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Abstract: Mining, analysis and trend detection in time series is a very important problem for forecasting purposes. Many 
researchers have developed different methodologies applying techniques from different fields of science in 
order to perform such analysis. In this paper, we propose a new discretization method that allows the detection 
of local extrema and trends inside time series. The method uses sliding linear regression of specific time 
intervals to produce a new time series from the angle of each regression line. The new time series produced 
allows the detection of local extrema and trends in the original time series. We have conducted several exper-
iments on financial time series in order to discover trends as well as pattern and periodicity detection to fore-
cast future behavior of Dow Jones Industrial Average 30 Index. 

1 INTRODUCTION 

The study of time series is a very important research 
area for many different applications and scientific do-
mains. Any variable that changes over time can be de-
fined as a time series. The study of such variables and 
their change over time can be very important for var-
ious reasons, e.g., to understand past behavior and 
based on that predict future behavior. Such studies are 
very important since they can be applied to a wide 
spectrum of scientific fields such as psychology, eco-
nomics, physics, meteorology, geology, biology, etc.  

Usually, a variable and its representation as a time 
series involve real values. Therefore, a direct analysis 
over these values can be extremely difficult since, for 
example, if we want to analyze temperatures in Can-
ada the values may vary from -50 degrees Celsius up 
to 40 degrees Celsius. Having also one decimal digit 
for every observation it means that we have 901 dis-
crete values to be analyzed. Due to this wide range of 
values in order to proceed with their analysis, a dis-
cretization of the time series must first be conducted. 
For this purpose, many discretization techniques have 
been developed (Yang et al. 2005). Discretization 
groups values that are close (the closeness depends on 
the discretization method and its parameters), and 
then the new time series can be analyzed, e.g., detect-
ing patterns that occur often. For the discretization, a 

predefined alphabet is used and a specific letter from 
the alphabet is assigned to each group of data values. 
By applying this method continuous (real) values can 
be transformed to discrete values and, therefore, pat-
tern, periodicity or trend detection can be performed. 

In this paper, we present a new discretization 
method that allows us to directly identify local min-
ima/maxima and trends inside a time series. By ap-
plying a mathematical transformation on the original 
time series’ values we use the outcome to perform 
sliding linear regression analysis of short time inter-
vals. We have named this method Moving Linear Re-
gression Angle (MLRA) because for each linear re-
gression analysis we use the angle of the regression 
line (calculated from its slope) in order to create a new 
time series. Using this new time series we can detect 
fast the turning points of the time series, i.e., the local 
minima and maxima. Having such information we 
can detect all sub-trends that exist in a time series 
since the discretization method uses the same alpha-
bet letter for up or down trends. The conducted testing 
demonstrates the applicability and effectiveness of 
the proposed approach. 

The rest of the paper is organized as follows: Sec-
tion 2 is a review of discretization and trend detection 
methods. Section 3 presents the proposed MLRA 
based approach. Section 4 reports the experimental 
results obtained using financial data and more 
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specifically Dow Jones Industrial Average 30 Index. 
Section 5 is conclusions and future work. 

2 RELATED WORK 

Due to the importance of analyzing time series and 
especially those produced by continuous values, 
many different discretization methods have been de-
veloped so far. Variables can be categorized as quali-
tative or quantitative (Yang et al. 2005). Each cate-
gory can be sub-categorized to nominal and ordinal 
for qualitative and to interval or ratio for quantitative 
variables. We study the second category of quantita-
tive data because of its importance and wide spectrum 
of applications in various scientific domains. Differ-
ent taxonomies can be applied for the discretization 
of quantitative values such as univariate or multivar-
iate, disjoint or non-disjoint, ordinal or nominal fuzzy 
or non-fuzzy, etc. (Yang et al. 2005) Some of the most 
common discretization methods are (a) equal-width 
where each range has the same width, (b) equal-fre-
quency where the data are classified to ranges that 
have the same amount of data, (c) clustered-based by 
grouping data values together based on specific parti-
tions, (d) fuzzy discretization which applies its rules 
based on a membership function, etc. (Bao, 2008) 

