
Learning Computational Thinking
Through the Use of Flash Action Scripts

Preparing Trainee Elementary School Teachers for Teaching Computer
Programming

Erni Marlina Saari, Peter Blanchfield and Gail Hopkins
School of Computer Science, University of Nottingham, Jubile Campus, Nottingham, U.K.

Keywords: Computational Thinking, Flash Action Scripts, Trainee Teachers.

Abstract: The teaching of Computer programming is now mandated in UK state run primary and secondary schools
but few elementary teachers have any exposure to programming and are generally from backgrounds that
have not given them fluency in using such technology. This paper outlines an attempt to develop a training
scheme for trainee teachers that will introduce them to computational thinking through the use of the Flash
Action Script Development environment. It is believed that learning how to use this tool will provide them
with greater motivation to learn how to program as the scripts will be used to develop teaching instruments
that they might use in their classroom. The current paper reports progress on the development of a tool that
will allow the teaching of Flash Action Scripts and the testing of this approach on groups of trainee and
experienced teachers. It reports on an experiment and the relative level of enthusiasm, motivation and
attitude of the experienced teachers and the trainee teachers both before and after exposure to the pilot tool.
As expected the trainee teachers had a more positive attitude towards the potential of the learning tool but
both groups had improved attitude and enthusiasm after the experiment.

1 INTRODUCTION

The Computing and Schools (CAS) initiative in the
UK was launched in 2008. It was in response to
concerns that previous moves towards teaching
Information & Communication Technology (ICT) in
schools has led to misleading pupils as to what
constitutes Computing and demotivation of pupils
who already have Computing skills (Crick and
Sentence, 2011). This led in the autumn term of
2013 to a program of curriculum changes to increase
the degree of computer programming taught at
secondary schools. This was also influenced by a
response to leading industrialists asking that schools
should be teaching the basics of programming to a
wider audience. At the start of the 2014 autumn term
this process was extended to cover elementary
(primary) schools. This second process is likely to
be even more difficult than the first as the nature of
the elementary school teacher training programmes
is not to produce teachers who are specialists; rather
it necessarily attracts and develops generalists. The
generalist nature of teaching in elementary schools
has already meant that earlier programmes to

promote maths and English teaching in elementary
schools has required retraining programmes for
teachers in those schools and further development of
subject specialist teachers in those schools and
school districts (Williams, 2008).

The CAS initiative has been built around certain
facilitating universities with specialist teacher
training or retraining programmes. For example
Nottingham Trent University offers an MSc degree
titled Computing in Education that includes modules
that help teachers to learn how to teach
programming skills. Regular meetings of the CAS
allow experienced teachers in different areas to share
their findings on how to run programming classes in
schools. Different approaches have been taken but
the focus must now be more on training the
elementary teachers to be able to handle the material
as they are seldom from a technical background and
generally have less natural inclination to program.
Many elementary teachers are in fact quite nervous
of the whole area of technology. (See for example
teacher comments in Section 4.1.)

75
Saari E., Blanchfield P. and Hopkins G..
Learning Computational Thinking Through the Use of Flash Action Scripts - Preparing Trainee Elementary School Teachers for Teaching Computer
Programming.
DOI: 10.5220/0005442600750084
In Proceedings of the 7th International Conference on Computer Supported Education (CSEDU-2015), pages 75-84
ISBN: 978-989-758-108-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

2 THE ROLE OF
COMPUTATIONAL THINKING
IN LEARNING TO TEACH
PROGRAMMING

Much work is currently being undertaken to help
learners overcome the inability to program. Of
particular value is work being undertaken with
young learners themselves. Scratch (Franklin et al,
2013) and Python (Begosso et al 2012,
Bogdanchikov, Zhaparov & Suliyev, 2013) have
been popular for these studies. However, based on
our experience with many elementary teachers,
using a visual system like Scratch is off-putting due
to its child-centred look and feel, and teaching a
programming language like Python can seem
daunting due to its considerably increased
complexity over Scratch. Either way, programming
languages seem intrinsically hard to learn and most
of the examples of using them are of little intrinsic
value to teachers. The teachers can see that children
might be drawn to programming games and
animations but feel a level of fear when approaching
the idea of learning programming themselves. We
illustrate this further in Section 4.1. below.

