
Cloud-side Execution of Database Queries for Mobile Applications

Robert Pettersen, Steffen Viken Valvåg,Åge Kvalnes and Dag Johansen
Department of Computer Science, University of Tromsø, The Arctic University of Norway, Tromsø, Norway

Keywords: Mobile, Cloud, Performance.

Abstract: We demonstrate a practical way to reduce latency for mobile .NET applications that interact with cloud
database services. We provide a programming abstraction for location-independent code, which has the po-
tential to execute either locally or at a satellite execution environment in the cloud, in close proximity to the
database service. This preserves a programmatic style of database access, and maintains a simple deployment
model, but allows applications to offload latency-sensitive code to the cloud. Our evaluation shows that this
approach can significantly improve the response time for applications that execute dependent queries, and that
the required cloud-side resources are modest.

1 INTRODUCTION

Use of cloud-provided services is integral to the op-
eration of modern distributed and mobile applica-
tions. In particular, cloud databases simplify appli-
cation logic by serving as highly available reposito-
ries for critical state. For improved scalability and
availability these databases are commonly NoSQL,
with limited support for tabular relations and trans-
actions and with a more relaxed consistency model
than a conventional relational database. Queries are
issued through a programmatic interface, rather than
a domain-specific, high-level query language.

This promotes a usage pattern where multiple,
consecutively-issued queries implement a single logi-
cal transaction. For example, an atomic update can be
implemented as a read of the old value, followed by
a conditional write of the new value, with the predi-
cate that the old value remains unchanged. Or a col-
lection of related records can be retrieved in multiple
steps, by manually following foreign key references,
rather than using higher-level features like joins and
subqueries.

When the database is hosted in the cloud, issu-
ing a sequence of dependent queries entails multiple
round-trips of communication, and network latency
becomes an important concern. For example, we have
measured a latency of 50−350ms for accessing the
Amazon DynamoDB (DeCandia et al., 2007) cloud
database from a mobile device (Pettersen et al., 2014),
whereas a study covering 260 global vantage points
reports an average round-trip time (RTT) of 74ms for

accessing AmazonEC2 instances (Li et al., 2010). Is-
suing a sequence of queries to the cloud can result in
unwanted delays that are perceptible by users.

This paper demonstrates a practical way to signif-
icantly reduce completion-latency when mobile ap-
plications execute dependent queries against a cloud
database. Our approach is to provide a program-
ming abstraction—satellite execution—for location-
independent code, which has the potential to exe-
cute either locally on a device, or be offloaded to the
cloud. If an application experiences high latency, or
needs to issue a long sequence of database queries, the
latency-sensitive code can be offloaded to the cloud
and executed in close proximity to the database ser-
vice. This ensures low-latency database access on
demand, while preserving the programmatic style of
database access.

Our system, called Dapper, significantly extends
and integrates the functionality of two previous sys-
tems: Rusta (Valvåg et al., 2013) and Jovaku (Pet-
tersen et al., 2014). Rusta is a platform for developing
cloud applications that can utilize client-side storage
and processing capacity, while the Jovaku system pro-
vides a distributed infrastructure for caching of cloud
database data through the ubiquitousDNS service.

A goal with Rusta was to express computations
in a location-independent way, allowing for oppor-
tune execution in the cloud or at client-side devices.
This was accomplished by expressing computations
in the Scala programming language and using built-
in closure features to create transferable execution
contexts. Dapper uses .NET reflection to achieve the

586 Pettersen R., Viken Valvåg S., Kvalnes Å. and Johansen D..
Cloud-side Execution of Database Queries for Mobile Applications.
DOI: 10.5220/0005451605860594
In Proceedings of the 5th International Conference on Cloud Computing and Services Science (CLOSER-2015), pages 586-594
ISBN: 978-989-758-104-5
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

same, thereby approaching the problem of transfer-
ability in a more general manner; any part of the exe-
cution context of a program written in any .NET sup-
ported language can be made transferable.