Many methods have been introduced in the past 
decades for forecasting purposes based on historical 
data of a given time series. Esling and Agon (2012) 
summarized many data mining techniques for the 
analysis of time series, while White and Granger 
(2011) provided a deep analysis of trends in financial 
time series. Especially in finance some of the methods 
can be classified as (a) numerical linear models like 
ARIMA (Bao, 2008; Bao et al., 2013; De Gooijer and 
Hundman, 2006; Kovalerchuck and Vityaev, 2000; 
Qin and Bai, 2009; Xi-Tao, 2006), (b) rule-based 
models like decision tree, naïve Bayesian classifier, 
hidden Markov model etc. (Bao, 2008; Kovalerchuck 
and Vityaev, 2000 ), non-linear models such as artifi-
cial networks (Balkin and Ord, 2000; Bao et al., 2013; 
Qin and Bai, 2009; Selvarantnam and Kirley, 2006) 
and (d) fuzzy system models and support vector ma-
chines (Muller et al., 1997; Qin and Bai, 2009). 

Moreover, more financial forecasting tools have 
been introduced for over a century based on technical 
analysis. Such methods are Moving Average for dif-
ferent time spans, Relative Strength Index, Moving 
Average Convergence Divergence for different time 
spans, Momentum, etc. (Bao, 2008; Chen et al., 2014; 
Edwards et al., 2007; Pring 2002) Furthermore, many 
theories depending on specific pattern shapes have 
also been introduced such as Elliot Waves of 1-2-3-

4-5 uptrend and A-B-C downtrend formation (Ed-
wards et al. 2007) or simpler like Resistant and Sup-
port Lines, Head-And-Shoulders, Triangles, Flags, 
Rectangles, Double or Triple Bottom or Top for-
mation, Island formation etc. (Bao, 2008; Edwards, 
2007; Pring, 2002) All these methods and patterns are 
based on the detection of local extrema and how the 
prices change over specific points and time intervals 
in order to produce such formations. Although such 
formations are very well known for many decades, 
new methods are introduced very often to propose 
new methodologies for detecting trends (Bao, 2008; 
Bao et al. 2013; Chen et al., 2014). 

For detecting trends in time series and especially 
financial time series, many methods have been intro-
duced that apply techniques coming from different 
data mining, mathematical and financial fields. Qin 
and Bai (2009) have introduced a method that uses a 
new Association Rules Algorithm in order to predict 
trends in derivatives’ prices time series. Guerrero and 
Galicia-Vazquez proposed in 2010 a new method that 
decomposes a financial time series using exponential 
smooth filtering into two different parts, i.e., the trend 
and the noise of the time series. A more complex tech-
nique has been introduced by Chen at al. in 2014 that 
uses advanced fuzzy logic approach in combinations 
with the minimal root mean square root error crite-
rion. Another advanced method has been introduced 
by Muhlbayer et al. in 2009 that uses advanced linear 
regression methods to estimate trends. The specific 
methodology has been used on meteorological and 
precipitation time series, however, it can be applied 
also in finance. Moreover, Gardner and McKenzie 
(1985) have developed an exponential smoothing 
model that damps erratic trends in order to provide 
more accurate trend detection.  

3 PROPOSED METHODOLOGY 

Our discretization method that will help detecting 
trends in a time series and identifying possible perio-
dicities is based on the detection of the local minima 
and maxima. When a function is known, we can find 
the local minimum/maximum by applying the second 
derivative test. In this case, assuming that the function 
is twice differentiable at a critical point where the first 
derivative is equal to 0, we have to examine if the sec-
ond derivative is negative or positive, which means 
that the critical point is a local maximum or mini-
mum, respectively, (we cannot determine if the sec-
ond derivative is equal to zero too). However, such a 
process cannot be applied in a time series unless we 
use first interpolation in order to produce a 
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realfunction based on the data points of the time se-
ries. With the interpolation we try to fit the data points 
on a polynomial that can emulate the time series 
based on the given discrete data values. Yet, this is 
one of the most difficult problems in Numerical Anal-
ysis, especially when the polynomial that we want to 
fit on the data points of the time series can be of a very 
large degree. Moreover, as we can observe from 
“Fig.1.b”, in which we have the daily percentage 
changes of the DJIA30 Index, due to very small up 
and down fluctuations of the stock market we have 
extreme noise and it is very difficult to find meaning-
ful turning points (minima/maxima) that will signal a 
trend reversal and a possible opportunity for buying 
or selling stocks. 

