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Abstract: This article covers the transportation processes modeling in the Intelligent Transportation System environ-
ment. The combined microscopic and mesoscopic simulation is included. This article is dedicated to solving 
the problem of data preservation during the transition from a microscopic to a mesoscopic model. The solu-
tion suggests modifying the multi-agent transportation system, and using artificial neural networks, consid-
ering implementation of the unique architecture of an intelligent agent which collects additional information 
to be forwarded to the next simulation level. The article describes the microsimulation process implementa-
tion in the multi-agent system MATSim. A Ward neural network (trained using the data transferred from the 
microscopic level) is used for the processing for the mesoscopic level. 

1 INTRODUCTION 

The problem of optimizing transport processes in the 
city is one of the most important in the Intelligent 
Transportation Systems. The most acute problems 
are traffic accidents and traffic congestion on the 
street and road network (SRN) (Shahin, 2012). The 
solution of these problems and their consequences 
requires a comprehensive analysis of transport infra-
structure. The most robust investigation method of 
the transport infrastructure is modeling (Gregori-
ades, 2012).  

Conventionally, three levels of simulated objects 
are considered: microscopic, mesoscopic and macro-
scopic levels. At the microscopic level separate 
vehicles and technical means of traffic management 
are considered (Cavar, 2013). On the mesoscopic 
level homogeneous groups of vehicles are consid-
ered, which have common characteristics as density, 
intensity and speed (Savrasovs, 2014). The macro-
scopic level of transport flows of the entire city is 
described by using the differential equations system 
(Burghout, 2004). Microscopic and mesoscopic 
models can also be used to describe the traffic sys-
tem of the entire city, however, these approaches 
may result in performance issues (Kolosz, 2014).  

The specifics of each level can be combined into 
a single software system to improve its overall effi-
ciency. Existing software systems implement such 
integration by calculating the macroscopic character-
istics by referencing the microscopic data (Gaud, 
2008). This approach results in losing a large 

amount of valuable information related to the hidden 
patterns in the microscopic model. The data loss 
applies to behavioral and communicative features of 
individual agents, which should be reflected in the 
dynamic characteristics of the averaged homogene-
ous groups. Moreover, transitioning to a higher level 
of modeling results in a loss of feedback between 
agents and the environment, this introduces inaccu-
racies in the calculation of the parameters of 
transport infrastructure (Kumar, 2014). Calculation 
of tension at gravity points, which depends on ob-
servables provided by individual agents, can serve as 
an example. 

Locating and keeping the hidden patterns in 
models of higher order is a difficult task, because it 
requires the development of methods which operate 
at the junction of traffic flows theory, multi-agent 
systems and artificial intelligence systems. The arti-
cle provides a unique architecture of the microscopic 
traffic simulator which allows the transfer of data to 
the mesoscopic level with minimal loss of infor-
mation. 

2 INTELLIGENT AGENT 

Intelligent agents AI={aI
1,…,aI

N} are used in model-
ing of the traffic flows object (Russell, 2010). This 
section is devoted to the description of the architec-
ture and the behavior of intelligent agents in the road 
network model. 
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Refer to figure 1 to see the architecture of the in-
telligent agent from the set AI. The designed archi-
tecture allows agents to interact with each other and 
with the environment, which changes are not prede-
fined. 

 

Figure 1: Intelligent agent architecture. 

The architecture of an intelligent agent is repre-
sented by the following structural units: a controller, 
a memory, the means of communication with the 
environment (receptor, messenger and effector), and 
the means of interaction between these blocks.  

The receptor receives information from the envi-
ronment, and determines further action on its pro-
cessing and stores the required data in the memory. 

The effector collects information about the gravi-
ty points PA (Mikheeva, 2014) during the modeling 
object process. The collected information is used by 
the statistics gathering object. At the end of each 
reporting period ∆t, which corresponds to a calendar 
day, the agent aI

i generates a report, which repre-
sents a dataset containing the following data:  
 popt

i - the selected optimal path; 
 topt - the time spent to complete the optimal 

path popt
i; 

 pA
i  - the list of gravity points with the values 

of their load uA
i. 

The messenger is designed for communication 
between intelligent agents and provides composing, 
sending, and receiving messages.  