Jovaku’s application-transparent interfacing with
Amazon’s DynamoDB throughDNS was in part made
possible by a cloud-side relay-node. Software on this
node bridgedDNS with DynamoDB by turningDNS

requests into database queries. Dapper not only sup-
ports use ofDNS for caching of data on behalf of a
mobile application, but also transforms and extends
the Jovaku cloud-side node into a platform for host-
ing and executing offloaded .NET code.

To illustrate the benefits of our approach, we
quantify latency savings when cloud database queries
are executed from the cloud rather than at the client-
side device. We examine communication traces of
popular phone applications to determine the practi-
cality of our approach, and we measure the perfor-
mance of the Dapper cloud-side platform to assess
added costs.

The rest of the paper is structured as follows. Sec-
tion 2 elaborates on the background and context of
our work, motivating our general approach. Sec-
tion 3 describes Dapper, and the programming ab-
stractions that enable cloud-side execution of queries.
Section 4 contains our performance evaluation, with
measurements of typical reductions in latency, and
the maximum query processing throughput that can
be achieved in various configurations. Section 5 dis-
cusses related work, and Section 6 concludes.

2 BACKGROUND

The desire to reduce latency for mobile applications
tends to encourage a split application architecture,
where parts of the application logic executes on the
device, and other parts execute in the cloud. Higher-
level operations such as submitting a comment or gen-
erating a news feed are delegated as a whole to the
cloud, to avoid multiple round-trips of communica-
tion.

The split between frontend and backend also has
a tangential benefit: it allows a variety of frontends,
often tailored for different devices, to access the same
backend service. For example, an on-line chess ser-
vice will typically offer both a web-based frontend,
as well as clients for various mobile devices and plat-
forms. Users should be able to switch seamlessly be-
tween client devices, e.g. moving from their laptop
to their phone, so the state of on-going games must
be maintained by the backend. This requires frequent
communication with the cloud to retrieve and update

application state.
Many frameworks and platforms aim to ease the

development of mobile applications that are fac-
tored into separate backend and frontend components.
One example is Parse (Parse, 2015), which provides
a backend-as-a-service solution that offers backend
cloud storage, as well as the ability to deploy appli-
cation modules that execute in the cloud, close to the
data. One common downside of these approaches is
that the device-specific and cloud-specific parts of the
application are deployed independently, through dif-
ferent channels. This increases the risk of breakage,
when old versions deployed on devices interact with
the newest version deployed in the cloud.

We approach the problem differently; rather than
explicitly deploying parts of applications in the cloud,
we empower applications to offload latency-sensitive
code on demand, in a dynamic manner. Offloaded
code will execute in close proximity to the backend
storage service, where latency is low. Thus, we ad-
dress the main motivating concern—improving ap-
plication responsiveness as experienced by users—
without dictating a static deployment model for ap-
plications.

A key idea underlying this work is to move com-
putations closer to the data that they touch, which is a
well-known technique that finds diverse applications.
When processing streams of data, the demand for net-
work bandwidth can be reduced by filtering streams
closer to the source, pushing computations upstream.
When processing stored data, similar gains can be
made by scheduling computations to execute locally
on the storage nodes, using functional programming
models like MapReduce (Dean and Ghemawat, 2004)
for location independence.

Our experience from mobile agents (Johansen
et al., 2001; Johansen et al., 1999) and MapReduce-
style distributed data processing have inspired some
key aspects of this work. As in Cogset (Valvåg et al.,
2013), we promote a functional programming model
using the visitor pattern, where latency-sensitive code
has the ability tovisit the backend storage service as
desired. In this case, a visitor also resembles a mo-
bile agent; although restricted to moves back and forth
between a client device and the cloud, it retains the
defining ability to carry state.

