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Abstract: This paper presents the effects of Photovoltaic (PV) location on losses of the distribution system. The optimal 
location of PV is determined by using Particle Swarm Optimization (PSO) implemented in MATLAB-
OpenDSS environment. IEEE 34-node test feeder is employed to verify the feasibility and effectiveness of 
the developed method. Once the optimal location is determined the challenge still remains due to the uncertain 
behavior of the PV system. This effect along with other stochastic behaviors such as the uncertain output 
power of loads like Plug-in Hybrid Electric Vehicles (PHEVs) due to their stochastic charging and 
discharging, that of a wind generation unit due to the stochastic wind speed, and that of a solar generating 
source due to the stochastic illumination intensity, add problems like frequency oscillations in a microgrid. 
Hence, frequency control of a multi microgrid system is also addressed. 

1 INTRODUCTION 

Electric energy is produced in large power plants and 
transmitted through High Voltage (HV) transmission 
systems to be distributed to consumers through Low 
Voltage (LV) distribution networks. Distribution 
system dynamics are changing with the siting of 
electricity generation closer to the loads and these are 
called Distributed Generation (DG) units 
(Mohammadi, 2012). These units have less 
environmental impact, easy siting, high efficiency, 
enhanced system reliability and security, improved 
power quality, lower operating costs due to peak 
shaving, and relieved transmission and distribution 
congestion. 

However, depending on the location of DG units, 
some of the problems may be more pronounced and 
hence it is important to site the DG units to optimally 
exploit their potential. This paper, therefore, develops 
algorithms to optimally place the distributed 
generator considering the changing demand and 
generation conditions over a day. With distributed 
generators the distribution network can work in 
isolation being separated from the feeder network to 
form a micro-grid without affecting the transmission 
grid’s integrity. One of the DG technologies is 
Photovoltaic (PV), with penetrations increasing from 
hundreds of kWs to MWs in LV network. Due to 

these increasing penetrations in distribution systems, 
the utilities and planning engineers are increasingly 
interested in determining the best locations to place 
these units (Prenc, 2013). 

Much of the research work on PV allocation 
assumes a constant generation making the problem 
deterministic (Medina, 2006 – Shukla 2008). For 
example, in (Shukla, 2008), analytical methods are 
presented to determine the optimal location of PV 
with constant generation to improve the power 
quality. In reality however the PV output has 
variations and hence an optimal location profiling the 
daily irradiation and energy production is necessary 
(Ackermann, 2001).  

These units can be installed near load centers or at 
remote nodes to avoid large power transfers. Since 
distribution systems are now being operated as 
microgrids that form smart cities, analysis on the 
effects of these placements for microgrids is deemed 
necessary (Duenas, 2014). The problem becomes 
more complex with interconnection of multi-
MG/smart cities with more energy layers (Guo, 2010) 
as compared to a single microgrid/smart city which is 
a passive system.  

In this paper we develop an optimal PV location 
algorithm and analyze the effects of the PV 
generations and loads like PHEVs on transient 
stability of a multi-microgrid system. Since the 
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variability of a PV system can affect the findings of 
the optimal location a stochastic model is utilized for 
both PV generations and PHEV loads. Stochastic 
modeling and Monte Carlo simulation (MCS) are 
common methods to perform the stochastic optimal 
planning (Duenas, 2014), which have been widely 
used in OPF (Guo, 2010, Zhang, 2011), distribution 
network planning (Soroudi, 2011, Zhipeng, 2011), 
power market design (Sofla, 2012 – Shresta, 2008), 
distribution system extension planning (Kai, 2012) 
and microgrid energy management (Niknam, 2012). 
Here we utilize different models for stochastic 
behaviors of variable generation and demand units. 

The organization of this paper is as follows: 
Section 2 discusses about modelling of the 
distribution and microgrid system. The stochastic 
modelling of uncertain parameters in the multi-
microgrid system is also formulated in this section. 
PSO algorithm for optimal allocation of PV is 
discussed in Section 3. Section 4 describes the case 
studies and also presents the results of simulations. 
The paper is concluded in Section 5. 