The memory unit is used to store the collected 
data. There are two memory blocks: area of the fixed 

data (obtained at initialization), and the area of the 
flexible knowledge (data changed during processing 
by the agent).  

The controller provides data processing, gener-
ates reactions according to the data received from 
receptors and messengers, solves problems, and 
generates data for the effector. The agent’s control-
ler is divided into three planning levels: reactive and 
informative. 

At the planning level agents aI
i are initialized ac-

cording to one of the driver models Mbeh (Gonzalez, 
2008). Determination of the scope occurs according 
to the selected model mbeh(aI

i)∈Mbeh, which depends 
on the SRN model, and the results of calculation of 
the optimal route by the SRN graph G’=(V’,E’) 
according to the assigned chain of correspondences.  

The problem of navigating through the SRN 
graph G’ is solved by considering the individual 
driver behavior model mbeh(aI

i) at the reactive level. 
The task of processing the signals from the receptor 
and the messenger is also resolved at this level. The 
reactive subsystem is based on neural network tech-
nology, which matches typical situations in the envi-
ronment with the reaction of agents’ behavior. This 
approach allows making effective decisions while 
the intelligent agents move along the street and road 
network graph. 

The informative level is a neural network train-
ing process. The neural network accumulates 
knowledge about dislocation and load values in the 
gravity points PA.  

The proposed architecture of an intelligent agent 
provides necessary qualities of its behavior, such as 
complexity, autonomy and intelligence. It is 
achieved by using a neural network in an intelligent 
agent adapted to working in a transport infrastruc-
ture modeling environment. 

3 MICROSCOPIC TRANSPORT 
SIMULATOR 

3.1 Simulator Mathematical Model 

Data generated by the simulation of a traffic flow 
includes amount, dislocation, and load values of 
gravity points of a city. The modeling object AM is 
used for traffic simulation, which generates the fol-
lowing objects: the coordination object, the statistics 
object, and the set of intelligent agents 
AI={aI

1,…,aI
N}. The listed objects are represented in 

the common environment E and interact with each 
other. 
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The coordination object is used for the manage-
ment of intelligent agents AI={aI

1,…,aI
N}. The coor-

dination object determines the creation time and the 
time of achieving the set goals for each agent aI

i,. 
The coordination object performs the accounting of 
time in the following format: “season”, “day of 
month”, “weekday”, “hour” (Kravets, 2013).  

The statistics object is used to predict the tension 
on the parts of the SRN.  

The mathematical model of the modeling object 
AM is as follows:  

{ }APE
out

IM FMSAEA ,,,,=  (1)

where E - is a finite set of objects in the envi-
ronment, including the SRN model objects and 
transport infrastructure;  

AI={aI
1,…,aI

N} is the finite set of intelligent 
agents, that are represented by an extended mathe-
matical model; 

SE
out – the set of states of the environment E;  

MP – a set of traffic laws;  
FA – a set of functions describing the changes in 

the state of transport infrastructure (Saprykina, 
2013). 

3.2 Simulator Implementation 

Analysis of the street and road network configura-
tion is performed by the use of simulation tools 
based on freeware component library MATSim 
(Multi-Agent Transport Simulation) (Rieser, 2014). 
Modeling objects designed in the previous sections 
are created in the MATSim environment by extend-
ing the built-in classes. For example, a MATSim 
agent class is extended to the developed intelligent 
agent. Intelligent agents act as mini-systems in-
volved in continuous interaction with each other, 
and are capable of independent actions. Agents are 
coordinated and their actions are structured accord-
ing to the current objectives. 

The system contains the following functional 
blocks: 
 micro-modeling simulation of the transport 

flow; 
 collection and processing of the simulation 

process data; 
 dynamic visualization of the simulated pro-

cess. 
A city map is converted from OpenStreetMap 

format to the MATSim internal format. The model 
of a map is a sequence of road sectors, each contain-
ing the following immanent properties: capacity; 
maximum allowed speed of movement; number of 

lanes in the SRN area; direction of movement; road 
surface quality. 

The MATSim core calculates routes of agents’ 
movement at a given time, with all the street and 
road network attributes. While moving about the 
map agents update their state and collect traffic 
congestion and tension data storing it in a database. 
During the simulation in the output folder files are 
created with the results that contain the full path and 
travel time of each agent.  

