
Towards Cross-layer Monitoring of Cloud Workflows

Eric Kübler and Mirjam Minor
Institute of Informatics, Goethe University, Robert-Mayer-Str.10, Frankfurt am Main, Germany

Keywords: Cloud Applications Performance and Monitoring, Workflow, OpenShift.

Abstract: Prospective cloud management requires sophisticated monitoring capabilities. In this paper, we introduce a
novel monitoring framework for cloud-based workflow systems called cWorkload. cWorkload integrates mon-
itoring information from different layers of the cloud architecture. The paper puts its focus on the two-layer
monitoring regarding the workflow layer and the PaaS layer. We present the layered monitoring architec-
ture, an implementation of the two-layer cross-monitoring part, and an experimental evaluation with sample
workflow data. Further, we discuss related work on cloud monitoring divided into one-layer, multi-layer, and
cross-layer approaches. Our plans for future work on extending the implementation by further layers towards
a cross-layer, prospective monitoring for prospective cloud management are described.

1 INTRODUCTION

Cloud management (CM) aims at an optimal resource
and capacity planning. Cloud monitoring becomes es-
sential to predict and keep track of the evolution of all
the parameters involved in the process of assuring the
Quality of Service (QoS) (Aceto et al., 2013). Mon-
itoring capabilities facilitate cloud service providers
to fulfill service level agreements (SLAs). Service
consumers may use monitoring capabilities to audit
whether SLAs have been violated. Today, monitor-
ing services such as Amazon CloudWatch (Amazon,
2014b) provide data on the current state of particu-
lar cloud resources. However, they facilitate a rather
reactive management of resources. The increasingly
complex structure of cloud systems made of several
layers requires more complex monitoring systems in
future (Aceto et al., 2013).

We identified a research gap for prospective cloud
monitoring capabilities. Such approaches that go be-
yond monitoring capabilities provided by cloud ven-
dors might improve CM significantly. In this pa-
per, we introduce the novel cross-layer monitoring
framework cWorkload that integrates process moni-
toring and cloud monitoring capabilities. cWorkload
is part of our process-oriented cloud management
model whose fundamental ideas have been published
in our previous work (Schulte-Zurhausen and Minor,
2014; Minor and Schulte-Zurhausen, 2014). The
cloud management model has been inspired by the
multi-tier model for cloud management introduced by
Maurer et al. (Maurer et al., 2013), which we have

extended by the business process perspective. An in-
tegrated monitoring solution that is aware of the on-
going business processes contributes to a better es-
timation of approaching workloads. Cloud monitor-
ing information from existing tools is integrated with
process monitoring. As a consequence, interventions
can be planned in advance and executed in a timely
manner. This improvement of the cloud management
yields benefits for both, a cloud service provider and
a cloud user perspective. The novel monitoring ap-
proach might reduce the amount of overprovisioned
resources extremely, which is required to maintain
compliance with SLAs.

The Workflow Management Coalition (Workflow
Management Coalition, 1999) defines a workflow as
“the automation of a business process, in whole or
part, during which documents, information or tasks
are passed from one participant to another for action,
according to a set of procedural rules”. A task also
called activity is defined as “a description of a piece
of work that forms one logical step within a process.
An activity may be a manual activity, which does not
support computer automation, or a workflow (auto-
mated) activity. A workflow activity requires human
and/or machine resources(s) to support process execu-
tion” (Workflow Management Coalition, 1999). Sev-
eral instances of the same workflow can be executed
at the same time. A cloud workflow is a workflow
that is executed within a cloud environment (or within
several cloud environments). For instance, a video
surveillance process comprising of several analysis
steps for recorded video sequences, such as identi-