Much of the work of the CAS has been to
emphasise the use of “Computational Thinking”
(CT) as a valuable thinking skill for all aspects of
life (Wing, 2006, 2008, Grover and Pea, 2013). CT
involves using the aspects of developing computer
solutions to problems, algorithmic thinking,
decomposition, abstraction, generalisation and
evaluation (Dorling 2014). Wing (2008) has
stressed that CT can be adopted in everyday life but
it is doubtful that many people would consciously
apply many aspects of this thinking when
approaching most real life problems. In everyday
life it is probably more appropriate to apply aspects
of CT such as evaluating, looking for generalisations
and use of decomposition. For example, a satnav
will work out computationally the best route to take
according to the algorithm it has been programmed
to use but the user needs to evaluate the solutions
and understand what is being prioritised in order to
know whether to take the advice being given.
Generalisation is used when we try to see how
previous solutions might easily be adapted to new
problems. Decomposition is used when we look at
how to break down problems into parts that can be
tackled more easily than the whole. For some groups
the development of algorithms may be more
valuable – for example those learning to program.
In that regard we must now include elementary

school teachers in this group as they will need to
have some appreciation of how algorithms are
designed and implemented in order to lead the pupils
towards this understanding. To some extent this is
going to be limited by how much abstraction an
elementary school pupil is able to understand.
Languages that are being used to teach programming
in elementary school usually try to make the
algorithms as concrete as possible, by using graphics
and games design.

The motivation for the research presented in the
current paper was our prior experience in trying to
teach trainee teachers how to use ICT tools at a
teacher training institute in Malaysia. Problems
encountered in practice were largely due to a lack of
computational thinking in the process applied. The
students had a tendency to “copy and paste”
examples which they felt were similar to the task
they had to do rather than analyse the task, break it
down into sub tasks, understand the set of steps
needed to achieve the sub task and so on. This lack
of CT may have been largely due to their
unfamiliarity with building such processes.
However, it leads us to pose the question: “how can
we encourage primary school teachers to learn to
think computationally and thereby be able to learn
the languages they need to deal with to teach young
children to program also?” Coming from a non-
technical (engineering/physical science) background
can make elementary school teachers fearful of
using technology in general and view learning to
program as a difficult task. One aspect of this, from
previous observations and discussions, is their lack
of intrinsic motivation to learn programming. A first
step in answering the question of how to encourage
them to think computationally will therefore be how
can we provide intrinsic motivation to think
computationally? The position taken in this paper is
that using an approach where they can see that they
could gain facility in using a tool that will enhance
their ability to produce really attractive teaching aids
will enhance their motivation to learn to think
computationally if computational thinking is
intrinsic to using that tool. Lin (2012) highlights that
educators can become courseware designers and no
longer just play the role of submissive users but
instead become creative developers. For this reason
this research has chosen to look at the ways in which
teachers can learn to produce Flash Action Scripts to
develop attractive teaching aids. It is believed that
this will enhance their motivation to learn to think
computationally and we move on to discuss this
further in the next section.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

76

3 TRAINING OF TEACHERS IN
THE USE OF EDUCATIONAL
TECHNOLOGY USING FLASH
ACTION SCRIPT

One of the challenges identified for a teacher
education program is engagement of pre-service
teachers and teacher educators in conversations
about their attitudes regarding the role technology
should play in teaching and learning. Hammond
(2013) mentions the significance of ICT even if
engagement is not to be taken for granted and the
effect of the learning is complicated. Others have
sought to emphasise the need to integrate technology
into education. For this to be done successfully it
needs to be integrated into the training of the
teachers. The arguments around this have been
summarised in Tondeur et al (2012).

It is our aim that we can develop an electronic
learning tool specifically aimed at helping trainee
teachers in which ability to use Flash Action Scripts
and the Flash development environment are the
learning objectives. Utilisation of such an
environment builds upon the views expressed by
others of the value of using instructional video in e-
learning (Zhang et al, 2006, Wieling & Hofman
2010).

