TCG
A Model-based Testing Tool for Functional and Statistical Testing

Laryssa Lima Muniz'?, Ubiratan S. C. Netto! and Paulo Henrique M. Maia?
IFundacdo Cearense de Meteorologia e Recursos Hidricos (Funceme), Fortaleza, Brazil
2Universidade Estadual do Ceara, Fortaleza, Brazil

Keywords:

Abstract:

Model-based Testing, Tool, Functional Testing, Statistical Testing.

Model-based testing (MBT) is an approach that takes software specification as the base for the formal model

creation and, from it, enables the test case extraction. Depending on the type of model, an MBT tool can
support functional and statistical tests. However, there are few tools that support both testing techniques.
Moreover, the ones that support them offer a limited number of coverage criteria. This paper presents TCG,
a tool for the generation and selection of functional and statistical test cases. It provides 8 classic generation
techniques and 5 selection heuristics, including a novel one called minimum probability of path.

1 INTRODUCTION

Model-based testing (MBT) is a technique for auto-
matic generation of a test case set using models ex-
tracted from software artefacts (Binder, 1999). This
approach stands for automating the whole test gener-
ation process and for reducing the costs for test de-
sign by up to 85 percent (Weissleder and Schlingloff,
2014). As this approach depends on the quality of
the used model, a high level of accuracy in the model
construction task is necessary (Beizer, 1995).

The automation of an MBT approach depends on
three main elements (Dalal et al., 1999): (i) the model
that describes the system behaviour; (ii) the test gen-
eration algorithm (test criteria); and (iii) tools that
provide the necessary infrastructure for the test case
generation. Regarding the model, the most used ones
are the UML diagrams, like the sequence, use case
and state diagrams, finite state machine based for-
malisms, statecharts, and labelled transition systems
(LTS). To manipulate them, many tools have been
developed that implement different test criteria, as
shown by several surveys in the area (Shirole and Ku-
mar, 2013; Shafique and Labiche, 2013; Aichernig
et al., 2008). Since the test cases are generated from
models instead of source code, MBT approaches are
adequate for functional tests.

In addition, some work have proposed the use of
probabilistic models, such as Markov chains, together
with MBT techniques for statistical generation of test
cases based on the system probability execution (Wal-

404 Muniz L., Netto U. and Maia P..
TCG - A Model-based Testing Tool for Functional and Statistical Testing.
DOI: 10.5220/0005398604040411

ton and Poore, 2000)(Feliachi and Le Guen, 2010),
that also allows to estimate the reliability of a given
system (Trammell, 1995)(Zhou et al., 2012). Sup-
ported by traditional software testing techniques, such
as functional and structural testing, the statistical test
comprises the application of statistics to the solution
of software testing problems (Sayre and Poore, 1999).

The statistical test can be seen as an excellent
complement to the existing testing techniques. It
does not need to be used as a different technique, but
as a one that aims at adding reliability to the other
ones (Poore and Trammell, 1999). In this context, sta-
tistical tests should be supported by tools that promote
all that testing process, such as MaTeLo (Feliachi and
Le Guen, 2010) and JUMBL.

According to Utting and Legeard (2007), an MBT
tool should support several kinds of criterion to give
as much control over the generated tests as possible.
Furthermore, the user should be able to combine dif-
ferent coverage criteria (Antoniol et al., 2002). How-
ever, this is not found in several MBT tools, as we
show in Section 5. Only few tools support functional
and statistical testing. Moreover, even the tools that
allow both types of analysis usually offer few com-
binations of coverage criteria. This may prevent the
user of choosing the most appropriate approach ac-
cording to the system under test (SUT).

This paper introduces TCG, a free MBT tool for
generation and selection of test cases for both func-
tional and statistical tests. This is possible because

In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 404-411

ISBN: 978-989-758-097-0

Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)

TCG - A Model-based Testing Tool for Functional and Statistical Testing

it was developed as a plugin for LoTuS 1, a graph-
ical tool for software behavior modeling that allows
the user to model both the non-probabilistic behavior
using LTS, and the probabilistic one using probabilis-
tic LTSs, which are similar to Discrete Time Markov
Chain. The main contribution of this work is twofold:
(i) providing a set of techniques for test cases gen-
eration and selection addressing both functional and
statistical tests, which permits the user to use differ-
ent criteria when analyzing distinct systems and to
exercise the same system with different criteria, and
(i) implementing criteria that have not been found in
other tools, including a new selection technique called
minimum probability of a path. We describe a case
study where TCG was used to generate and select
functional and statistical test cases for a distributed
system for health remote assistance.