2 MODELING AND PROBLEM 
FORMULATION 

We strongly encourage authors to use this document 
several microgrids with many DG units such as 
diesel, wind and solar generators integrated. In 
distribution systems, losses can increase operation 
cost and therefore it is essential to determine the 
optimal placement of these generators to minimize 
the total losses of the multi-microgrid system. Here 
an optimal power flow type of problem is formulated 
and heuristic algorithm such as particle swarm 
optimization is selected. 

2.1 Optimization Algorithm 

In this paper we will consider the placement of solar 
generation on ܵ ⊂ ܰ nodes of multi-microgrid due to 
restriction imposed by distribution network operators. 
We assume that solar generation contribute majorly 
to the active power of the system thereby reducing the 
problem to minimization of active power losses. The 
methodology proposed here is described in three 
basic steps: 
1) A constrained non-linear optimization problem is 
formulated to minimize the real power losses. 
Equality constraints related to distribution power 
flow equations and inequality constraints related to 
node voltage limits, generation capacity constraints 
and feeder current constraints are considered. 

2) An intelligent computational technique like PSO 
is employed with reduced computational complexity 
due to reduction in search space from ܰܲݎ	to ܵܲݎ 
where ݎ are the number of PV units to be placed. 
Since the order of units also matters a permutations 
calculator rather than a combinations calculator is 
employed.  
3) PSO is combined with three phase distribution 
power flow computed using backward forward sweep 
algorithm while the PSO globally optimizes to find 
the optimal DG placements and the distribution 
power flow determines the constraints violations. In 
backward forward sweep method, Kirchhoff’s 
Current Law and Kirchhoff’s Voltage Law are used 
to compute the bus voltage from farthest node in the 
backward sweep. Then in forward sweep, 
downstream bus voltage is updated starting from 
source node. The procedure stops after the mismatch 
of the calculated and the specified voltages at the 
substation is less than a convergence tolerance.  
4) If the optimal values of two consecutive iterations 
are same with all constraints satisfied the algorithm is 
deemed to have converged. If not, the process 
continues until the criteria is satisfied. 

The minimization objective function is formulated as 
shown in (1).  
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The losses over a period of one day continuously 
change due to changes in active power injections of 
the solar generation and changes in load consumption 
patterns. However, the location of PV once 
determined cannot change, so an optimal location 
should consider these variations in losses. The 
optimization algorithm is subjected to the following 
constraints. 
(i) Generator Rating Constraint: Based on peak 

power generation, the minimum and maximum 
limits have been imposed on the generation 
capacity as 
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min maxi i ig g gP P P   (3)

 

(ii) Voltage Constraint: The optimal siting has to 
be obtained such that there are no bus voltages 
limit violations. 

min maxiV V V   (4)

(iii) Power Balance Constraint: The total power 
demand should be less than or equal to total 
power generation.  
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(iv) Feeder Current Constraint: The feeder, 
current flowing through the feeder should be 
less than its thermal limit. 

ikik thI I  (6)

An unconstrained formulation considering both 
objectives and constraints from (1-6) is then given in 
(7). Typical operations constrain the voltage to be 
around the nominal node voltages of the microgrid 
whereas the lines have to be limited to their thermal 
values. 
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2.2 Power Flow Equations 

The power balance constraints include the power flow 
equations that are solved iteratively and expressed as  
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Figure 1: Current flowing on line connecting node i and j. 