The interface that is provided for the Flash
Action Script developer is quite complex but has a
lot in common with other IT tools that users will be
familiar with – for example Photoshop and
storytelling software like Microsoft Photo Story.
Skills learned will also be generalizable to other
animation development tools such as Anime Studio,
Blender and even the Unity 3D game engine. The
scripting language itself is similar in form to many
other programming languages but the purpose of the
scripts – such as actions performed when buttons are
clicked – has a much simpler to understand
connection to the purpose that is being looked at.

During interviews many of the teachers and
trainees met during these studies indicated that they
were familiar with using storyboarding software, for
example, to produce artefacts to aid their teaching.
The actual level of scripting needed to make simple
animations within a Flash program is low. However
as the complexity of the artefacts increases so also
does the complexity of the scripting needed. This
therefore potentially leads to a staged introduction to
the scripting and at the same time help to develop
the aspect of algorithm design within computational
thinking. It can also introduce the concept of
generalisation as the same basic format will be

needed in many different problems. As the user
progresses aspects of abstraction will also be
possibly developed, for example through the use of
functions to undertake often needed processes.

The ultimate aim of our learning environment is
to make this a self-help tool that will analyse a
user’s performance in lesson exercises and that any
lesson will be automatically adapted to a given
user’s needs. In order to investigate this a pilot tool
was developed in which a set of lessons was
produced aimed at teaching the use of the Flash tool
to qualified school teachers and to a set of trainee
teachers on a PGCE course. The lessons took the
learners through the stages of building an artefact
that they were expected to see as useful for their
intended teaching. The progressive development of
the artefact focused on providing a set of
increasingly complex animations aimed at helping
children in early years’ education to obtain basic
literacy and numeracy skills. The teachers and
trainee teachers were taken individually through a
set of their own lessons to build the artefact. During
this process faulty or non-computational thinking
approaches adopted by the teachers/trainees were
identified. Any incorrect approaches were then
corrected by the trainer and the success or otherwise
of the strategy taken in attempting to correct them
was examined.

4 EXPERIMENTAL METHOD

In order to investigate the difficulties observed in the
Malaysian trainee teachers and the role of our
proposed tool in teaching CT, two groups of
Malaysian test subjects were recruited for a pilot
study. The first was a group of experienced teachers.
The second was a similar set to those in the original
Malaysian trainee classes, except that they were
studying on a PGCE course in the UK. Both groups
had no background experience in the use of software
development.

The study was subject to the ethics approval
process. All participants were informed of the
nature and purpose of the study before partaking and
were aware of the recording methods that were to be
used. They all signed consent forms for their data to
be gathered and used in the study.

 Prior to using our pilot tool each subject was
interviewed initially about their attitude to using the
Flash environment and other aspects of using
technology, particularly the learning of
programming tools including the use of Scratch. The
purpose of this was to identify attitudes already held

Learning�Computational�Thinking�Through�the�Use�of�Flash�Action�Scripts�-�Preparing�Trainee�Elementary�School
Teachers�for�Teaching�Computer�Programming

77

by the subjects and enable us to identify in post-
session interviews whether their attitudes had
changed as it was expected that encounter with the
actual process would improve their attitude. They
then individually took part in a staged set of training
lessons using the tool. The lessons were presented
one-on-one but otherwise in a way similar to the
original group (lecture, PowerPoint presentation and
subsequent practical exercise). Each subject’s
comments and progress were recorded during their
performance. The data captured included length of
time to complete actions, evidence of enthusiasm for
the task and number and types of errors made. After
the lesson the subjects were once again interviewed
about their attitudes towards use of Flash tools. The
recordings were transcribed for analysis. A set of
thematic codes was developed to use in determining
the level of motivation and engagement with the
activity. The codes reflected the following positive
attitudes:

• I - Interest
• E - Engagement
• M - Motivation
• C - Confidence
• En - Enjoyment
• A - Affordance

And the following negatives:
• B - Boredom
• L - Lack of Motivation
• Co - Confusion
• F - Fear
• D - Difficulty

The transcriptions were then coded to identify
statements and actions that indicated successful and
failed understanding of the task and enthusiasm for
the process (such as their attitude towards the Flash
tool). Examples of positive and negative statements
for each of the codes are given in Table 3 in Section
5.4 below. The time taken to develop a level of
engagement was also recorded as a separate measure
of participant engagement/motivation.