3 DAPPER

Instead of statically partitioning applications into
client- and cloud-side components, Dapper enables
individual objects to move dynamically between the
client and the cloud. This is accomplished by ex-

Cloud-side�Execution�of�Database�Queries�for�Mobile�Applications

587

DBClient

Relay

Node

DB

Client

Relay

Node

(a) Baseline, client communicating directly with DB

(b) With satellite execution

Single roundtrip

Multiple Get/Puts

Figure 1: Howsatellite executionis applied to eliminate
extraneous round-trips of communication between a client
and the cloud, reducing latency.

tending the mobile platform with asatellite execu-
tion environment hosted on a cloud-side relay-node.
Dapper implements the relay-node and provides pro-
gramming abstractions for an application to temporar-
ily execute an object at the satellite.

The decision to deploy an object for satellite ex-
ecution is taken at run-time. Deployment involves
moving an object’s code (i.e., its class) and its cur-
rent state. Incurred state changes while executing re-
motely are included when the object is moved back
to the client. Objects can move repeatedly between
the client and the cloud, for example in response to
changes in application environment or state.

In this work, we demonstrate how satellite execu-
tion can reduce completion-latency for cloud database
queries. Queries are expressed as objects that interact
programmatically with the database. Through satel-
lite execution the objects are deployed in close prox-
imity to the targeted cloud database. This approach
preserves the advantages of a programmatic database
interface; for example, objects can perform computa-
tions, transformations, cryptographic operations, and
any other manipulations of parameters and interme-
diate results that may be required when performing a
sequence of queries. Figure 1 illustrates our approach,

p u b l i c i n t e r f a c e IC on te x t

{

Task<objec t> Get (s t r i n g key) ;

Task<L i s t<objec t>> GetMany (s t r i n g key) ;

Task<bool> Put (s t r i n g key , o b j e c t va lue) ;

}

Figure 2: Dapper interface to key/value databases or stores.

showing how multiple round-trips between a client
and the cloud can be replaced with a single round-trip
to the relay-node and multiple low-latency intra-cloud
interactions with the database.

Our implementation targets Amazon DynamoDB,
a popular NoSQL cloud database service, but it can
easily be adapted to work with any similar services.
The relay-node is an Amazon EC2 instance in the
same availability zone as the DynamoDB service,
running an unmodified Windows Server 2012 image.
The relay-node software is written in C# and uses an
asynchronous programming model to efficiently han-
dle a large number of clients and database connec-
tions.

Amazon’s official C#API is used to perform Dy-
namoDB operations. But Dapper exposes thisAPI to
the programmer indirectly, through a database con-
text object providing general database operations, im-
plementing the IContext interface shown in Figure 2.
This indirection separates application logic from the
particular database, promoting customization flexibil-
ity. For example, an application can be run fully
client-side by providing a context object that binds to
a client-side database.

To be eligible for satellite execution, a class must
implement the ISatellite interface. Figure 3 shows
an example implementing a bag-of-queries capable of
satellite execution, given a database context. Queries
are added to the bag by invoking AddQuery(); the
queries are aggregated in thequeryList field. Exe-
cute() issues the queries via the database context ob-
ject and stores results in theresponseList field. The
client can retrieve query results by invoking GetRe-
sponses().

An object is moved for execution at a relay-node
when the application invokes the Dapper run-time’s
ExecuteAt() function, shown in Figure 4, specifying
the object and the particular satellite execution envi-
ronment. ExecuteAt() transfers the object, in a seri-
alized state, to the relay-node, where the object is de-
serialized and its Execute() function is invoked. After
the Execute() function completes, the object is moved
back to the client. Dapper exposes .NET task-based
asynchronous programming primitives, as shown in

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

588

[S e r i a l i z a b l e]

p u b l i c c l a s s QueryBag : I S e r i a l i z a b l e , I S a t e l l i t e

{

p r i v a t e L i s t<s t r i n g> r e s p o n s e L i s t ;

p r i v a t e L i s t<s t r i n g> q u e r y L i s t ;

p u b l i c async Task Execute (IC on te x t c t x)

{

foreach (var query in q u e r y L i s t)

{

var queryResponse =

await c t x . GetMany (query) ;

i f (r e s p o n s e L i s t ==n u l l)

r e s p o n s e L i s t =new L i s t<s t r i n g > () ;

r e s p o n s e L i s t . AddRange (queryResponse) ;