389Kübler E. and Minor M..
Towards Cross-layer Monitoring of Cloud Workflows.
DOI: 10.5220/0005434703890396
In Proceedings of the 5th International Conference on Cloud Computing and Services Science (CLOSER-2015), pages 389-396
ISBN: 978-989-758-104-5
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



fying image changes that may correspond to humans
moving within the observed area, provides a sample
scenario for a cloud workflow. In this paper, we make
use of the workflow notion to define workload as fol-
lows: A workload is a task (of a workflow instance)
with its input data, its number of users, and a task type
(CPU intensive, network intensive, memory intensive,
storage intensive). While the workload of an ongo-
ing task is well-specified the future workloads might
be known only approximately, i.e. the workloads are
still underspecified. Underspecified workloads are re-
fined as soon as all properties of their according tasks
are specified, such as input data and number of users.
The overall workload of a cloud system at a particular
execution time is then characterized by the set of cur-
rent workloads (from different tasks being executed).
The remainder of this paper is organized as follows.
In Section 2, we present related work. Section 3 sum-
marizes our cloud management and cross-layer mon-
itoring approach. Section 4 contains our hypothe-
ses, the experimental setup, and results of our exper-
iments. We draw a conclusion in Section 5 and point
out future work.

2 RELATED WORK

In order to compare cWorkload and other cloud
monitoring platforms, we classify the related work
into three types: single-layer monitoring, multi-layer
monitoring, and cross-layer monitoring. A single-
layer monitoring tool monitors only a single layer
of the cloud architecture. This could be, for exam-
ple, the application layer or the IaaS layer. A multi-
layer monitoring platform is able to obtain and man-
age monitoring information from different layers at
the same time. However, the collected information
from each layer is not related to other layers. Thus,
multi-layer platforms are per se not capable to ob-
serve workloads across layers in an integrated man-
ner. A cross-layer monitoring platform receives mon-
itoring information from several layers and is able to
track the impact of a workload from layer to layer,
for instance, to determine the resource utilization by
a cloud workflow at lower layers. In the following,
we present a selection of cloud monitoring platforms.
The selection and grouping of work is an extension of
the list of monitoring platforms discussed by Aceto et
al. (Aceto et al., 2013).

Obviously, the related work on cross-layer mon-
itoring forms the closest affinities to our approach.
AzureWatch (Paraleap Technologies, 2014) in combi-
nation with other third-party monitoring services is
capable of monitoring the application, PaaS and IaaS

layer and of aggregating the information. Monitor-
ing values from leading indicators for scaling, such as
queue depths or rate of change in demand, are com-
bined with values from trailing indicators, such as
CPU utilization, requests per second, or bandwidth.
Thus, AzureWatch is a cross-layer platform. How-
ever, AzureWatch is restricted to technical solutions
based on Windows Azure. The workflow paradigm
is not addressed. vRealize Hyperic (vmware, 2014)
is a cross-layer monitoring platform from VMWare.
It monitors several cloud layers and is able to point
out resource utilization peaks across the layers. This
is called metric drill down. In contrast to our work,
vRealize Hyperic does not consider a workflow layer.

Multi-layer monitoring approaches are also of in-
terest for our work since they collect monitoring in-
formation from different layers. Some of them visual-
ize the acquired monitoring values in common dash-
boards. CloudWatch (Amazon, 2014b) uses metrics
from the Amazon Web Services (AWS), which are
distributed on the PaaS and IaaS layer. CloudWatch is
also capable of obtaining and evaluating monitoring
information from other applications. Thus, Cloud-
Watch is a multi-layer monitoring platform. However,
due to the lack of aggregation of the pieces of infor-
mation, CloudWatch is not a cross-layer monitoring
platform. Monitis (monitis, 2014) is an application
based on an agent paradigm. It is mainly for AWS
and, similar to CloudWatch, is a multi-layer platform
with a common dashboard for monitoring informa-
tion from different layers. Further multi-layer ap-
proaches for PaaS and IaaS are, for instance, Lattice
(Palmieri et al., 2012), Gmone (Montes et al., 2013)
or the monitoring component of Aneka (Manjrasoft,
2014). Nimsoft Monitoring Solution (ca technologies,
2014) is a multi-layer monitoring platform primarily
for the hardware and IaaS layer but it is also able to
obtain pieces of information from other monitoring
platforms. However, it does not track events across
the layers. A similar approach for multi-layer IaaS
and hardware monitoring is GroundWork (Ground-
Work, 2014) which uses the tool Nagios (Nagios,
2014) for the hardware layer. The CLAMS frame-
work (Alhamazani et al., 2014) is a multi-layer ap-
proach with a special focus on integrating monitor-
ing information from cloud environments of different
vendors. Please note that the authors use an alterna-
tive notion of cross-layer monitoring regarding multi-
clouds. Maurer et al. (Maurer et al., 2013) present
an approach to manage a cloud configuration at dif-
ferent layers. They divide the resource allocation into
three levels for scaling called escalation levels. Low-
level metrics from the cloud infrastructure, such as
free disk and packets sent, are mapped to high-level