Our method, Moving Linear Regression Angle 
analysis (MLRA), is based on the continuous execu-
tion of sliding linear regression analysis over time. 
We perform continuous regression analysis of spe-
cific time interval-sliding window (width-data points) 
and in each loop we calculate the angle of the regres-
sion line with the x-axis (the time axis of the time se-
ries) from the slope of the regression line. Assuming 
that we have a time series of ݊ data points we start at 

the beginning of time ݐ௦భ ൌ 0. Then for a specific 
time interval, e.g. for stock prices this can be charac-
terized by ݓ ൌ 10  days (if the time series is ex-
pressed in days), we perform a linear regression anal-
ysis for data points up to ݐభ ൌ 9 (sliding window 0 
to 9). Then we increase the starting point by one, i.e., 
௦మݐ ൌ 1 and the ending point will become ݐమ ൌ 10 
(sliding window 1 to 10). We continue this process 
until we reach the end of the time series (sliding win-
dow ݊ െ 10 to ݊ െ 1, assuming the length of the time 
series is ݊). In each loop we calculate the slope of the 
regression line, and based on this the angle of the line 
with respect to the x-axis in radius ሺെ2/ߨ, 2ሻ/ߨ . 
With this process we construct a new time series of 
݊ െ  ௪ and endingݐ points and with starting point at ݓ
point at ݐିଵ of the original time series. In the new 
time series, the value of the angles can show us how 
the segments of the original time series behave re-
garding their monotony. If the angle of each part is 
larger than the previous then the specific part of width 
w has an uptrend while if it is smaller it has a down-
trend. When the values change from larger to smaller 
we have a local maximum while when they change 
from smaller to larger we have a local minimum 
“Fig.1.a”. 

Table 1: Identicative Results of Repeated Patterns in DJIA30 Transformation for MLRA10. 

Index Pattern Start Period Occ. Length Positions 
1 ZZZZZZZZZZZZZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 155 783 2 49 155,938 
2 ZZZZZZZZZZZZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 219 720 2 48 219,939 
3 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZZZZZZZZZ 251 700 2 45 251,951 
4 ZZZZZZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 225 524 2 39 225,749 
5 ZZZZZZZZZZZAAAAAAAAAAAAAAAAAAA 435 505 2 30 435,940 
6 AAAAAAAAAAAAAAAAAAAZZZZZZZZZAA 268 379 2 30 268,647 
7 AAAAAAAAAAAAAAAAAAAAZA 59 820 2 22 59,879 
8 ZZZZZZZZZZZZZZZZZZZZZZ 347 557 2 22 347,904 
9 AAAAAAAAAAAAZZZZZZZZZZZZZZZZ 0 578 2 28 0,578 

10 AAAAAAAAAAAAAAAAAAAA 267 231 4 20 267,498,729,960 

 

Figure 1: Dow Jones Industrial Average 30 Prices and Daily Percentage Changes for 2010-2013. 
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Figure 4: Discretized Time Series for DJIA30 for 2010-2013 using MLRA for 10 days interval. 

 

Figure 2: Microsoft Stock Prices and MLRA Transfor-
mations for years 2010-2013. 

Figure 3: Dow Jones Industrial Average 30 Prices and 
MLRA Transformations for 2010-2013. 

Figure 5: DJIA30 Transformed Time Series and Trend De-
tection Examples. 

 

Figure 6: DJIA30 Transformed Time Series and Trend De-
tection Examples. 

However, there is a significant obstacle when we deal 
with time series having their values very small and 
close to the slope of the regression line, and based on 
this the angle of the line with respect to the x-axis. In 
“Fig.2.a” we have the stock prices for Microsoft from 
January 4th, 2010 till December 31st, 2013. The val-
ues vary between $20 and $40. As we can observe in 
“Fig.2.b” the values in the new time series created by 
applying the proposed MLRA change very smoothly. 
In “Fig.2.c” we can see how the values fluctuate very 
close to 0. So far the new time series behaves exactly 
like the original time series and it is very difficult to 

detect the local minima/maxima and the change in 
trends. In order to make this process easier algorith-
mically, we will use a transformation on the original 
time series. For the transformation, we will multiply 
the original time series with a constant, which we will 
name Sharpness Transformation Factor, denoted 
ܿ௦௧, in order to move away the time series from the 
ݔ െ  Doing this we will not lose any information .ݏ݅ݔܽ
of the original time series, however, the regression 
lines of each MLRA phase will become much steeper. 
As we can see in “Fig.2.d”, we have the transformed 
Microsoft stock prices and in “Fig.2.e” we have the 