}

}

p u b l i c vo id AddQuery (s t r i n g query)

{

i f (q u e r y L i s t == n u l l)

q u e r y L i s t = new L i s t<s t r i n g > () ;

q u e r y L i s t . Add (query) ;

}

p u b l i c L i s t<s t r i n g> GetResponses ()

{

re turn r e s p o n s e L i s t ;

}

}

Figure 3: Implementation of a bag-of-queries that can exe-
cute remotely in the cloud via satellite execution.

async Task<objec t> ExecuteAt (o b j e c t obj ,

Node l o c a t i o n = n u l l)

Figure 4: Interface for requesting remote execution.

figures 3 and 4, for the application to determine com-
pletion of remote execution and for the remote envi-
ronment to efficiently handle actual execution.

Dapper employs several techniques to reduce the
amount of data communicated between the client and
the relay-node. One technique is to cache previously
received assemblies at the relay-node. Thus, if in-
stances of the same class are moved repeatedly, the
corresponding byte codes need only be communi-
cated once. Assembly-versioning determines the va-
lidity of a cached assembly. Another optional opti-
mization is to communicate only changed state back
from the remote environment—when remote execu-
tion completes, Dapper determines the difference in
object state before and after execution and communi-
cates that difference back to the client for object re-
construction. This is implemented using a custom se-
rialization protocol; default serialization offers more
convenience and is employed unless otherwise speci-

fied.
A user typically assigns different levels of trust to

applications hosted on the same mobile device. For
example, the user could entrust one application with
access to data such as a contact list, but deny that ac-
cess to another application. It is important for satel-
lite execution not to weaken enforcement of this dif-
ferentiated trust. For example, if the relay-node pro-
vides no isolation between execution environments,
code executed on behalf of one application could po-
tentially access code and data belonging to another
application, thereby compromising trust assigned by
the user at the mobile device.

Dapper relies on .NET application domains (Ap-
plication Domains, 2015) to create separate and iso-
lated execution domains for received assemblies at
the relay-node. Each of these domains is config-
ured with a whitelist of library-assemblies that are
available to the hosted assembly. Also, some library-
assemblies are made partially available subject to call-
interception and approval.

4 EVALUATION

Our relay-node was hosted on two types of Ama-
zon EC2 instances in our experiments. The first type
was t1.micro, equipped with 613 MB memory and
a single-core 64-bit vCPU operating at 1.85 GHz.
The second type was t2.medium, equipped with 4
GB memory and a two-core vCPU operating at 2.50
GHz. Both types of instances were running Microsoft
Windows Server 2012 R2. We used Amazon’s Dy-
namoDB as the cloud-side database, instantiated in
the same availability zone as our relay-node.

Dapper runs on a variety of Microsoft Windows
platforms, including phone, store, and desktop. We
used two different client-side platforms for the exper-
iments: (1) a phone with 2 GB memory and a four-
core QualCom Snapdragon 800 2.2 GHzCPU and (2)
a desktop machine with 64 GB memory and a four-
core Intel Xeon E5-1620 3.7 GHzCPU. The phone
ran Windows Phone 8.1 and communicated over 4G,
whereas the desktop machine ran Windows 10 and
was connected to aLAN .

We first report on a black-box examination of
the cloud communication patterns of some popular
mobile device applications. Here we sought to dis-
cover patterns consistent with sequences of dependent
queries, with the motivation that satellite execution
could be used in place of such interactions. We con-
figured our phone platform to communicate through
an access point instrumented to capture all ingress and
egress packets. We then inspected packet traces look-

Cloud-side�Execution�of�Database�Queries�for�Mobile�Applications

589

0

1

2

3

4

5

Nu
m
be

r o
f p

ac
ke

ts

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time (sec)

req1 req2

resp1 resp2

Figure 5: Example communication pattern between mobile
device and cloud assumed to be of a request/reply type.

Table 1: Summary of cloud interactions during phone ap-
plication startup.

