationary within reasonable bounds. We produce a reference implementation, then evaluate and
compare its performance in several different true world states, finding experimentally that performance is
robust to time drifting factors similar to those seen in many real world cases.

1 INTRODUCTION

Lai and Robbins (1985) introduced the standard
stochastic, finite-armed, multi-armed bandit problem
and produced an efficient1 solution where the re-
wards of a given arm are stationary and independent
and identically distributed (i.i.d.) with no contex-
tual information. A large number of algorithms have
been proposed since Lai and Robbins (1985) includ-
ing upper-confidence bound techniques (Auer et al.,
2002), e-exploration approaches (Watkins, 1989; Ver-
morel and Mohri, 2005), probability matching tech-
niques (Agrawal and Goyal, 2012) and others. Many
variants of the initial problem have also been investi-
gated in the literature including the many- or infinite-
armed, combinatorial, adversarial, contextual, and
non-stationary cases.

In this work, we explore the variant of the prob-
lem where the reward distributions may be changing
in time. Specifically, we explore the case where the
reward distributions may be drifting in time and con-
textual information is available. This replicates the
online marketing scenario, where an experiment to
modify a webpage may be set up at a given time and
run indefinitely with the aim of maximizing revenue.
The web environment has context: user factors (web

1In the same work, Lai and Robbins demonstrate an
asymptotic lower bound of regret of O(logN) for any al-
gorithm.

browser, operating system, geolocation), world fac-
tors (day of the week), and arm factors (grouping of
modifications). Utilization of contextual variables al-
lows learning behavior for classes of users and ob-
servable world effects in order to improve the results.

2 BACKGROUND

A (finite-armed) multi-armed bandit problem is a
process where an agent must choose repeatedly be-
tween K independent and unknown reward distribu-
tions (called arms) over a (known or unknown) time
horizon T in order to maximize his total reward (or
equivalently, minimize the total regret, compared to
an oracle strategy). At each time step, t, the strat-
egy or policy selects (plays) a single arm it and re-
ceives a reward of rit

drawn from the ith arm distri-
bution which the policy uses to inform further deci-
sions. In our application, individual arms represent
webpage modifications with the goal of maximizing
desired user behavior (sales, time engaged, etc.).

2.1 Regret

We define expectation-expectation regret (R̄E ) as our
objective variable of interest, computed as the differ-
ence between the expected value of the best arm (per
play) minus the expected value of the arm that is se-
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lected by the algorithm, conditional on all contextual
variables, with expectation taken over repeated plays
of an arm at a fixed point in time. This distinguishes
from the stochastic measures of regret computed us-
ing empirical estimates of the mean or observed re-
ward values and from the adversarial measures of re-
gret where the best (oracle) arm is taken only in ex-
pectation over all plays. Formally, our objective value
is

E[R̄E ] = EP
h
(maxi=1;2;:::;K å

T
t=1 EA[ri;t ])�å

T
t=1 EA[rit ;t

]
i

(1)

Where it is the arm selected (played) at time t,
EP is expectation taken over repeated plays and EA
expectation taken over the arm distribution at a given
time t.

2.2 UCB Algorithms

A well-studied family of algorithms for the stationary
bandit problem are called Upper Confidence Bound
(UCB) strategies. In a UCB strategy, at each time
step t, the arm is played that maximizes the average
empirical payoff (A(x)) plus some padding function
(V (x)). The best basic UCB strategy we explore is
UCB-Tuned (Auer et al., 2002) where A(x) is defined
as the total observed payoff divided by its number
of plays and V (x) uses the empirical estimate of the
arm’s variance plus a factor to achieve a upper bound
of the true value in high probability. This algorithm is
intended for stationary multi-armed bandits, however,
we test it in the non-stationary case.

2.3 Restless Bandits

Change-point analysis, also known as change detec-
tion or structural breakpoints modelling, is a well-
studied problem in the applied stochastic process
literature. Intuitively, a change-point is a sudden,
discrete or “drastic” (non-continuous) change in the
shape of the underlying distribution. In an offline
fashion, change-points may be detected efficiently
and with an adequate set of tuneable parameters with
clustering algorithms. For bandits, the problem is
necessarily an online problem and offline algorithms
for change point detection are not feasible. The basic
idea of online change-point bandits is to use a mecha-
nism to detect change-points, generally parameterized
for some acceptable false alarm rate, and then utiliz-
ing some mechanism to “forget” learned information
after each change-point as necessary.