AAAAAAAAAAAAZZZZZZZZZZZZZZZZZZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZAZZZZZZZZZZZZZZZZZZZZZZZAZZZZZZAAAA
AAAAZZZZZZZZZZAAAAAAAAZZZAAAAAAAAAAAAAZZZZZZZZZZZZZZZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZZZZZZZZ
ZZZZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZZZZZZZZZAAZZZZZZZZZAAAAAAAAAAAAAAZZZZZZZAAAAAAAAAA
AZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZAAAAAAAAAAAAAAAAZZZZZAAAAAZZZZZZZZZZZZZZAAAZZZZZAAAAAAAZZZZZZAAAAAZZZZZZZZZZZAAAAAAAAAAAA
AAAAAAAZAAZZAAAZZZZZZZZZZAAAAAAAAZZZZZZZAAAAAAAAAAAAAAAAAAAAAAAAAAZZAAAAAAAAAZAAAAAAAAAAAZZZZZAAAAAAAAZZZZZAAAAZ
ZZZZZZZAAAAAAAAAAAAAZZZZZZZZZZZZZZZZAAZZZZZZAAAAAAAAAAAZZZZAAAAAAZZZZZAAAAAZZAAAAAAAAAAAAAAAAAAAZZZZZZZZZAAAAAAAAAA
AAAAZZZZZZZAAAZZZZZZAAAZZZZZZZZAAZZZZZZZZZZAAAAAAAAAAAAAAAAAAAAAZZZZZZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZZZZZAAAAA
AAAAAAAAAAAAZAAAAAAAAAAAAAAAAZZZZZZAAAAAAAAAAAAAAAAAAAAAAAAZZZZZZZZZZZAAAZZZZZZZZAAAAAAAAAAAAAAAAAAAAZAAAAZZZZZ
ZZZZZZZZZZZZZZZZZAAAAAAAAAAAAZZZZZZZZZZZZZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZZZZZZZZZZAAAAAAAAAAAAA 
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MLRA transformation for ܿ௦௧ ൌ 10,000. The choice 
of the specific value for the ܿ௦௧ is not critical since 
we have used this for two reasons (a) we have exper-
imentally observed that when the values of a time se-
ries is above 100,000 then the regression lines of the 
MLRA are very steep and the identification of the 
slopes is more obvious and accurate; and (b) it is pre-
ferred to use multiples of 10 (or power of 10) as ܿ௦௧ 
because this transforms the original value to a multi-
ple of 10 and the values remain recognizable. For ex-
ample, with Microsoft’s stock prices in “Fig.2.a” the 
values are between 20 and 40 while in the trans-
formed time series with ܿ௦௧ ൌ 10,000 the values are 
between 200,000 and 400,000 as shown in “Fig.2.d”. 
It is easy to translate a transformed value of 278,800 
for January 4th, 2010 to 27.88 which is the actual 
value of the original time series. Moreover, the anal-
ogy between values has not changed since for in-
stance between January 4th and January 5th, 2010 the 
percentage change is 0.036% (from $27.88 to 
$27.89), while in the transformed time series the 
change is also 0.036% (from 278,800 to 278,900). We 
can observe that the time series diagram is exactly the 
same except that if we apply a linear regression anal-
ysis in both lines we have a slope and intercept of 
10,000 times larger for the transformed time series.  

However, the important outcome of the transfor-
mation can be observed in “Fig.2.c” and “Fig.2.e”. In 
“Fig.2.c” we have the original MLRA time series 
which fluctuates very smoothly around 0 while in 
“Fig.2.e” we have the new time series constructed by 
the MLRA on the transformed time series. The sec-
ond MLRA time series gives extreme values for the 
angles which are mainly close to 2/ߨ and െ2/ߨ with 
very few exceptions. In this case, having the values 
close to 2/ߨ means that we have a positive slope and, 
therefore, an uptrend while being close to െ2/ߨ 
means a negative slope and, therefore, a downtrend.  