Application # request/reply # connections

Social networking
1 1
2 1

Instant messaging
1 4
2 3
7 1

Short messaging

1 7
2 3
4 1
6 1

Picture exchange
1 1
2 2

ing for what appeared as consecutive request/reply
cloud interactions without intervening user actions.
The particular pattern we looked for is exemplified
in Figure 5, which shows two interactions assumed to
be of a request/reply type.

Our findings for cloud interactions during startup
of four popular applications are summarized in Ta-
ble 1. We observed that the applications communicate
over a number of separate network connections, rang-
ing from 2 for the social networking application to
12 for the short messaging application. Most of these
connections are to different services within the same
cloud, but some are external, typically in support of
content distribution such as Akamai (Nygren et al.,
2010). The number of assumed request/reply interac-
tions varied across applications and connections, with
the instant- and short messaging applications respec-
tively having as many as 7 and 6 consecutive interac-
tions. These findings suggest satellite execution could
be effective if applied in these popular applications.

We continue with an experiment that quantifies la-
tency when a client issues cloud database queries di-

1 2 3 4 5
Number of queries

0

200

400

600

800

1000

1200

La
te
nc
y
(m

s)

desktop
desktop via relay
phone via relay
phone
phone (normalized)

Figure 6: Increasing number of queries executed with and
without satellite execution.

rectly and when utilizing the cloud-side relay-node.
For this we used the bag-of-queries implementation
outlined in Figure 3 to issue queries to the cloud
database. Latency when the bag contained between
1 and 5 queries is shown in Figure 6. The figure
presents results, averaged over 1000 runs, for both
phone and desktop with the relay node hosted on a
t1.micro instance. As shown, there are significant la-
tency savings when the bag contains more than one
query. This is because latency between the relay-node
and the database is low, and the round-trip latency be-
tween the client and the cloud—approximately 64 ms
for desktop and 105 ms for phone—overshadows the
low cost of serializing and transferring the query bag.

The DynamoDB library uses theHTTP 100-
continue feature when interacting with the cloud
database. Use of this feature adds a communication
round-trip to database interaction, needlessly inflat-
ing latency, as described in (Pettersen et al., 2014).
We therefore used platform interfaces to disable this
HTTP feature on desktop. Similar interfaces do not
exist on Windows Phone, however. The results in
Figure 6 consequently include one additional round-
trip latency for phone, compared to desktop. To bet-
ter convey the latency difference between phone and
desktop, the figure also includes results where one
round-trip latency has been subtracted from phone.
Even after this normalization, phone has significantly
higher latency than desktop, demonstrating the rela-
tive importance of our satellite execution technique
for the mobile platform.

The data on popular applications in Table 1 only
indicates that latency savings are possible; determin-
ing the degree to which the interaction could exploit
satellite execution would require access to application
source code. To approximate the savings that could be
experienced in a deployed application we reconstruct

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

590

250 255 260 265 270 275 280 285 290
Latency (ms)

0

5

10

15

20

25

30

35
%
 o
f r
eq

ue
st
s

(a) Desktop: adding a friend

70 80 90 100 110 120
Latency (ms)

0

10

20

30

40

%
 o
f r
eq

ue
st
s

(b) Desktop: adding a friend, with satellite execution

400 420 440 460 480 500
Latency (ms)

0

5

10

15

20

%
 o
f r
eq

ue
st
s

(c) Mobile: adding a friend

90 100 110 120 130 140 150 160
Latency (ms)

0
2
4
6
8

10
12
14
16
18

%
 o
f r
eq

ue
st
s

(d) Mobile: adding a friend, with satellite execution

Figure 7: Latencies when adding a friend to a social network,with and without Dapper’s satellite execution.

a scenario where a friend connection is established in
the MSRBook, a social networking application based
on Deuteronomy (Levandoski et al., 2011). The ad-
dition of a friend in this network involves friend and
news feed updates for both concerned parties, for a
total of 4 queries. Equivalent queries were placed in
our bag-of-queries and we ran the friend-add action
1000 times on both the desktop and the mobile plat-
form, with and without satellite execution. Figure 7
illustrates latency savings. Savings due to satellite
execution are pronounced; on desktop latency drops
from around 265 ms to approximately 100 ms, while
it drops on mobile from around 450 ms to approxi-
mately 125 ms.