The currents are those flowing on lines connecting 
nodes i and j as shown in Fig. 1 and a,b,c,d are matrix 
constants for the models of different components of 
the distribution network. Here loads are modelled as 
constant current injections, 	ܫ௦ ൌ 	 ቀ

ௌೞሺ௜ሻ

௏ೞሺ௜ሻ
ቁ
∗
, and 

distributed generations as negative active power 
loads. The generators are modelled using (9) that 

relates the voltage Nu and the current Ni  
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where Ns is the nominal complex power and N is a 

characteristic parameter of the node N . The model (9) 
is called exponential model (Price, 1993) and is widely 
adopted in the literature on power flow analysis 

(Haque, 1996). Notice that Ns  is the complex power 

that the node would inject into the grid, if the voltage 
at its point of connection were the nominal voltage

NU . 

However, under islanded conditions the 
microgrids lose stability instantly and hence 
frequency response is of concern. The uncertain 
behavior of the wind generations, hybrid electric 
vehicles and solar generation result in frequency 
deviations, an analysis of which requires uncertainty 
models. 

2.3 Uncertainty Models 

The uncertainties considered in this paper include 
wind speed, solar radiation, and load disturbance and 
stochastic models for them are developed here: 

2.3.1 Uncertainty of Wind Generating Units 

It has been observed that wind speed deviations 
follow a Weibull type distribution as shown in Eq. 
(10) (Guo, 2010). 
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, W and σ are the average value and 

standard deviations of wind speed, respectively, and 
Γ(•) is the gamma function. Using the know 
probability distribution function the relationship 
between the output power of a wind generating unit 
and the wind speed can be obtained and the details are 
provided in (Mohammadi, 2012). 

2.3.2 Uncertainty of Load 

Load uncertainties are twofold: those associated with 
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changing loads corresponding to daily consumption 
and those corresponding to transportation related 
consumption. For the daily consumption, hourly 
average load demand is scaled by a disturbance factor 
α=1+δh, where δh is the hourly disturbance coefficient 
and α is the disturbance factor. Both α and δh follow 
normal distribution with mean zero. Normal 
distribution of load can perfectly model the variable 
daily load in the power system PL=D*α is obtained 
using D the hourly load data and α the disturbance 
factor.  

The other types of loads are the Plugin hybrid 
electric vehicles. Since the behavior of consumers in 
charging their PHEVs is highly behavior dependent, 
three different stochastic processes for modelling 
PHEV are considered here. 

Brownian Motion: This is the continuous analog of 
symmetric random walk distributions, where each 
increment W(s+t)-W(s) is Gaussian with distribution 
N (0, t) and increments over disjoint intervals are 
independent. It is typically simulated as an 
approximating random walk in discrete time. Here, 
charging and discharging of PHEVs have been 
modelled by Brownian motion with sigma of 3. 

Poisson Process: This involves generation of random 
events so that: (i) arrivals occur independent of each 
other (ii) two or more arrivals do not occur at the same 
time (iii) the arrivals occur with constant intensity. 
Number of arrivals N (t) that occur from time zero up 
to time t is Poisson distributed with expected value 
lambda*t. The counting process N (t) is a Poisson 
process. The successive times between connections 
are Exponential (lambda) distribution.  Here, arrival 
time of PHEVs has been modeled by Poisson process 
with lambda of 3. 

M/M/1 Model: This is one of the random 
distributions (Markov process) in the category of 
Queuing systems. Discrete time intervals are 
considered so PHEV arrivals to a service center occur 
according to an independent sequence of a (1), a (2) 
…, where a (k) is the number of arrivals during time 
slot number k. Only one PHEV can be 
charged/discharged per slot (single server system). 
Additional PHEVs are in waiting until service is 
available. Therefore the number of PHEVs in the 
system at time k is given by  
 

 
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This recursion defines a Markov chain n (k), k ≥1. So 
M/M/1 is a single server buffer model in continuous 
time. Considering PHEV arrivals as Poisson process 

with intensity λ, an exponentially distributed random 
mean service time 1 ൗߤ  is employed for each PHEV. 
The resulting system size N (t) for t ≥ 0, is a Markov 
process in continuous time which evolves as follows: 
Starting from N (0) = n_0, wait an exponential time 
with intensity λ+μ (intensity λ if n_0=0), then charge 
with probability ߣ/ሺߣ ൅  ሻ and discharge withߤ
probability ߤ/ሺߣ ൅  ሻ. Here, number of PHEVs in theߤ
system (PHEV load size) has been modelled by 
M/M/1 model with λ of 1.5 and μ of 0.8. 