In order to verify that the time series characteris-
tics have not changed we can check how the actual 
values are changing. This specific transformation of 
type ݕ ൌ ܿ௦௧ ∗ ݂ሺݔሻ does not alter the time series in 
a way to produce false outcome. The only noticeable 
change is the absolute Euclidean distance between the 
points. For example, if we have the points (1,1) and 
(2,2) they form a line with a slope of 45 degrees with 
the x-axis (ݕ ൌ  If we multiply the y-coordinates .(ݔ
by 10 then we have two new points (1,10) and (2,20) 
that form a new line with approximately 84 degrees 
slope with the x-axis (ݕ ൌ 10 ∗  The only change .(ݔ
is the Euclidean distance between the points which 
now is √101 instead of √2. However, when analyz-
ing time series we care mostly about the relative 

positions, i.e., how the analogies between the points 
stand. In the specific example the change in the first 
case is 100% (from 1 to 2) and the same is in the sec-
ond case (from 10 to 20).  

Our method although gives direct information 
about the trends of the segments of a time series it can 
also provide more information. For example, when a 
trend changes the specific point has to be either a lo-
cal minimum or a local maximum. Based on this we 
can find the actual points in the time series and calcu-
late the time lag ݐ߂  between two changing points 
(min-max or max-min) and find also the value change 
 Based .(difference of the two points on the y-axis) ݕ߂
on these two observations we can calculate the inten-
sity of the trend, i.e., how fast or slow it changes and 
towards which direction. For example an upward 
change of 100% in 10 days is more intense and im-
portant than the same change over 100 days (“Fig.1”). 

Based on the above method, we can discretize the 
new MLRA time series using a three letters alphabet, 
e.g., A for values in ሺ1, 2ሻ/ߨ , Z for values in 
ሺെ2/ߨ,െ1ሻ and O for values in ሾെ1,1ሿ. Type O val-
ues are very rare and we can eliminate them if we use 
a different ܿ௦௧ value which will create even steeper 
linear regression lines. After we have created the new 
MLRA time series we will apply ARPaD Algorithm 
(Xylogiannopoulos et al., 2014), which is an im-
provement of COV Algorithm (Xylogiannopoulos et 
al., 2012; 2014) and allows the detection of all re-
peated patterns in a time series. The ARPaD Algo-
rithm is the only algorithm that can detect all repeated 
patterns in a very efficient time. This has been proven 
experimentally with the analysis of 100 million deci-
mal digits for each one of the four most famous math-
ematical constants (π, e, φ, √2) and for which ARPaD 
managed to detect all repeated patterns (Xylogi-
annopoulos et al., 2014). After detecting the repeated 
patterns we can use a periodicity detection algorithm 
(Rasheed et al., 2010) in order to check for periodici-
ties in the previously detected repeated patterns. 

4 EXPERIMENTS 

For our experiments we used a PC with a double core 
CPU at 2.6GHz and 4GB RAM. We have conducted 
experiments on the Dow Jones Industrial Average 30 
Index for the period from January 4th, 2010 until De-
cember 31st, 2013. We have performed 4 different 
experiments using different time intervals and more 
specifically we have used MLRA for 10, 20, 30 and 
60 days. In “Fig.3.a” we can see the actual DJIA30 
time series while in “Fig.3.b” through “Fig.3.d” we 
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have the different MLRA time series. From the dia-
grams we can make two observations. First, we can 
see that indeed the MLRA detects the trends of the 
original DJIA30 time series, e.g., in the three shaded 
regions we have marked on the diagram. The first two 
show an uptrend while the third a downtrend. We can 
see that MLRA(10) shows exactly the trends and ad-
ditionally for the second time period (shaded region) 
it detects also smaller downtrends (short-term analy-
sis) in the main uptrend. These fluctuations have been 
eliminated in MLRA(60) because by taking a larger 
time interval we actually eliminate the noise of the 
small fluctuations of the index in the specific time pe-
riod (long-term analysis). The second thing we can 
observe is that we have a lag between the actual turn-
ing point (local minimum or maximum) and therefore 
the change of the trend and the change of the MLRA 
values. Actually the larger the MLRA interval the 
larger the lag. This is normal since MLRA is the lin-
ear regression of past values in time. The more data 
points we use for the linear regression analysis in 
MLRA the later the change will be observed. How-
ever, the lag is always the same for each analysis (de-
pending on the time interval). Therefore, when we 
conduct a pattern and periodicity detection we have 
just to move the turning point detected by the MLRA 
specific data points back, according to the length of 
the MLRA analysis. 