These lessons used in the pilot study are
described in more detail in the next section.

3.1 Format of the Lessons

In the pilot study each participant worked through
the sequence of lessons which aimed to start the
development of the teaching/learning asset. As the
lessons progressed the participants attempted to
produce the asset. Their performance was
monitored in order to determine causes of any
failure to produce the expected outcome. These

were then classified to determine if they were due to
a lack of application of computational thinking. An
example of non-computational thinking was the
previously described use of a copying and pasting
approach rather than understanding the development
algorithm and following the algorithm for a new step
in the process. As the stages of the lesson developed
so did the complexity of the scripting needed to
produce the correct performance.

In the lesson being followed an artefact was
developed to create a teaching/learning aid for
Elementary Level learning in Literacy and
Numeracy. The lesson content is a subset of
foundation level lessons in reading and number
concepts. The artefact being produced was designed
to meet expectations of early years learners for an
attractive interface with colourful illustration and
animations designed to gain attention. In the various
stages the test subjects were given lessons in
producing elements for the artefact that were
successively more difficult to produce. The first
step was to produce a simple menu – see Figure 1.
This task was also broken down into stages, such as
producing the title text, and then adding simple
graphic elements, such as the button shapes. The
next stage was producing the action for the buttons.
The process of breaking tasks down into a set of
simpler stages is a fundamental part of CT so in
addition to the learning of the development tool
users also got the opportunity to see the value of the
CT approach in solving tasks.

Figure 1: Original page.

This first stage of the lesson leads the learner
through the process of producing the first screen to

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

78

the point of producing an action to display the next
screen. So, for example, a second screen is designed
to appear when the Literacy button is pressed. This
will display a view as shown in Figure 2 below.

Figure 2: Literacy screen.

Each of the letters in the screen shown in Figure
2 will be turned into a button that leads to an action.
The learner has to add the required components and
thus practice the process from the earlier learning
activity. (The letters and heading are all originally
added as text.) The symbol requires the adding of a
picture and the action script required is like that of
the original button but the appropriate action had to
be added to the letters which themselves had first to
be converted into “buttons”. While the next stage
can be more or less derived from the previous the
level of “scripting” required increases as the action
now becomes more complex leading to the need to
create an animated scene after an intermediate
button press (see Figure 3). However, the repeated
process has a lot of commonality so it should be
possible for the participants to begin to understand
the value of generalisation (one of the CT skills) and
apply this by adding function calls to the Action
Scripts to allow common code to be reused. This
would not be done in early exercises as the needed
instruction for using such functions is not given
early in the set of tasks. Figure 3 also shows an
additional feature that is taught at this point. The
green path shown in the figure is added as the
movement route (Tweening in Flash Action Script
terminology) for the apple to follow during the
animation that will be prescribed in the script.

Figure 3: Scene with added animation path.

The next section details the results that were
obtained from the pilot study and we then move on
to draw our conclusions and suggestions for the next
stage of this work in the final section.

5 RESULTS

The experimental subjects were all volunteers and
were not incentivised to take part in the study. They
fell into two groups. All the subjects were
Malaysians. The subjects included a group of
practicing teachers and a group of trainee teachers
engaged in pursuing a PGCE qualification. There
were significant differences between the qualified
and trainee teachers both before and after the
sessions and these differences will be explored in
future publications.

5.1 Initial Interviews

As mentioned above a set of pre interviews were
undertaken in order to allow for comparison between
the pre and post session attitudes to programming
and the use of Flash Action Scripts in particular.
Certain differences also emerged between the
qualified and trainee teachers in this session. Of the
established teachers the responses to questions
regarding the likely usefulness of learning Action
Scripting were negative and all were nervous of the
need to use a technical tool. A typical response was
“I am not good in using technology especially
programming. I am afraid of using technology
actually. I don’t like to use computers …”

The PGCE students were less reticent to take
part. They all felt it would be good to learn to use

Learning�Computational�Thinking�Through�the�Use�of�Flash�Action�Scripts�-�Preparing�Trainee�Elementary�School
Teachers�for�Teaching�Computer�Programming

79

Action Scripts as it would enable them to use the
tool to make their own teaching/learning
instruments. However, they generally did not feel it
would be easy to learn as it appeared to involve a
similar process to learning more formal
programming systems like C++. A typical quote
from this group was “I want to learn this
programming language and I will come out with my
own teaching module soon!” There were some
negative attitudes, for example one subject asked
“Why would I need to learn Flash or have to design
a learning tool as all of my lesson material will be
provided by the school?”