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

390



monitoring parameters with the aim to fulfill the Ser-
vice Level Agreements (SLAs) by automated scaling.
We consider this a multi-layer approach since the in-
formation from a lower layer is propagated towards
higher layers. A cross-layer monitoring would require
receiving monitoring information from different lay-
ers.

Single-layer monitoring approaches are slightly
related to our work. Monitoring one layer is a pre-
requisite for multi-layer and cross-layer monitoring.
OpenShift, for instance, can be monitored in a single-
layer manner by a monitoring component for each
particular PaaS container called monitoring cartridges
(Pousty and Miller, 2014). For sample work on mon-
itoring at a single IaaS layer, we refer to the literature
(OpenNebula, 2014; rackspace, 2014; LogicMonitor,
2014; Kung et al., 2011; Alcaraz Calero and Gutier-
rez Aguado, 2014).

3 MONITORING
ARCHITECTURE

The cloud management problem could be mapped
into the MAPE cycle (Monitoring - Analysis - Plan-
ning - Execution) (I.B.M. Corporation, 2006). The
first step is to monitor the resources. The analysis
step is to detect an event. This could be the threat-
ening violation of an SLA, for instance. Another ex-
ample for an event is the occurrence of a high work-
load that provides an indicator for scaling resources
in order to decrease the required execution time. Step
three is the search for a solution in the planning step.
A solution is a reconfiguration of the cloud configu-
ration. This might include changes in the distribution
of workloads for a better fit of the resources to the
requirements. This could be achieved by using con-
figuration activities across the layers while activities
at higher levels are preferable. In addition, different
problem solving strategies could be considered, such
as meta-heuristics (Beloglazov et al., 2012), genetic
algorithms (Hu et al., 2010), or case based reasoning
(Richter and Weber, 2013).

In the following, we will briefly summarize our
cloud management approach that has been published
in our previous work (Minor and Schulte-Zurhausen,
2014). Based on this, we will introduce the novel
monitoring architecture. A multi-tier model sepa-
rates physical from virtual resources in different lay-
ers. It allows cascading configuration activities from
layer to layer. The model of our monitoring archi-
tecture is inspired by the cloud management model
from Maurer at al. (Maurer et al., 2013) which con-
sists of three layers for hierarchical configuration ac-

tivities. In our previous work (Minor and Schulte-
Zurhausen, 2014), we have introduced a workflow tier
on top of the three tiers from Maurer et al.’s model in
order to achieve a process-oriented perspective (see
left hand side of Figure 1). The physical machine tier
at the bottom is manipulated by configuration activ-
ities like add and remove compute nodes. The vir-
tual machine tier allows activities like to increase or
decrease incoming and outgoing bandwidth of a vir-
tual machine (VM), its memory, its CPU share, or
to add or remove allocated storage by x%. Further,
VMs can be migrated to a different physical machine
or moved to and from other clouds in case of out-
sourcing/insourcing capabilities. The application tier
is dedicated to management activities for individual
applications. The same set of activities as for VMs
can be applied but with an application-specific scope.
This tier can also be a PaaS platform while the VM
tier can be an IaaS platform. Obviously, the migra-
tion and insourcing/outsourcing activities refer to the
placement of applications on VMs at the application
tier. The workflow tier addresses the placement of
workflow tasks on VMs. Tasks can be migrated to an-
other VM or tailored, i.e. split into replicated tasks
with a portion of the input data each.