Hartland et al. (2006) propose an algorithm called
Adapt-EvE based on the UCB-Tuned algorithm (Auer
et al., 2002). Adapt-EvE uses the frequentist Page-
Hinckley test to identify change-points. Upon detec-
tion of a change-point, Adapt-EvE treats the problem

as a meta-bandit problem. That is, a second layer
of bandit optimization is instituted with two arms:
(1) continues using the learned data and (2) restarts
the UCB-Tuned algorithm from scratch. This meta-
bandit forms a hierarchical strategy that can be ex-
pected to efficiently evaluate the cost in regret of each
detected change. This technique was the winning
technique in the PASCAL Exploration vs. Exploita-
tion challenge in 2006 (Hussain et al., 2006) demon-
strating its ability to handle both drifting and change-
point type bandits.

Kocsis and Szepesvári (2006) present a variant of
UCB-Tuned called DiscountedUCB which applies a
continuous discount factor to the estimates in time.
Garivier and Moulines (2008) introduce Sliding Win-
dow UCB (SW-UCB) parameterized by a window
length and show it performs similarly to Discounte-
dUCB contingent on appropriately selected parame-
terizations.

Mellor and Shapiro (2013) present an online
Bayesian change-point detection process for switch-
ing (discrete change) bandits with constant switch-
ing rate – the frequency with which the distributions
change – in the contexts where switching occurs glob-
ally or per-arm and when switching rates are known
or must be inferred. Their algorithm is probabil-
ity matching based, but, as presented does not sup-
port contextual variables. Further, their technique ad-
dresses a bandit with switching behavior, rather than
drifting behavior as explored in this work.

2.3.1 Stochastic Drift

In time-series analysis, stochastic drift is used to refer
to two broad classes of non-stationarity in the popula-
tion parameter being estimated: (1) cyclical or model-
able drift that arise because of model misspecifica-
tion and (2) the random component. Often it is possi-
ble to detrend non-stationary data by fitting a model
that includes time as a parameter. Where the func-
tion of time is well-formed and appropriate for statis-
tical modelling, a trend stationary model can be found
with this detrending process. For models where de-
trending is not sufficient to make a process stationary,
difference stationary models may fit, where the dif-
ferences between values in time Yt and Yt�n can be
represented as a well-formed function appropriate for
statistical modelling.

Difference stationary models are represented with
autoregressive models. The generalized representa-
tion of the simple autoregressive model is referred to
as AR(n) where n is the number of time steps back the
current value maintains a dependency upon.
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AR(n): Yt=a0+a1Yt�1+a2Yt�2+���+anYt�n+et (2)

Where et is the error term with the normal char-
acteristics of zero mean (E[et ] = 0), variance s2 and
independence across times (E[etes] = 0;8t 2 ft 6=sg)
after fitting the autoregressive correlations. If these
two detrending strategies are not sufficient to make a
given process stationary, more complex filters such as
a band-pass or Hodrick-Prescott filter may be applied.

2.4 Generalized Linear Bandits

Filippi et al. (2010) use generalized linear models
(GLMs) for bandit analysis, extending the work of
(Dani et al., 2008; Rusmevichientong and Tsitsiklis,
2010) to utilize the UCB strategy of (Auer et al.,
2002) and proving (high-probability) pseudo-regret
bounds under certain assumptions about the link func-
tion and reward distributions. In some sense, our
work extends the Filippi et al. result to an experimen-
tal analysis within the non-stationary case, as well as
introducing a Thompson sampling based strategy for
integrating GLMs, rather than the UCB technique.

2.5 Probability Matching

Probability matching, especially randomized proba-
bility matching known as Thompson sampling, has
been explored in the reinforcement learning (Wyatt,
1998; Strens, 2000), and multi-armed bandits litera-
ture (Mellor and Shapiro, 2013; Scott, 2010; Kauf-
mann et al., 2012; May et al., 2012; Chapelle and
Li, 2011; Granmo and Glimsdal, 2013; Durand and
Gagné, 2014). The basic technique is to express a
model that matches the probability of playing a par-
ticular arm with the probability of that arm being the
best, conditional on all the information observed thus
far. That is, select arm i � P[ri is max]. In gen-
eral, this technique benefits from the same uncertainty
“boosting” that the UCB policies achieve; for the pur-
pose of exploration, it is beneficial to “boost” the pre-
dictions of uncertain actions (Chapelle and Li, 2011).
This technique has become very popular of recent as
various experimental and specific model theoretical
analyses (Kaufmann et al., 2012) have demonstrated
regret comparable or better than the popular upper
confidence bound (Auer, 2003) and Exp4 (Auer et al.,
2002) derived techniques. Recently, scalability has
been studied by introducing a bootstrap-based variant
of Thompson sampling (Eckles and Kaptein, 2014).
Importantly, practical implementation of the probabil-
ity matching technique is simple in a modern statisti-
cal computing environment.