5.2 Performance in the Practical
Sessions

During the practical sessions the volunteers were
required to produce codes that performed the set of
functions shown in Figures 1 to 3. The performance
was monitored and the actions were recorded using
screen capture so they could be analysed afterwards.
The major problem was the tendency to copy and
paste previous examples rather than to analyse the
problem, understand the components that were
needed and develop the appropriate set of steps to
produce the artefact. When they found their actions
had not produced the correct behaviour they were
asked to analyse why this had happened. They were
taken back to previous steps and the lesson was
repeated until they were able to produce the correct
output. Different processes in producing a good
learning artefact were identified against the
Computational Thinking approach. A good example
is the idea of abstraction as embodied in the concept
of a layer. In Flash Action Scripting the layer is a
basic abstract component that gets non-abstract
components – actual text, pictures, and scripts –
attached to it. As a result a user thinking
computationally would be expected first to engage
with the abstraction – by invoking a new layer for a
new action – then to populate it. Thinking non-
computationally exhibited itself in various different
ways. One typical example was when users wanted
to remove an existing layer. Instead of selecting the
layer and deleting it the users who were not thinking
about the abstraction would delete the contents of
the layer rather than the layer. This would lead to an
error when the code was compiled and an error
message that was not understood by the user. Such
error statements alert the teacher with experience to
the lack of correct thinking. The user is then
directed to the part of the lesson on layer creation.

The PGCE students all grew in confidence and
enthusiasm for the process of learning Flash Action
Scripting more quickly than the experienced
teachers, however, all participants were able to
finish the first task correctly. Enthusiasm for and
motivation to use the tool were indicated by
comments made by the experimental subjects. The
trainee teachers generally were more enthusiastic to
start with and thus were more motivated to
understand and correct their mistakes.

The average time to complete the initial task was
35 minutes. The longest time taken for the process
was one hour and this was from a subject who had
shown the lowest motivation for the task as he
intended to return to administration within a school
and not teaching.

5.3 Post-session Interviews

After the first practical session the subjects were all
re-interviewed. They were asked questions about
their attitude to learning Flash Action Scripting
having now been exposed to it. Questions centred
on their views regarding the potential usefulness of
learning to use Flash Action Scripting, technology in
general, their motivation and ability to learn Flash
Action Scripting and their understanding of the steps
used in computational thinking.

Most of the experienced teachers felt an
improved attitude towards the usefulness of the
process. The teacher who intended to return as an
administrator had not improved his attitude at all.
One of the others still did not see that it could be
useful to them in their teaching or to teaching in
general. The other five were enthusiastic about the
possibilities. Of the PGCE students all were
convinced not only of the value of the tool but also
of their ability to learn to use it.

When asked about the use of technology in
general to support their teaching the experienced
teachers had generally gained an improved attitude.

Most of the experienced teachers did not feel
intrinsically motivated to learn programming but had
found the process of the lesson enjoyable and felt
they had been successful in learning how to use the
tool. Eight of the ten trainee teachers expressed the
idea that they found the learning intrinsically
motivating as they felt they would benefit in their
own careers. These have all moved on to the further
study of the subsequent lessons and have been
willing to try to learn further by themselves!

The CT skills needed in the task to perform it
efficiently were those of Algorithmic thinking and
Abstraction. Eight of the trainees exhibited

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

80

Algorithmic thinking by the end of the first lesson
and seven had demonstrated use of Abstraction.
However, only four of the experienced teachers had
developed this CT approach. For example in the use
of layers – linked to the concept of abstraction –
seven of the trainee teachers and one of the
experienced teachers had understood how to
properly use layers.

5.4 Thematic Analysis

As was explained in Section 4 above the recordings
of the interviews during the practical session were
all transcribed and the transcriptions were then
thematically coded looking for different indicators
explained in section 4 relating to positive and
negative attitudes. Table 1 below shows themes that
emerged prior to the experiment taking place.