Figure 1: Process-oriented model for cloud management
extending (Maurer et al., 2013).

cWorkload is a novel part of the cloud man-
agement architecture for cross-layer monitoring (see
right hand side of Figure 1). In case of the workflow
layer, it monitors the workflow state of instances and
tasks. States reported frequently in the literature are
for example “running”, “active” or “suspended”. We
aim at using this information for a prediction of work-
loads as a core feature of cWorkloads. The monitoring
results can be used to improve the management ca-
pabilities from a reactive towards a prospective man-
agement. To obtain the workload of an instance, we
monitor the input and output data of the tasks. With

Towards�Cross-layer�Monitoring�of�Cloud�Workflows

391



the information on the workloads we will be able to
estimate the effort. This estimation will serve in our
model as a means to forecast the need for scaling. We
are planning to run simulations to collect information
about the efforts of domain specific workloads and
build an empiric knowledge repository about typical
efforts.
At the PaaS layer, we aim to monitor the resources
that are offered by the run-time environment. Gener-
ally, there are different tools and ways to accomplish
this task depending on the used PaaS platform. In
our implementation, we use OpenShift (Pousty and
Miller, 2014) as a cloud environment. The cloud
workflow is executed by a workflow engine running
within OpenShift. Each workflow task is performed
by one web service (Singh and Huhns, 2005). The
workflow engine and the web services are operated on
different containers. Monitoring information from all
containers that are involved is gathered by the linux
tool top (Unix Top, 2014).
Similar to the PaaS layer, the IaaS layer offers dif-
ferent tools to monitor the health of the VMs. In fu-
ture work, we will use Eucalyptus (Eucalyptus Sys-
tems, 2014) or the Amazon web services (Amazon,
2014a), probably with CloudWatch (Amazon, 2014b)
as a monitoring tool.
At the hardware layer, there are monitoring metrics
available such as for the cpu utilization, the energy
consumption and the temperature.

The long-term goal of cWorkload is to reduce the
overprovisioning of resources. To achieve this goal,
we will integrate the monitoring information by a
smart handling of resources depending on workload
forecasts. We will combine the information from dif-
ferent monitoring layers to obtain a better understand-
ing of the state of our cloud.
In the remainder of this paper, we will present on the
integration of the workflow and the PaaS layer. One
essential part of this concept is the task placement.
We define a task placement as the assignment of auto-
mated tasks to VMs and furthermore the assignment
of VMs to physical machines (PMs). Figure 2 illus-
trates an example for a task placement. The place-
ment includes two PMs and three VMs. The figure
illustrates which VM is executed on which PM, for
example “VM3” is running on “PM2”. This schema
is repeated for the runtime environments of the PaaS
layer and for the web services at the workflow layer.
For instance, “s3” is executed on the “runtime3”,
which is executed on “VM2”. On the right hand side,
an example workflow is depicted that uses “s1” and
“s5”.

The integration of the PaaS and the workflow layer
is performed by cross-linking the metrics at the PaaS

Figure 2: Sample task placement for a workflow.

layer with the monitored task states at the workflow
layer. Each task in the state “running” is assigned to a
measuring point for the cloud resource that has been
assigned for execution. The measured values from
both layers are aggregated into a multi-dimensional
representation form based on time stamps from both,
the workflow execution log and from the time of
measuring recorded at the PaaS level. The aggre-
gated information can be interpreted by an automated
cloud management mechanism or visualized for a hu-
man being in a multi-dimensional presentation. For
instance, in our preliminary implementation within
OpenShift, each PaaS container comprises of exactly
one web service that is assigned to a PaaS container
via its URL. However, the same web service can be
used by multiple workflow instances containing the
same task that is performed by the web service. As a
consequence, the measured metrics at the PaaS layer
have to be partitioned in order to determine the por-
tion of the measured values for each task. For exam-
ple, if “s1” that is deployed on “runtime1” is used by
three workflow instances at the same time and if the
CPU utilization of “runtime1” is 100% we should not
simply conclude that each instance uses 33% of the
CPU because the CPU utilization for each instance
depends on the input data. At the moment, we con-
sider the measured values at the PaaS layer as an
amalgam if multiple workflow task instances are run-
ning on the same PaaS container. A partition function
is required to approximate the share of effort for each
instance. We will address this in our future work in or-
der to aggregate the values from the PaaS layer with
the workflow layer more precisely than in our simpli-
fied experiments (see below).