2.3.3 Uncertainty of PV 

The uncertainty of solar radiation is mainly because 
of the stochastic weather conditions. In this paper, 
cleanness index is used to model the uncertainties of 
weather condition. The relationship between the 
cleanness index and the solar irradiation can be 
obtained from (Srisaen, 2006). The distribution 
function of cleanness index can be expressed as. 
 

( )
( ) exp( )tu t

t t
tu

k k
P k C k

k





 (12)

 

Where, kt indicates the mean value of cleanness 
index, ktu is the 0.864 theoretically, ܥ ൌ

ఒమ௞೟ೠ
௘ഊೖ೟ೠିଵିఒ௞೟ೠ

				where	ߣ ൌ ሺ2߬ െ 17.519 expሺെ1.3118߬ሻ െ
1062 expሺെ5.0426߬ሻሻ/݇ݑݐ and ߬ ൌ ݇௧௨/ሺ݇௧௨ െ ത݇

௧ሻ. 
The PV generation varies with the solar 

irradiation which varies according to the cleanness 
distribution. The relationship between the solar 
irradiation and the PV output power can be obtained 
from (Huang, 2006). 

2.3.4 Load Frequency Control (LFC) 

Load Frequency Control (LFC) has been 
implemented in the second part of the simulations for 
a multi-microgrid system. LFC in microgrids with 
nominal frequency of 50 Hz is designed to maintain 
frequency within 49.9 and 50.1 in normal condition 
by controlling tie-line flows and generator load 
sharing (Kroposki, 2008). The control strategy should 
damp the frequency oscillation in steady state and 
minimize them in transient state while maintaining 
stability. 

Microgrids considered in this paper has hybrid 
power generation consisting of wind generators, 
photovoltaic, diesel generators. Power supplied to the 
load Ps is the sum of output power from wind turbine 
generators Pw, diesel generators Pg, photovoltaic 
generation Ppv, total loss power PLoss and output of 
PHEV Pphev given by 

s w g pv loss phevP P P P P P      (13)
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Table 1: Total daily loss for different PV locations. 

PV Bus 808 814 816 828 832 834 840 848 860 890 

Total daily Loss (MWh) 3.8129 3.6524 3.6513 3.6182 3.4299 3.4457 3.4300 3.4294 3.4295 3.8688 

 
LFC system in this paper uses this power flow 

balance equation for adjusting the frequency of the 
microgrid. Modeling of different parts of the system 
is discussed in the rest of this section. 

Modeling of Wind Turbine Generator (WTG). The 
wind turbine is characterized by non-dimensional 
curves of power coefficient Cp as a function of both 
tip speed ratio λ and blade pitch angle β. The tip speed 
ratio, which is defined as the ratio of the speed at the 
blade tip to the wind speed, can be expressed by 

blade blade

W

R

V


   (14)

 

 

Figure 2: Characteristic curve of output mechanical power 
versus wind speed of the studied WTGs. 

where Rblade (= 23.5 m) is the radius of blades and 
ωblade (=3.14 rad/s) is the rotational speed of blades. 
The expression for approximating Cp as a function of 
λ and β is given by 
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The output mechanical power of the studied WTGs is 
 

31

2W r p WP A C V  (16)

 

where, ρ (= 1.25 kg/m3 ) is the air density and Ar (= 
1735 m2) is the swept area of blades. The 
characteristic curve of output mechanical power 
versus wind speed of the studied WTGs in this paper 
is shown in Fig. 2. 