Table 1: Frequency of appearance of code phrases in use
by the Trainee Teachers (TT) and the Experienced
Teachers (ET) before taking part in the experiment.

Codes TT
Frequency

ET Freq. Total

Interest (I) 23 17 50
Engagement (E) 24 15 39
Motivation (M) 27 15 42
Confidence (C) 8 0 8
Enjoyment (En) 12 11 23
Affordance (A) 2 3 5
Boredom (B) 3 11 14
Lack of Motivation
(L)

6 15 21

Confusion (Co) 27 32 59
Fear (F) 15 12 27
Difficulty (D) 32 26 58

As can be seen from the results in Table 1 the
trainee teachers demonstrated higher levels of
positive attitudes to the potential value of the
training they were about to undergo, when compared
with the experienced teachers (indicated by a total of
96 coded positive statements by the trainee teacher
group and only 61 by the experienced teachers).
However both groups had negative attitudes in some
of their statements and in particular felt the process
of learning Flash Action Scripting would be difficult
(roughly equal numbers of negative comments on
difficulty) and that they found what they were being
asked to do potentially confusing (again with similar
numbers of negative comments from both groups).
None of the experienced teachers expressed any
confidence that they would develop the ability to use
the tool but eight comments from the trainee
teachers expressed such confidence.

Table 2: Frequency of appearance of code phrases in use
by the Trainee Teachers (TT) and the Experienced
Teachers (ET) after taking part in the experiment.

Codes TT Frequency ET Freq. Total
I 39 19 58
E 29 24 53
M 54 27 81
C 22 20 42
En 22 19 41
A 12 8 20
B 0 2 2
L 0 2 2
Co 13 10 23
F 0 0 0
D 7 3 10

Table 2 demonstrates the frequency of code
words in the post-experiment interviews and it can
be seen that both the trainee and experienced
teachers had significant improvements in their
attitudes towards learning Flash Action Scripts and
programming technology in general. Of particular
note is the fact that no phrases emphasising “Fear”
(F) were recorded in the post-experiment responses
by either group though some “Confusion” (Co) still
remained in both groups (a total of 23 such
comments roughly equally divided between the
groups) and there was still a residual view that the
process was “Difficult” (D) though this was much
reduced with a total of ten comments expressing
difficulty after the experiment compared to the 58
difficulty comments made before the experiment.
Only one of the participants (the experienced teacher
now moving into administration) used “Boredom”
(B) and “Lack of Motivation” (L) phrases – two
responses fitting this description for both categories.
Together with the increased number of positive
comments on motivation (a total of 81 such
comments after the experiment compared to 42
before the experiment) this indicates that those who
were expecting to be teachers after their courses all
believed the use of Flash Action Scripting to be
interesting and motivating. There were few phrases
mentioning “Confidence” (C) before the experiment-
8 from the trainee teachers and none from the
experienced teachers; after the experiment only one
of those involved (the administrator) failed to
respond with any confidence statement. A total of 42
such comments were recorded from the rest of the
subjects.

The time taken to begin to show signs of
engagement and enjoyment of the use of Flash was
generally lower for the trainee teachers than for the
experienced teachers but only one (the

Learning�Computational�Thinking�Through�the�Use�of�Flash�Action�Scripts�-�Preparing�Trainee�Elementary�School
Teachers�for�Teaching�Computer�Programming

81

administrator) failed to complete the task and failed
to become engaged in the process after 20 minutes.

Examples of quotes reflecting the codes used are
listed in the Table 3 below. Some of the phrases
quoted show more than one of the coded attitudes.
They were coded as representing both attitudes but
are only shown as illustrating one. All of the
comments listed were given by trainee teachers
(respondent TT5 means trainee teacher 5) though
similar comments were made by the experienced
teachers.

Table 3: examples of coded comments given by the
Trainee Teachers (TT4 to TT10).