On a mobile device such as a smartphone, a
person uses around 24 different applications every
month (Nielsen, 2014). Even the modest resource al-
locations available to the Amazon t1.micro instance
used in our experiments are likely to be ample for a
relay-node dedicated to a single mobile device. But
if the relay-node functionality was a service offered
by the cloud database provider, in a fashion similar
to the Parse application module service (Parse, 2015),

the relay-node would likely be shared among many
mobile devices and its capacity would be an issue. We
therefore last consider an experiment where the relay-
node serves an increasing number of mobile devices.

In the experiment we configured each client (i.e.
mobile device) with a 4-query bag at the relay-node.
Queries in these bags were repeatedly executed, en-
suring high contention for relay-node resources. We
then increased the number of clients, in an attempt to
reveal relay-node capacity. Results for the t1.micro
instance are shown in Figures 8(a)–(c). From the
figures we observe that the t1 instance is capable of
completing around 50 bags per second before per-
formance tapers off. This maximum performance is
likely due toCPU becoming a bottleneck, as indicated
by the data in Figure 8(c). This is corroborated by
t2.medium instance performance, which is shown in
Figures 8(d)–(f). The t2.medium instance has approx-
imately twice theCPU capacity of the t1.micro in-
stance, and also completes bags at twice the rate of
the t1.micro instance.

Cloud-side�Execution�of�Database�Queries�for�Mobile�Applications

591

0 20 40 60 80 100
Number of clients

50

100

150

200

250

300

350

400

450

Av
er
ag

e
la
te
nc

y
pr
 b
ag

(a) Bag completion-time on t1.micro

0 20 40 60 80 100
Number of clients

50

100

150

200

250

300

Ba
gs
 p
r s

ec
on

d

(b) Bags per second on t1.micro

0 20 40 60 80 100
Number of clients

20

30

40

50

60

70

80

90

100

CP
U
co
ns
um

pt
io
n

(c) CPU consumption on t1.micro

0 20 40 60 80 100
Number of clients

80

90

100

110

120

130

140

150

Av
er
ag

e
la
te
nc

y
pr
 b
ag

(d) Bag completion-time on t2.medium

0 20 40 60 80 100
Number of clients

0

100

200

300

400

500

600

700

Ba
gs
 p
r s

ec
on

d

(e) Bags per second on t2.medium

0 20 40 60 80 100
Number of clients

0
10
20
30
40
50
60
70
80
90

100

CP
U
co
ns
um

pt
io
n

(f) CPU consumption on t2.medium

Figure 8: t1.micro and t2.medium relay-node performance

5 RELATED WORK

The complexity of developing and deploying appli-
cations that span a variety of mobile devices, per-
sonal computers, and cloud services, has been rec-
ognized as a new challenge. Users expect applica-

tions and their state to follow them across devices,
and to realize this functionality, one or more cloud
service must usually be involved in the background.
Sapphire (Zhang et al., 2014) is a recent and compre-
hensive system that approaches this problem by mak-
ing deployment more configurable and customizable,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

592

separating the deployment logic from the application
logic. The aim is to allow deployment decisions to
be changed, without major associated code changes.
Applications are factored into collections of location-
independent objects, communicating through remote
procedure calls. Like Sapphire, Dapper provides a
location-independent programming abstraction, but
preserves a monolithic application structure, which
allows the application to be installed in its entirety on
a single device through a regular distribution channel
like an app store. Code is then transferred on demand
from the device to the cloud, as objects move to the
cloud to enjoy low-latency execution. The decision to
visit the cloud or stay on the local device can be made
dynamically, at run time.