A number of results have shown improvements by
performing optimistic Thompson sampling (Chapelle

and Li, 2011; May et al., 2012) where one only con-
siders the positive uncertainty surrounding an arm
estimate. Unlike UCB-based policies, traditional
Thompson sampling both increases (if the draw is
above the point estimate of the mean) and decreases
(if the draw is below the point estimate of the mean)
a prediction, depending on the sample draw; for the
purpose of maximizing reward (minimizing regret),
the decrease appears to have no benefit. For this rea-
son, optimistic Thompson sampling, which only in-
creases predictions proportional to their uncertainty,
outperforms the traditional technique.

3 OVERVIEW OF THE
APPROACH

The general technique we experiment with is to fit a
regression model of varying form to the data and then
to utilize the technique of optimistic Thompson sam-
pling to predict arm payoffs in the next iteration of
the algorithm. We explore and compare two primary
models, the autoregressive, time-detrended approach
and the weighted least squares approach for handling
non-stationarities with a regression framework.

3.1 Autoregression and Detrending

Formally, we fit a model

Yt;i = at +ARi(p)+Trendi(t)+At;i + et;i (3)

Where Trend(t) is a function representing the ex-
pected time trend, AR(p) is the autoregressive term
of order p and Yt;i is the expected reward for arm i
at time t. In practice, this model is generally fit as a
model of Yt with binary (“dummy”) variables At;i and
relevant interaction terms indicating which arm is de-
tected. In our experimental results, we explore how
variations (especially overspecification of the func-
tional form) in the “correctness” of the selection of
Trend(t) affect the overall results. This model, fit
with the ordinary least squares technique, the ridge re-
gression technique (Tikhonov, 1963) or the Bayesian
conjugate prior technique, returns an estimated set
of time-detrended, plausibly stationary2 coefficients
b̂ and estimates of their standard errors cSE(b̂). This
model can be readily extended to contain any contex-
tual variables, such as demographic information about
the user (in the web optimization context) or grouping
criteria on the arms to improve the learning rate.

2As long as the detrending process successfully removed
the non-stationarity.
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Combined, we follow in standard experiment de-
sign terminology and call the terms in our model a,
AR(p), Trend(t), and At;i the design matrix and refer
to it as X .

3.2 Penalized Weighted Least Squares

The weighted least squares (WLS) process introduces
a multiplicative weighting of “reliability” for each ob-
servation, resulting in a technique which minimizes
the reliability-adjusted squared errors. In the multi-
armed bandit context with drifting arms (without any
a priori knowledge of the functional form of the drift),
the weights are set to the inverse of their recency, in-
dicating that at each time step t, older data provides a
less reliable estimate of the current state.

Intuitively, weighted least squares provides a sim-
ple, well-explored, highly tractable technique to dis-
count the confidence of old data, increasing predic-
tive uncertainty as time progresses. This is a desir-
able quality within the context of restless bandits as
it appropriately accounts for the growing predictive
uncertainty of old observations.

Formally, the weighted least squares procedure
picks b̂, coefficients on a set of variables, X , called
the independent variables (or regressors), according
to the equation b̂ = (XT WX)�1(XT Wy) where W is
the matrix of weights and y is the rewards as observed
(or, in general, the regressand). Standard errors of the
coefficients are also computed, producing an estimate
of the standard deviation of our estimators.

To apply the weighted least squares procedure, we
follow in the work of Pavlidis et al. (2008) which
uses a standard linear regression to compute the esti-
mates of each arm and the work of the LinUCB algo-
rithm (Li et al., 2010) which applies a non-weighted
penalized linear regression to compute estimates of
the payoff for each arm. As we are a priori uncer-
tain about the functional form of the non-stationarity
in our bandit arms, we experiment with a variety of
time weighting techniques – logarithmic, with vary-
ing scale and base; linear, with varying polynomials;
exponential, with varying coefficients; and sinusoidal
– demonstrating the generality of this technique. In all
cases we strictly decrease the weight of a sample as it
becomes further in time from our current prediction
time. When additional information about the form of
non-stationarity is available, weights can be specified
appropriately to reduce the predictive uncertainty.

3.3 Optimistic Thompson Sampling

Extending the LinUCB algorithm, we propose a
technique that exploits the assumptions of the lin-

ear model and the probability matching technique of
Thompson sampling. Based on the assumption of nor-
mality, the regression coefficients, b̂, are normal and
hence the predictions ŷt are normal. We then op-
timistically sample (drawing only values above the
mean) from a normal distribution with mean åi(b̂i �
xi;t) and variance åi (cVar(b̂i) � x2

i;t) to approximate ŷt .
A more general form of this fundamentally Bayesian
algorithm can be constructed utilizing the techniques
of Bayesian regression (Minka, 2001) at the cost of
higher computational complexity.