3 PARTICLE SWARM 
OPTIMIZATION (PSO) 

The  locations  of  the  PV  systems  are  optimized by 

Particle Swarm Optimization (PSO) Algorithm to 
minimize the total losses in the system presented in 
(7). PSO is a multi-agent search approach, which 
traces its evolution to the motion of a flock of birds 
searching for food. It uses a number of particles that 
are called a swarm. Each particle traverses the search 
space searching for the global minimum (or 
maximum). In a PSO system, particles fly within a 
multidimensional search space. During flight, each 
particle sets its position based on its own experience 
and the experience of neighboring particles. Hence, it 
makes use of the best position encountered by itself 
and its neighbors. Similarly, the swarm direction and 
speed of a particle is determined by the history 
experience obtained by itself as well as a set of its 
neighboring particles (Babaei, 2009). 

Each particle is a representative of PV locations 
that are variables that affect the total losses in each 
iteration. Let us consider p and s as particle position 
and flight speed in a search space, respectively. The 
best position of a particle in each step is recorded and 
represented as Pbest. The best particle’s index among 
all the particles in the group is considered as Gbest. The 
convergence of PSO is ensured by use of a 
constriction function. Finally, the modified velocity 
and position of each particle can be calculated as 
shown in (17) and (18): 
 

1 1 2*( * . ()*( ) * ()*( ))d d best d best ds k v ac rand P P ac rand G P      (17)

1 1d d dP P s    (18)

Here d is the index of iteration, Pd is the current 
particle’s position at the d-th iteration, sd is the 
particle’s speed of at d-th iteration, γ is inertia weight 
factor, ac1 and ac2 are acceleration constants, rand() is 
a uniform random value in the range [0,1], and k is 
the constriction factor which is a function of ac1 and 
ac2 according to (19): 
 

2

2

| 2 4 |
k

ac ac ac

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Where ac=ac1+ac2 and ac>4. Appropriate choice of 
inertia weight, γ, makes a balance between global and 
local explorations. In general, γ is calculated 
according to (20) (Das, 2006): 
 

max min
max
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Where itermax is the maximum number of iterations, 
and iter is the number of the iterations up to current 
stage. The iterations continue until it reaches the 
itermax or the difference between the losses calculated 
by best particles of the last two iterations is less than 
a predefined threshold. 

4 CASE STUDIES AND 
SIMULATION RESULTS 

The optimal PV locations are determined using the 
formulations discussed and the PSO technique. It is 
shown that losses are minimized under varying daily 
load consumptions. The PSO method described in 
section 3 was implemented in Matlab programming 
language and the unbalanced power flow solution is 
obtained using OpenDSS. With the placement of PVs 
at these optimal locations a frequency stability 
analysis of a multi-microgrid system is performed 
under stochastic load and generation behavior.  

4.1 Optimal PV Allocation 

As a preliminary analysis a 0.5 MW of PV generation 
is considered with an unknown optimal location that 
would result in minimum line losses. IEEE 34 node 
benchmark distribution system as shown in Fig 4 is 
considered that is inherently unbalanced with three 
phase cables and conductors and three phase, two 
phase and single phase loads. The characteristic 
curves of the PV are as shown in Fig. 3 (a)-(d). 

 

Figure 3: PV Characteristic curves; (a) Irradiation-time, (b) 
Temperature-time, (c) Pmpp-temperature, (d) Efficiency-
power. 

Initially losses are evaluated with single PV 
integration at node 848 of the IEEE 34 node system. 
Losses for an entire day are plotted as shown in Fig. 
5 as the PV generation and loads vary throughout the 
day. 

The active power losses are low at night and in 
early morning time periods, when loading is less. 

 

Figure 4: IEEE 34 node test feeder configuration. 

 

Figure 5: Daily losses with PV placement at node 848.  

However, when the loading increases and active 
power generations from PV source increases, the 
losses increase peaking from 15:00 – 16:00 hours. 
Table 1 summarizes the total daily losses with PV 
placements at different nodes. It is seen the best 
location is node 848 which is located further from the 
main grid and close to high-demand consumers. 
Similar results are obtained using the developed PSO 
algorithm and it is seen that losses are reduced by 
29% as compared to no PV installation and 13% as 
compared to worst PV installation. 