4 EVALUATION

The cWorkload framework is implemented in a pilot
system with a focus on the two-layer monitoring
of the workflow and the PaaS layer. Integrating
the monitoring capabilities of the workflow and the
PaaS layer is an important step towards a cross-layer
monitoring. A prerequisite for this is to check
whether monitoring values from both layers can
be aggregated in principle. The feasibility of the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

392



two-layer approach has been investigated by running
some experiments with sample workflows on the pilot
system. Preliminary evaluation results have been
achieved guided by the following three hypotheses:

H1: The Utilization of Cloud Resources Can
Be Aligned with a Workflow Instance.
The core of the hypothesis is that it is possible to
identify the PaaS resources used by a particular
workflow task that has been executed. This includes
recognizing the PaaS container that has been used,
the utilization of the resources of the container and
the duration of using the container. The hypothesis
addresses a simple but critical point. Only with
the capability to monitor the resources required by
a task, a deep integration of workflow and cloud
management can by achieved. Obviously, the PaaS
resources can be monitored but for a workflow
instance it is not straightforward to identify the
resources (and shares of resources) that have been
used by a particular workflow task during execution
in a cloud environment.

H2: The More Workflow Instances Are Run-
ning on a PaaS the Higher Is the Demand for
Resource Scaling.
Each workflow instance within a PaaS should be
independent from each other. In order to avoid inter-
ferences between instances the resources might be
scaled. The need for scaling might increase with the
number of ongoing workflow instances. We assume
that the sharing of resources actually occurs and that
scaling is performed by a heuristically method, for
instance by rules observing the number of open I/O
connections to a PaaS container. The confirmation
of the hypothesis is not obvious because if tasks are
running on different physical machines they might
not have any impact on each other.

H3: The Higher the Workloads from Ongo-
ing Workflow Tasks on a PaaS the Higher Is the
Demand for Scaling.
In addition to the number of running workflow
instances, the type of workload that is processed
within an instance has an impact on the demand
for scaling. Again, we assume that resources are
shared heuristically on the PaaS. If the workload
is distributed advantageously it is possible to run
several workflow instances without any interference
between them. On the other hand, disadvantageous
distributions of workload might lead to obstructions.
To observe such effects, knowledge about the type of
workloads is required.

We have designed two different, artificial work-

flows for the experiments. A sample modelled in
BPMN (Grosskopf et al., 2009) is depicted in Fig-
ure 3. The trigger for starting a workflow instance
is a message from the user as indicated by the en-
velope symbol. Two sample web services are in-
cluded. The fibo web service (“WS: Fibo”) calcu-
lates the Fibonacci number for a given number. The
prim web service (“WS: Prim”) calculates all prime
numbers from 2 to n for a given n. The web ser-
vices are executed in parallel as indicated by the plus
symbol. The workflows have been modelled using the
workflow designer Intalio—BPM (Intalio, 2014). Our
work considers the task types of the workloads such
as CPU intensive, storage intensive, memory inten-
sive or network intensive tasks. The prim and fibo
web services are clearly of the type CPU intensive
since they mainly require CPU as a resource, do not
require any storage, and use only a tiny quantity of
memory and network capacities. The web services are
deployed on the OpenShift online platform (Pousty
and Miller, 2014) that provides a public cloud solution
of a PaaS. Each web service is running on an Open-
Shift small gear, i.e. a small-size container of the run-
time environment providing 512MB RAM, 1GB hard
disc and a single CPU with 2.5GHz. The prim web
service is deployed on gear no. 1 and the fibo web
service on gear no. 2. We use a WildFly 8 application
server (redhat, 2014b) as a cartridge, i.e. as a pre-
configured application on top of a gear. The system
Intalio—BPM 6.5 serves as a workflow engine run-
ning on a 4-core CPU with 3.4GHz and 16GB RAM.
The instances are started by hand. The CPU utiliza-
tion for each gear is logged via the Linux tool top
(Unix Top, 2014). Our cWorkload framework records
the terminal output at regular intervals. In addition,
Intalio—BPM logs the progress of the workflows. We
run the simulation with several workloads and com-
pare the results of the different runs. In case of the
prim web service, the input data is a given number,
for example 10. The result for this example is the set
of prime numbers f2;3;5;7g. The input data for the
fibo web service is also a number. For example, the
result is 55 for the number 10. The higher the input
number the higher is the workload. Consequently, this
requires a higher computational effort.