With Dapper, we introduce relay-nodes in the
cloud as an architectural tier between the cloud and
mobile devices. Similar middle tiers have been pro-
posed for example with Cloudlets (Satyanarayanan,
2013), and are implemented in code-offloading
systems like COMET (Gordon et al., 2012),
MAUI (Cuervo et al., 2010), and CloneCloud (Chun
et al., 2011). However, the goal of these systems
is often to augment mobile devices with additional
computing power, or to conserve energy (Tilevich and
Kwon, 2014), so the added tier may be located close
to the devices, on local server machines, or wherever
cheap computing power is available. In contrast, our
motivation is not to offload work, but to reduce the
latency of accessing cloud services, and thus the new
tier sits as close to the cloud services as possible.

Concretely, Dapper reduces latency by elim-
inating extraneous round-trips of communication
to the cloud. An alternative way to achieve that
is by having cloud databases support more expres-
sive query languages, so that more sophisticated
transactions can be submitted as a single operation.
Indeed, relational databases with full SQL support
are part of the offerings of major cloud providers
like Amazon. However, the ability to access the
database via a general-purpose programming lan-
guage remains appealing for its generality and
flexibility. This is a lesson learned from program-
ming models like MapReduce (Dean and Ghemawat,
2004), Oivos (Valvåg and Johansen, 2008), and
Cogset (Valvåg et al., 2013), where data is accessed
programmatically through user-defined visitor func-
tions that can integrate easily with legacy code
and libraries. The programming model in Dapper
follows a similar philosophy, with the difference that
user-defined functions are visiting a database in the
cloud rather than a partition of data in a cluster.

6 CONCLUSION

This work focuses on the general issue of latency
as a concern for applications that interact with the
cloud, and looks specifically at scenarios where multi-
ple consecutive queries are issued to a database in the
cloud. Intuitively, latency can be reduced by shorten-
ing communication distances, so our idea is to move
the location where queries are issued closer to the
database. Since cloud databases commonly have pro-
grammatic interfaces, we implement a general mech-
anism for code-offloading to support this pattern.

Having a relay-node in the cloud, located in close
proximity to the database service, has already proven
to be a useful technique for caching, and beneficial
for read-mostly workloads (Pettersen et al., 2014).
Here, we extend the relay-node with functionality for
satellite execution, allowing code that has moved tem-
porarily from a mobile device to execute in an envi-
ronment with low-latency database access. This gives
benefits for additional workloads, which may include
updates.

The key characteristic that a workload must ex-
hibit to benefit from our approach is dependencies be-
tween queries. For example, if the results from one
query are used to shape the next query, there is a de-
pendency between the two. So long as there is no
need for user interaction, a whole sequence of depen-
dent queries can be offloaded to the cloud. By elimi-
nating extraneous round-trips of communication, this
improves response times.

To estimate the potential for improvement in real
applications, our evaluation examines the communi-
cation patterns of some popular applications through
a black-box technique. This has yielded some indica-
tions that dependent queries occur in practice, since
sequences of up to 7 requests were observed back-to-
back over the same connection on startup. Looking
at a concrete implementation of a social networking
application from (Levandoski et al., 2011), we found
specific examples. For example, a friend request re-
sults in 4 dependent queries; when offloaded to the
cloud from a phone, the completion time of a friend
request dropped from 450 ms to approximately 125
ms.

Our implementation handles the practicalities of
transferring assemblies of .NET code, serializing
and deserializing objects, and sandboxing code that
executes on the relay-node. Our evaluation gives
some data points on performance: a single Amazon
t1.micro instance can serve hundreds of queries per
second. One such instance can thus easily handle load
imposed by a large number of applications. So, we
can dramatically reduce latency without disrupting

Cloud-side�Execution�of�Database�Queries�for�Mobile�Applications

593

application architectures and with minimal require-
ments for resources in the cloud.

REFERENCES

Application Domains (2015). http://msdn.microsoft.com/
en-us/library/cxk374d9%28v=vs.90%29.aspx.

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A.
(2011). Clonecloud: elastic execution between mobile
device and cloud. InProceedings of the sixth confer-
ence on Computer systems, EuroSys ’11, pages 301–
314, New York, NY, USA. ACM.