The simulation result can be reviewed by upload-
ing files obtained in the previous step into a dynamic 
visualization unit (Fig. 2). The subsystem allows 
seeing the distribution of agents over time, tracking 
problematic time intervals and areas of the city and 
figuring out gravity points. 

 

Figure 2: Visualising the process of microsimulation. 

Agents are having speed, which close to the free 
speed route, are highlighted in green while modeling 
the transport process. The red color indicates traffic 
congestions. Figure 2 shows traffic congestions on 
major highways of the Samara city at the evening 
rush hour. The simulation results match the actual 
situation on the street and road network of the city, 
as confirmed by field studies and the data of traffic 
information web services.  

4 TRANSITION TO 
MESOSCOPIC LEVEL 

Tension, density, and intensity in certain SRN areas 
are represented at the mesoscopic level of the city 
transport model (Kerner, 2009). Let us review the 
construction of the tension function of the gravity 
points using the data obtained at the microscopic 
level. The statistics gathering object uses a neural 
network. Training of the neural network is per-
formed during the intelligent agents’ aI

i moving on 
the SRN graph G’ according to the set of rules (in-
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telligent function). Each intelligent agent aI
i dynami-

cally trains the neural network throughout its life 
cycle. A trained neural network is able to predict 
tension values at any given gravity point. 

The neural network used in the statistics object is 
a three-layered Ward neural network, which is capa-
ble of conducting a qualitative analysis by allocating 
the initial data in various aspects. This is achieved 
by a special type of neural network architecture, a 
hidden layer which is divided into several blocks. In 
this case each block has its own transfer function 
that facilitates the parallel processing of signals 
received from the input layer. Architecture of the 
Ward neural network is shown in Figure 3. The 
input layer of the neural network consists of the 
following parameters: (xA, yA) - coordinates of a 
gravity point, (x0, y0), (xN, yN) - coordinates of the 
beginning and the end of the arc of the graph corre-
sponding to the SRN section, li - length of the SRN 
section, nαi - number of lanes on an SRN section in 
the forward direction, nβi - number of lanes on SRN 
section in the opposite direction, α - rotation angle of 
the forward direction, β - rotation angle of the oppo-
site direction, τ – temporal parameters.  

 

Figure 3: Architecture of the Ward neural network. 

A linear activation function F(ψ)=ψ is used for 
the input layer of the Ward neural network. The 
number of neurons in the input layer is dictated by 
the number of variables. The hidden layer is repre-
sented by the three blocks. Activation functions for 
the hidden layer units are chosen experimentally, 
which are: 
 sigmoid: 

( ) ψψ −+
=

e
F

1

1  (2)

 hyperbolic tangent: 

( ) ψψ

ψψ

ψ −

−

+
−=

ee

ee
F  (3)

 radial basis: 

( ) 2ψψ −= eF  (4)

A sigmoid activation function is used at the out-
put layer. The number of neurons in the hidden layer 
is calculated as follows: 









++= exphidden

2
N

NN
N

outin
 (5)

where: 
Nin -is the number of neurons in the input layer 

(Nin=11); 
Nout - is the number of neurons in the output layer 

(Nout =1); 
Nexp - is the number of the performed experi-

ments (Rutkovskaya, 2004). 
Ward neural network training is performed by 

backpropagation. Selection of weighs occurs every 
time when applying tension information uA

i∈U at the 
gravity point pA

i obtained from the agent aI
i∈AI. 

while transferring the data to the neural network.  
Thus, the statistics object shows the dependence 

of the temporal and spatial characteristics of the 
investigated area on the tension uA

i∈U of gravity 
points pA

i∈PA. The resulting neural network is capa-
ble of storing the data obtained at the microscopic 
level and solving transportation problems on 
mesoscopic and macroscopic levels. 

5 CONCLUSIONS AND FUTURE 
WORK 

This article describes the modified microscopic 
traffic simulator with agents figuring out knowledge 
about SRN bottlenecks to transfer to a higher model-
ing level. This information is used at the mesoscopic 
level to train the neural network, which allows keep-
ing hidden patterns in the form of synaptic connec-
tions. The discovered dependencies allow analyzing 
the modified transport infrastructure without running 
additional simulation cycles.  

The work on constructing models of transition 
from mesoscopic to macroscopic parameters allow-
ing finding the optimal structure of street and road 
network is underway. 
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