Within an initial test phase, we couldn’t observe
any interference between the web services. Most
probably, this was due to the fact that two gears on
different Amazon EC2 instances had been selected
automatically by the load balancer used by OpenShift
online. Thus, we will discuss the results for the par-
ticular web services separately. In order to investi-
gate hypothesis H1, cWorkload monitors the CPU uti-
lization of the gears for new workflow instances that

Towards�Cross-layer�Monitoring�of�Cloud�Workflows

393



Figure 3: Workflow with a parallel call of web services.

have been started at irregular frequencies. Figure 4
and Figure 5 depict two sample sequences of values
measured for the CPU utilization of gear 1 and gear
2. The sample input data was 45 for the fibo web
service and 100,000 for the prim web service. There
are some recognizable peaks within the time series.
We have highlighted the areas where a web service is
supposed to run according to the logs of the workflow
engine. It can be observed that the log information
matches the recognizable peaks. We conclude from
the investigated samples that the utilization of cloud
resources measured by the Top tool can be aligned
with the CPU utilization of the gears consumed by the
particular web service tasks. However, there are fur-
ther single peaks in the time series. We assume that
they are artifacts originating either from the Top tool,
from the WildFly cartridges or from competing gears
running on the EC2 instance. Hypothesis H1 has been
confirmed by the measured samples.

For hypothesis H2, we have started a variable
number of workflow instances simultaneously. The
logs of the workflow engine have been analyzed to de-
termine the throughput time of the web services, i.e.
the duration of executing the workflow task. We have
repeated this test for 5 samples with input 100,000 for
the prim web service and 43 for the fibo web service.
The average values are depicted in Figure 6 and Fig-
ure 7. The results show that with an increasing num-
ber of instances calling the same web service in paral-
lel the throughput time increases significantly. At this
point, our preliminary results are not yet a proof but
a promising indicator that our hypothesis 2 is valid.
In order to investigate hypothesis H3, we have logged
the number of successfully executed requests for the
fibo web services. A request is considered successful
if the service has returned the result before receiving
a time out. For instance, the Intalio workflow engine

Figure 4: CPU utilization of prim.

throws such time outs after 60 seconds. We created
different workloads from the same web service task
by varying the input data. We have chosen an input
value between 30 and 50. Each sample was repeated
between 3 and 20 times. For input values of 43 and
below, all executions have been successful. For input
values of 48 and above, the execution was not suc-
cessful. For values between, the success of the exe-
cution depends on the number of instances and on the
system state. According to our experience, the dura-
tion of execution increases with the input value. Hav-
ing executed 5 instances with input value 43 success-
fully makes it promising to run 5 instances with value
42 successfully as well. A systematic experimental
proof of this experience as well as the development
of a quantification function for workloads will be part
of our future work. The preliminary results provide
a first hint that the demand for scaling resources can
be predicted approximately by means of the input val-
ues that should be calculated and, thus, by the work-
loads to be expected. Hypothesis H3 is not yet finally
confirmed. Rather, the experiments play the role of
a plausibility check. Based on the promising results,
a partition function can be elaborated and hypothe-
sis H1 can be investigated for multiple workflow in-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

394



Figure 5: CPU utilization of fibo.