Code Quote

I
"As a first time learner like me, this software is
easy to learn and the instruction is quite
simple..." (respondent TT5)

E
“Very good! I think students will feel more
enthusiastic to learn the subject if the teaching
instrument used is interesting" (respondent TT4)

M

“I think it is attractive software to learn and teach
also. Besides teachers learn how to program, I
think we can teach our students to learn how to
program as well." (respondent TT10)

C
“I am looking forward to studying more on this
and producing my own lesson.." (respondent
TT9)

En
"I knew that Flash can do interesting tasks like
interesting courseware to gain students'
attention." (respondent TT6)

A

“Can you give me a few minutes to try on my
own on this software? I would like to produce a
small interactive lesson about our lesson just
now. I am just so excited to do animation and
navigation buttons." (respondent TT4)

B
It is too hard for me to start learn the new
software and need to struggle about the technical
terms...." (respondent TT5)

L
"... there is just a waste of time to learn new
software, I prefer to get the teaching tools that
will be provided..." (respondent TT5)

C
make me feel confuse about technical terms and
interface too..." (respondent TT5)

F
" I am afraid I could not produce the module at
all because I am not good handling the technical
tasks.." (respondent TT5)

D
" ..sometimes it very hard to understand
especially the complex syntax..." (respondent
TT7)

Our results demonstrate that use of the tool
increased interest in Flash Action Scripting and
enhanced enthusiasm for programming with reduced
levels of confusion and frustration. The next section
provides some conclusions from this study and
proposes the next stage of our work.

6 CONCLUSIONS

The need for elementary school teachers to engage
with learning to program and to think
computationally has been identified. Pressure in the
UK and elsewhere has led to the development of
programming as a required part of the curriculum in
both elementary and secondary schools. However,
elementary school teachers are for the most part ill-
equipped to learn to program themselves. It is vital
that they also learn to understand the Computational
Thinking (CT) process. However, they find that the
programming languages they encounter are difficult
to learn and lack the ability to motivate them to
learn. They are at the same time wary of technology
and this also makes them nervous of their potential
to learn to program. The current research contends
that learning the use of Flash Action Scripting would
be viewed as more motivating as a first approach to
learning to program for elementary teachers. This is
in agreement with the findings of Lin (2012) which
sees the need to motivate teachers to become
creators of courseware rather than just consumers.
Thus the current research aims at producing a
software tool for helping teachers to learn to use
Flash Action Scripting. It is acknowledged that
Flash is not without its issues in terms of
compatibility with some systems and security issues.
Ultimately the ideas expressed in this paper could be
applied to another programming environment such
as JavaScript, although this isn’t typically used in a
visual programming environment. However, Flash
has provided an appropriate environment for our
study and upon which we could build our idea. In
order to test this idea out and to find out how such a
tool might be designed a pilot study has been
undertaken. In this study lessons have been
developed and presented to subjects in a more or less
conventional manner through one-on-one tuition.
The purpose of this was to observe the learners and
ascertain where they were developing “non-
computational” approaches to completing their
tasks. The pilot study consisted of a total of
seventeen participants consisting of established
teachers and PGCE students. The attitudes of the
PGCE students towards the idea of learning Flash
Action Scripting were generally more positive than
those of the established teachers. For example after
coding of the interviews that took place before use
of the pilot eight comments expressing motivation
were found from the trainee teachers while none
were given by the established teachers. Both groups
were then given one-on-one training in the use of
Flash Action Scripting. While the trainee teachers

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

82

with their higher level of motivation were quicker to
learn and had established good computational
thinking processes by the end of the study compared
with the established teachers, the latter group (of
experienced teachers) were still generally found to
have improved attitudes after the exercise. In fact
only one of the latter group (one who was intending
a future in administration rather than active
teaching) failed to overcome boredom and a lack of
interest in the scripting process. The results from our
pilot study indicate that the use of Flash Action
Scripting as a means to develop teaching lessons
motivated and engaged both experienced and trainee
teachers to learn to program and to develop in their
Computational Thinking skills. For example both
groups gave increased numbers of responses
indicating motivation to learn the Flash Action
Scripting after the experiment – the trainee teachers
giving 54 positive responses after the study
compared to 8 before and the established teachers
giving 27 positive comments after the study
compared to none before.