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A.,
Saroiu, S., Chandra, R., and Bahl, P. (2010). Maui:
making smartphones last longer with code offload. In
Proceedings of the 8th international conference on
Mobile systems, applications, and services, MobiSys
’10, pages 49–62, New York, NY, USA. ACM.

Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified
data processing on large clusters. InProceedings of
the 6th symposium on Operating Systems Design and
Implementation, OSDI ’04, pages 137–150. USENIX
Association.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W. (2007). Dynamo: Ama-
zon’s highly available key-value store.SIGOPS Oper.
Syst. Rev., 41:205–220.

Gordon, M. S., Jamshidi, D. A., Mahlke, S., Mao, Z. M.,
and Chen, X. (2012). Comet: code offload by mi-
grating execution transparently. InProceedings of the
10th USENIX conference on Operating Systems De-
sign and Implementation, OSDI’12, pages 93–106,
Berkeley, CA, USA. USENIX Association.

Johansen, D., Lauvset, K. J., van Renesse, R., Schneider,
F. B., Sudmann, N. P., and Jacobsen, K. (2001). A
TACOMA retrospective.Software - Practice and Ex-
perience, 32:605–619.

Johansen, D., Marzullo, K., and Lauvset, K. J. (1999). An
approach towards an agent computing environment. In
ICDCS’99 Workshop on Middleware.

Levandoski, J. J., Lomet, D. B., Mokbel, M. F., and Zhao,
K. (2011). Deuteronomy: Transaction support for
cloud data. InCIDR, pages 123–133. www.cidrdb.org.

Li, A., Yang, X., Kandula, S., and Zhang, M. (2010). Cloud-
Cmp: comparing public cloud providers. InACM
SIGCOMM, pages 1–14.

Nielsen (2014). http://www.nielsen.com/us/en/insights/
news/2014/smartphones-so-many-apps–so-much-
time.html.

Nygren, E., Sitaraman, R. K., and Sun, J. (2010). The aka-
mai network: A platform for high-performance inter-
net applications.SIGOPS Oper. Syst. Rev., 44(3):2–
19.

Parse (2015). http://www.parse.com.
Pettersen, R., Valvåg, S. V., Kvalnes, A., and Johansen,

D. (2014). Jovaku: Globally distributed caching for

cloud database services using DNS. InIEEE Interna-
tional Conference on Mobile Cloud Computing, Ser-
vices, and Engineering, pages 127–135.

Satyanarayanan, M. (2013). Cloudlets: at the leading edge
of cloud-mobile convergence. InProceedings of the
9th international ACM Sigsoft conference on Quality
of software architectures, pages 1–2. ACM.

Tilevich, E. and Kwon, Y.-W. (2014). Cloud-based execu-
tion to improve mobile application energy efficiency.
Computer, 47(1):75–77.

Valvåg, S. V., Johansen, D., and Kvalnes, A. (2013).
Cogset: A high performance MapReduce engine.
Concurrency and Computation: Practice and Expe-
rience, 25(1):2–23.

Valvåg, S. V. and Johansen, D. (2008). Oivos: Simple
and efficient distributed data processing. InProceed-
ings of the 10th IEEE International Conference on
High Performance Computing and Communications,
HPCC ’08, pages 113–122. IEEE Computer Society.

Valvåg, S. V., Johansen, D., and Kvalnes, A. (2013). Po-
sition paper: Elastic processing and storage at the
edge of the cloud. InProceedings of the 2013 Inter-
national Workshop on Hot Topics in Cloud Services,
HotTopiCS ’13, pages 43–50, New York, NY, USA.
ACM.

Zhang, I., Szekeres, A., Aken, D. V., Ackerman, I., Gribble,
S. D., Krishnamurthy, A., and Levy, H. M. (2014).
Customizable and extensible deployment for mobile/-
cloud applications. In11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 97–112, Broomfield, CO. USENIX Asso-
ciation.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

594