Figure 6: Average execution times for instances of fibo.

stances running in parallel in future.

5 CONCLUSION AND FUTURE
WORK

In this paper, we have introduced cWorkload a novel
monitoring framework for cross-layer monitoring of
cloud workflows. The layer architecture of the
cWorkload framework is designed in accordance with
the layers of the cloud-based workflow system to be
monitored. A workflow execution layer on top of the
PaaS cloud system is monitored by means of the mon-
itoring capabilities of the underlying PaaS layer. To
achieve this two-layer integration, the resource uti-
lization of the workflow tasks is determined by mea-
suring values from the cloud resources and assigning
the measured values according to the particular work-
loads of the workflow tasks. A preliminary evaluation
of cWorkload is based on experiments with artificial
workflow samples. The execution of CPU intensive

Figure 7: Average execution times for instances of prim.

workflow samples has provided that the CPU utiliza-
tion of the cloud resources can be aligned with the
workflow instances comprising of computationally
intensive tasks. Further, we observed that the more
workflow instances are running the higher are the uti-
lization values of the according cloud resources. We
conclude from the samples that the demand for scal-
ing resources is increased by this. In addition, the
higher the workloads from ongoing workflow tasks
are the higher is the demand for scaling resources.
The benefit of a cross-layer monitoring solution is that
it provides deeper insights on the state of the system
than single-layer monitoring approaches. In case of
our two-layer approach that integrates the workflow
layer with the PaaS layer, this results in a better un-
derstanding of the placement of workloads on PaaS
containers such as OpenShift gears. Consequently,
the assignment of workloads to containers can be im-
proved, for instance by grouping tasks of different
types on one gear or by selecting containers with an
optimal size for a workload. Thus, the overprovi-
sioning of resources might be reduced. The contribu-
tion of this paper and especially the preliminary ex-
periments on the two-layer monitoring integrating the
workflow and the PaaS layer provide quite promising
results. The work is an important step towards the
cross-layer monitoring of cloud workflows. However,
it raises several novel research questions as follows.

In our future work, we will address mainly two
issues. First, the experimental platform will be im-
proved by a different technical environment. The
workflow engine Intalio will be replaced by a work-
flow engine such as JBPM (redhat, 2014a) that facil-
itates the automated triggering of workflows and pro-
vides machine-readable logging information. Both
will support us to conduct further experiments with a
broader scope and with a deeper, automated analytics.
The public cloud PaaS solution OpenShift Online will
be substituted by a private installation of OpenShift in
order to achieve better control of further layers below
the PaaS layer. The two-layer integration will be ex-

Towards�Cross-layer�Monitoring�of�Cloud�Workflows

395



tended to a cross-layer monitoring with multiple lay-
ers. Second, we will investigate how to predict fu-
ture demands for scaling from expected workloads.
The workflow notion will provide this information ei-
ther based on the set of tasks to be triggered next or
by a clocked simulation of further workflow execu-
tion. As a first step, a partition function for measured
values on PaaS containers hosting multiple workflow
task instances has to be implemented. A comparison
study of the prospective solution with non-predictive
cloud management approaches will highlight the im-
portance of our approach.

REFERENCES

Aceto, G., Botta, A., de Donato, W., and Pescap, A. (2013).
Cloud monitoring: A survey. Computer Networks,
57(9):2093–2115.

Alcaraz Calero, J. and Gutierrez Aguado, J. (2014). Mon-
PaaS: An adaptive monitoring platform as a ser-
vice for cloud computing infrastructures and services.
IEEE Trans. on Services Computing, 8(1):65–78.

Alhamazani, K., Ranjan, R., Mitra, K., Jayaraman, P.,
Huang, Z., Wang, L., and Rabhi, F. (2014). CLAMS:
Cross-layer Multi-cloud Application Monitoring-as-
a-Service Framework. In 2014 IEEE Int. Conference
on Services Computing (SCC), pages 283–290.

Amazon (2014a). Amazon web services.
http://aws.amazon.com/, 12-19-14.