Table 2: Total daily loss for best and worst multi-PV 
locations. 

 Best PV locations Worst PV locations 

PV Nodes 832, 848, 860 808, 814, 890 

Total daily Loss 
(MWh) 

3.5620 3.8408 

4.2 Optimal Multi-PV Allocation 

Optimal locations for three PVs are obtained for IEEE 
34 node test feeder by optimization algorithm (PSO) 
to achieve the minimum total daily losses. As seen in 
Table 2 the optimal node locations are 832, 848 and 
860. They show 8% improvement in losses as 
compared to the worst locations found heuristically. 

4.3 Stochastic Uncertainties in 
Multi-microgrid 

With the determined optimal PV locations frequency 
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stability is evaluated considering the frequency 
response models and uncertainty modelling in section 
2.  Moreover for multiple microgrids several islands 
may occur simultaneously as a result of multiple 
contingencies in the network. PSO is adopted here to 
improve the frequency response by optimizing the 
parameters of various controllers. The details of 
controller design utilizing PSO for speed control are 
available in our prior work (Keshtkar, 2014). 

Consider two similar microgrids connected 
through a tie line as shown in Fig. 6. This hybrid 
system comprises of several RES such as Wind 
Turbine Generator (WTG) and PV including Diesel 
Engine Generator (DEG) as DG that contributes to 
the inertia of the microgrid system. The hybrid system 
also includes PHEVs and other residential and small 
industrial loads. The PV systems are located 
optimally using the algorithm proposed earlier in the 
paper. The controllable source in this microgrid is 
Diesel Engine Generator whose control parameters 
are optimized by PSO to minimize the frequency 
deviations due to the disturbances. The tie line 
deviations of the multi-microgrid system are also 
considered in the objective function for optimizing 
controller parameters. The Area Control Error (ACE) 
for each microgrid considering ΔPtie the tie-line 
power flow deviation, Δfi the frequency deviation of 
each microgrid weighted by β is as shown in (21). 

i tie iACE P f     (21)
 

 

Figure 6: Configuration of the modeled multi-microgrid. 

Three different stochastic behaviors of the PHEVs 
discussed in section 2 are modeled along with 

stochastic uncertainties of load, wind and solar 
generations. Frequency response of one of the 
microgrids of the multi-microgrid system is obtained 
as shown in Fig. 7. Also Fig. 8 shows the magnified 
frequency responses of the system in presence of 
different stochastic uncertainties in the multi-
microgrid power system. 

It is seen that stochastic modeling is essential to 
study the transient stability of the system and that 
some uncertainties can cause the frequency to 
severely deviate from the nominal value. For 
example, stochastic behavior of PHEVs creates 
significant overshoots in the frequency response as 
shown in Fig. 8 that can cause the microgrid system 
to be unstable. It is observed thus that a simultaneous 
modeling of stochastic behaviors is essential to design 
and test reliable and robust controllers.  

 

Figure 7: Frequency response of one of the microgrids with 
different stochastic modelling. 

 

Figure 8: Frequency response of one of the microgrids for 
stability margin analysis. 

5 CONCLUSIONS 

In this paper a method for determining the optimal 
placement of a PV system in distribution network 
based on daily power consumption/production 
fluctuations is described to minimize the total daily 
losses. The PSO optimization algorithm shows fast 
and accurate performance in calculating the optimal 
position of a PV system. Therefore, it can also serve 
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as a tool in calculating the optimal placement of any 
number and kind of DG units with a specific daily 
production curve such as wind turbine systems, fuel 
cells, microturbines with a goal of optimizing 
distribution power system performance.  

A transient response analysis of the system with 
optimal PV locations and stochastic modeling of 
loads and generation is obtained and control 
parameters are designed using PSO. It is observed 
that simultaneous stochasticity modeling of all 
components should be considered for designing 
robust controllers.  
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