 In addition valuable information was gained
through the experiment into how poor CT skills
interfere with learning and how good CT skills can
be nurtured. Examples of this were the use of the
Flash Action Script concept of layers. All users had
not encountered this idea initially and did not
initially understand how this concept worked. This
invariably led to errors in performance. A particular
example was given in section 5.2 where the contents
of a layer were deleted rather than the layer itself.
This led to a subsequent error statement from the
compiler. This error statement was then used to help
direct the learners back to the lesson component on
layers. However, in the current pilot only eight of
the seventeen users were able to complete such a
task on their own after a second experience of this
tutorial component. It is expected that the tool
developed will use these lessons to provide a
training tool that will work in a standalone context
and provide encouragement to use CT as well as
teaching the use of Flash Action Scripting. Error
statements from the compiler can be parsed to get
inputs to direct the user to the correct part of the
lesson to tackle the error they encountered.

The next stage of the work is to develop the
automated set of lessons in which the performance
of the learners will be monitored by the system and
the lesson adapted to their needs as perceived by the
system. These lessons will be built in a learning
instrument that will take the trainees through a set of
steps to build a teaching/learning artefact. Currently
the users are expected to be trainee elementary

teachers or other teacher trainees from non-computer
science/engineering backgrounds and, we surmise,
therefore likely to be motivated to learn to produce a
teaching/learning asset for early years’ education.

REFERENCES

Begosso, L. C., Begosso, L. R., Gonçalves, E. M. &
Gonçalves, J. R. 2012. An approach for teaching
algorithms and computer programming using
Greenfoot and Python. In 2012 Frontiers in Education
Conference Proceedings (pp. 1-6). IEEE.

Bogdanchikov B., Zhaparov M. and Suliyev R., 2013.
Python to learn programming. In Journal of Physics:
Conference Series 423.

Crick, T., & Sentance, S. 2011. Computing at school:
stimulating computing education in the UK.
International Conference on Computing Education,
122–123. Retrieved from:

 http://dl.acm.org/citation.cfm?id=2094158.
Dorland, M. 2014. Developing creativity and

computational thinking in your computing classroom.
CAS meeting Birmingham UK Sept 2014.

Franklin, D., Conrad, P., Boe, B., Nilsen, K., Hill, C., Len,
M., Dreschler, G., and Aldana, G. 2013, Assessment
of computer science learning in a scratch-based
outreach program. In Proceedings of the 44th SIGCSE
technical symposium on Computer science education,
SIGCSE ’13. ACM, 2013.

Grover, S., and Pea, R. 2013. Computational Thinking in
K-12: A Review of the State of the Field. In
Educational Researcher, 42(1).

Hammond, M. 2013. Introducing ICT in schools in
England: Rationale and consequences. British Journal
of Educational Technology,

Lin, C. H. 2012. An Innovative Change in Technology
Integration: Training Pre-Service Kindergarten
Teachers to Be Courseware Designers. Creative
Education, 03(07), 1177–1183.

Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M. M.
2010 Learning computer science concepts with
scratch. In ICER ’10: Workshop on Computing
education research, pages 69–76.

Tondeur, J., Van Braak, J., Sang, J., Voogt, J., Fisser, P.,
& Ottenbreit-Leftwich, A., 2012 Preparing pre service
teachers to integrate technology in education: A
synthesis of qualitative evidence. In Computers &
Education 59(1).

Wieling, M. B., Hofman, W. H. A. 2010 The impact of
on-line video lecture recordings and automated
feedback on student performance. In Computers and
Education, 54(4).

Williams, P., 2008. Independent Review Report of
Mathematics Teaching in Early Years Settings and
Primary Schools,
dera.ioe.ac.uk/8365/1/Williams%20Mathematics.pdf
[accessed October 21, 2014]

Learning�Computational�Thinking�Through�the�Use�of�Flash�Action�Scripts�-�Preparing�Trainee�Elementary�School
Teachers�for�Teaching�Computer�Programming

83

Wing, J. M., 2006. Computational Thinking CS @ CMU
and Grand Vision for the Field.

Wing, J. M., 2008. Computational thinking and thinking
about computing. In Philosophical Transactions.
Series A, Mathematical, Physical, and Engineering
Sciences, 366(1881), 3717–25. doi:10.1098/rsta.
2008.0118.

Zhang, D., Zhou, L., Briggs, R. O., & Nunamaker, J.F.,
2006, Instructional Video in e-learning: Assessing the
impact of interactive video on learning effectiveness.
In Information and Management, 43 (1).

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

84