4 SIMULATION ENVIRONMENT

To test our combined strategies and produce objec-
tive comparisons, we produce a synthetic simulator
with a wide variety of “true worlds” (unobserved to
the agent) including arm distribution type and param-
eters, arm count, and drift type from a set of func-

Input: l the penalty factor

w(t) the weighting strategy

function penalizedWLS(X , y, W, l)

b̂ = (XT WX +lI)�1(XT Wy)
s2 = (y� b̂X)T (y� b̂X)=(n� p)cVar(b̂) = diag[s2(XT WX +lI)�1]

end

function optimisticSampler(b̂, cVar(b̂))
samples = []

for each arm

estimates[arm] = sample estimated reward

payoff ŷt

end

argmaxarm estimates

end

function generateWeightMatrix(t)

W = []

foreach i < t

append w(i) to W

end

I �W
end

X = y = W = []

t = 0

while playing

ri;t = play arm optimisticSampler(

penalizedWLS(X , y, W, l)

)

extend X , the design matrix

append ri;t to rewards history y
W = generateWeightMatrix(t++)

end

Figure 1: Pseudocode of combined algorithm.
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Figure 2: Adjusted average cumulative regret of selected algorithms over 1,000 replicates of all worlds and true drift forms.

tional forms including random walk, exponential ran-
dom walk, logarithmic, linear (in varying degree), ex-
ponential and periodic drift (sinusoidal over varying
periods). Each form of drift is parameterized by a
randomly drawn real number constrained to be within
the same order of magnitude as the arm payoffs in its
simulation world which determines the scale of the
parameterization. To validate our results against plau-
sible modelling error, our simulator validates each al-
gorithm in the PASCAL challenge environment (Hus-
sain et al., 2006) and in the unbiased replay technique
of Li et al. (2011).

We present the combined algorithm, parameter-

ized in degrees of autoregression, detrending and
functional form of our weighted least squares dis-
counting process in pseudocode in Figure 1. Of the n
data points, the first p must be collected using another
method (uniformly at random, in our case) to provide
enough degrees of freedom to fit the regression model
with p variables.

5 EXPERIMENTAL RESULTS

In the results presented, we omit e-greedy, UCB1,
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DiscountedUCB and others as they were strictly out-
performed by UCB-Tuned or SW-UCB for all param-
eter choices tested. We also show only four represen-
tative drifting worlds due to space constraints. Across
all true worlds, we find in general that a detrending
term congruent with the true drift form (e.g. linear
detrend in the linear drift quadrant of Figure 2) out-
performs all other strategies in the long run, produc-
ing a zero-regret strategy (Vermorel and Mohri, 2005)
for restless bandits where the functional form of rest-
lessness is known. Similarly, we find that utilizing
a weighting function which closely approximates the
true drift performs well in most cases. Surprisingly,
we find that linear detrending is an effective technique
for handling the random walk, a result that is robust
to variations in the step type and scale of the random
walk. Unintuitively, WLS techniques also perform
strongly even in the case when there is no drift.

In these experiments, we find no convincing evi-
dence for a general application for detrending in poly-
nomial degree greater than one or autoregression of
any level in our model. Both autoregression and
higher degree polynomials strictly reduce regret if the
true world trend is autoregressive or determined, even
partially, by the chosen form. We find the linear
weighted least squares technique (weights set to the
inverse of t) to be the most robust technique over all
experiments, suggesting it is the strongest technique
in the case of no a priori information on the form
of drift: having the lowest mean total regret (20:8),
lowest standard deviation across all drift types (11:8)
and the lowest 75th (worst-) percentile regret (26:6).
Due to space constraints and difficulties reproducing
some challenge results, we do not present the PAS-
CAL challenge data here, however, our preliminary
results show similar promise with the weighted least
squares technique.

6 CONCLUSION

In this work, we have implemented and experimented
with integrating time series techniques and weighted
least squares with the highly successful Thompson
sampling technique to extend the state of the art in
handling restless regression bandits. We present evi-
dence that weighted least squares techniques provide
a strong solution for ongoing multi-armed bandit opti-
mization in an uncertain-stationarity world even with-
out an a priori understanding of the modality of drift.
The technique presented allows bandits with context
to handle drift in diverse form and operationalizes
monotonic discounting in a simple, easy to imple-
ment regression framework. This provides a viable

solution to the ongoing online marketing experimen-
tation problem. Future work will explore how con-
textual factors improve results for web optimization,
perform real world experiments on online marketing
optimization, and derive formal bounds for the inter-
action between weighted least squares and optimistic
Thompson sampling.
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