In “Fig.4” we have the transformed time series 
constructed by the MLRA(10) process (ten days in-
terval for the DJIA30). With A we have values close 
to 2/ߨ while with Z we have values close to െ2/ߨ. 
By conducting pattern detection with the ARPaD al-
gorithm (Xylogiannopoulos et al., 2014) and perio-
dicity detection with the PDA algorithm (Rasheed et 
al., 2010) we have found many long patterns that in-
dicate potential periodicities for forecasting purposes. 
In Table 1, we have some indicative results for pat-
terns with periodicity confidence 1 and length equal 
to or larger than 20 days. We have included the posi-
tions at which the patterns occur and also calculated 
the period of the occurrences. As an example, for the 
pattern 
“AAAAAAAAAAAAZZZZZZZZZZZZZZZZ” (in-
dex 9) we can see that it starts at position 0 and repeats 
with a period of 578 days. It has to be mentioned that 
financial time series are referring to working and not 
calendar days and, therefore, periods are calculated 
over working days too. Moreover, in the specific ex-
periments we have few data prior to January 4th, 2010 
and therefore the position 0 of MLRA(10) indicates 
the angle of the linear regression for the nine last days 
of 2009 and January 4th, 2010 of DJIA30. If we check 
the diagram we can see that DJIA starts at 2010 with 

an uptrend of 12 days followed by a downtrend of 16 
days. The specific pattern repeats again on April 19th, 
2012 (shaded regions (1) and (2) “Fig.5”) and it is ex-
pected to occur again at the end of July 2014. For the 
longest repeated pattern we have discovered (index 1) 
it occurs for the first time on August 16th, 2010 with 
a downtrend for 13 days followed by an uptrend of 36 
days. The specific pattern occurs again on September 
26th, 2013 (shaded regions (3) and (4) “Fig.5”) with 
a period of 783 days and it is expected to occur again 
at the beginning of November 2016. Almost a similar 
pattern of 48 days (instead of 49) with a downtrend of 
12 days (instead of 13) followed by an uptrend of 36 
days (index 2) occurs first on November 15th, 2010 
(shaded region (5) “Fig.5”) and then again on Sep-
tember 26th, 2013 (shaded region (4) “Fig.5”) with a 
period of 720 days and it is expected to occur again at 
the middle of July 2016. Another interesting trend is 
20 days of uptrend occurring 4 times with a period of 
231 days and first occurrence on January 25th, 2011, 
second on December 22nd, 2011, third on November 
26th, 2012 and the last on October 25th, 2013 (index 
10, shaded regions “Fig.6”). For the specific last out-
come, we expect to have the same trend occurring at 
the end of September 2014. As we can see, our 
method can be used not just for forecasting purposes 
of the next data point, but also to make forecasts 
longer in the future time. 

5 CONCLUSIONS 

In this paper, we introduce a new discretization 
method for the real values of a time series that allows 
detecting local extrema and trends inside the time se-
ries. The proposed method is based on the transfor-
mation of the values of the original time series and 
then the construction of a new time series from the 
angle of the regression lines that are produced each 
time we run a linear regression analysis in a sliding 
window of short time intervals. The specific method 
can be applied on all kind of real values time series, 
e.g., meteorological data, traffic, internet, economic, 
etc. We have conducted experiments for different 
time intervals of 10, 20, 30 and 60 days on the prices 
of Dow Jones Industrial Average 30 Index from the 
beginning of 2010 until the end of 2013. After the dis-
cretization and formation of the new time series, we 
conducted pattern and periodicity detection. The ex-
perimental results have proven the correctness and 
consistency of the method in order to detect trends in 
time series and through them to perform forecasting 
based on historical data. 

Furthermore, as we have discussed, this method 
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can detect the local minima and maxima and through 
them perform deeper analysis of the trends. More spe-
cifically, we can find the intensity of the trend (i.e. 
how fast or slow it changes) and the overall perfor-
mance of the trend (i.e., the percentage change from 
the minimum to the maximum data point or the rever-
sal). The specific process needs, besides the trend de-
tection, the actual minima and maxima values over 
the time series and more calculations on the trends’ 
data values. Such process will be extensively ana-
lyzed in future work. 
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