Amazon (2014b). Cloudwatch. http://aws.amazon.com/
cloudwatch/, 12-18-14.

Beloglazov, A., Abawajy, J., and Buyya, R. (2012). Energy-
aware resource allocation heuristics for efficient man-
agement of data centers for cloud computing. Future
Generation Computer Systems, 28(5).

ca technologies (2014). Nimsoft. http://www.ca.com/us/
opscenter/ca-unified-infrastructure-
management.aspx, 12-11-14.

Eucalyptus Systems (2014). https://www.eucalyptus.com/,
12-19-14.

Grosskopf, A., Decker, G., and Weske, M. (2009). The
Process: Business Process Modeling Using BPMN.
Meghan Kiffer Pr.

GroundWork (2014). http://www.gwos.com/features/, 12-
19-14.

Hu, J., Gu, J., Sun, G., and Zhao, T. (2010). A schedul-
ing strategy on load balancing of virtual machine re-
sources in cloud computing environment. In 2010
Third Int. Symposium on Parallel Architectures, Algo-
rithms and Programming (PAAP), pages 89–96.

I.B.M. Corporation (2006). An architectural blueprint
for autonomic computing. http://www-
03.ibm.com/autonomic/pdfs/AC Blueprint White
Paper V7.pdf, 11-01-14.

Intalio (2014). http://www.intalio.com/, 12-18-14.

Kung, H. T., Lin, C.-K., and Vlah, D. (2011). CloudSense:
continuous fine-grain cloud monitoring with compres-
sive sensing. USENIX Hot-Cloud.

LogicMonitor (2014). http://www.logicmonitor.com/, 12-
19-14.

Manjrasoft (2014). Aneka. http://www.manjrasoft.com/,
12-18-14.

Maurer, M., Brandic, I., and Sakellariou, R. (2013). Adap-
tive resource configuration for cloud infrastructure
management. Future Generation Computer Systems,
29(2):472–487.

Minor, M. and Schulte-Zurhausen, E. (2014). Towards
process-oriented cloud management with case-based
reasoning. In Proc. ICCBR 2014, LNCS 8766, pages
303 – 312. Springer.

monitis (2014). http://www.monitis.com/, 12-19-14.
Montes, J., Sánchez, A., Memishi, B., Pérez, M. S., and

Antoniu, G. (2013). Gmone: A complete approach to
cloud monitoring. Future Generation Computer Sys-
tems, 29(8):2026 – 2040.

Nagios (2014). http://www.nagios.org/, 12-19-14.
OpenNebula (2014). http://docs.opennebula.org/, 12-19-14.
Palmieri, R., di Sanzo, P., Quaglia, F., Romano, P., Peluso,

S., and Didona, D. (2012). Integrated monitoring
of infrastructures and applications in cloud environ-
ments. In Euro-Par 2011, pages 45–53. Springer.

Paraleap Technologies (2014). Azurewatch.
http://www.paraleap.com/azurewatch, 12-19-14.

Pousty, S. and Miller, K. (2014). Getting Started with Open-
Shift. ”O’Reilly Media, Inc.”.

rackspace (2014). Cloudkick. http://www.rackspace.com/
cloud/monitoring/, 12-15-14.

redhat (2014a). jbpm. http://www.jbpm.org/, 11-26-14.
redhat (2014b). WildFly. http://www.wildfly.org/, 12-18-

14.
Richter, M. M. and Weber, R. (2013). Case-Based Reason-

ing: A Textbook. Springer.
Schulte-Zurhausen, E. and Minor, M. (2014). Task place-

ment in a cloud with case based reasoning. In
CLOSER 2014, pages 323 – 328, Barcelona, Spain.
SciTePress.

Singh, M. P. and Huhns, M. N. (2005). Service-oriented
computing - semantics, processes, agents. Wiley.

Unix Top (2014). http://www.unixtop.org/, 12-18-14.
vmware (2014). http://www.vmware.com/products/

vrealize-hyperic/, 12-19-14.
Workflow Management Coalition (1999). Glossary & ter-

minology. 5-23-14.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

396