The reminder of this work is organized as follows:
in Section 2 we give the background that supports this
work. Section 3 introduces the TCG tool and its main
features. A case study using the proposed tool is de-
scribed in Section 4, while a comparison with other
tools is discussed in Section 5. Finally, Section 6
brings the conclusions and future work.

2 BACKGROUND

2.1 Model-based Testing

MBT is an approach that takes software specification
as the base for the formal model creation and, from it,
enables the test case extraction. MBT is composed by
several activities, as depicted by Figure 1.

Firstly, the user takes the specification or require-
ment document and encodes that into an expected sys-
tem behaviour model which the test generation tool
can understand. This format can be either graph-
ical, like UML diagrams and finite state machine
formalisms, or textual, like the Aldebaran format
(AUT)2. The formal model represents the high-level
test objectives: it expresses the aspects of the sys-
tem behavior that the engineer wants to test. In this
work, we represent the system behaviour model as an
LTS (Keller, 1976), which is a 4-tuple L = (S, A, T,
o), Where S is a non-empty finite set of states, A is
a non-empty finite set of labels that denote the alpha-
betof L, T (S x A x S) defines the set of labelled
transitions between states, and qq is the initial state.

The next step consists of selecting the most appro-
priate test case generation (or coverage) criteria. The

Lhttp:/fjeri.larces.uece.br/lotus
Zhttp://www.inrialpes.fr/vasy/cadp/man/aldebaran.html

choice of coverage criteria determines the algorithms
that the tool uses to generate tests, how large a test
suite it generates, how long it takes to generate them,
and which parts of the model are tested (Utting and
Legeard, 2007).

There are “families” of test generation crite-
ria (Utting and Legeard, 2007), such as: (i) Structural
model coverage criteria, which deal with coverage of
the control-flow through the model, based on ideas
from control-flow through programs; (ii) Data cover-
age criteria, which deal with coverage of the input
data space of an operation or transition in the model;
(iii) Fault-model criteria, which generate test suites
that are good at detecting certain kinds of fault in the
model; (iv) Requirements-based criteria, which aim
to generate a test suite that ensures that all the in-
formal requirements are tested; (v) Explicit test case
specifications, which allow a validation engineer to
explicitly say that a certain test, or set of tests, should
be generated from the model; and (vi) Statistical test
generation methods, which use random generation
as a easy way. to generate tests that explore a wide
range of system behaviors. Currently, the proposed
tool supports criteria (i) and (vi) as generation crite-
ria, while (v) is used as test case selection criterion.

Requirements

Modeling Model Based Testing Tool

Test Case Generation

I
Test Case Selection

Selected sy
Test Cases
Test Export Test Scripts I

Figure 1. Model-based testing approach.

Test Execution
Tool

The output of the test generation is a collection
of abstract test cases, called test suite, which are se-
quences of traces from the model. Each trace repre-
sents a possible usage scenario that needs to be tested.

Before the tests cases are returned, an alternative
step is to choose a test selection heuristic. This is
useful, and sometimes necessary, since the genera-
tion technique may produce a large number of test
cases, which can turn the tester’s work impractical.
This work implements selection heuristics that reduce
the test suite size by both discarding similar test cases

405

ICEIS 2015 - 17th International Conference on Enterprise Information Systems

using a similarity degree function or letting the user
select the scenarios that should be tested.

The next step of the MBT process is to export
and concretize the abstract test cases into executable
and/or human readable formats. Often this happens
via some translation or transformation tool. Currently,
this work does not support this phase.

Finally, the test execution happens using a test ex-
ecution environment. In the case of manual execution,
the abstract test cases are turned into manual test plans
and detailed test steps for manual test execution.

2.2 Functional Tests

The functional test, also known as black box test, sees
the SUT as a closed box in which there is no knowl-
edge about how it is implemented or about its internal
behaviour. This approach has the advantage of gen-
erating test cases before the implementation is ready,
since it is based on the specification. On the other
hand, it depends on the model, i.e., the test cases gen-
erated are the ones specified in the system behavior. If
there are possible behaviors that are missing from the
software specification, then the generated test cases
will not cover all possible behaviors of the SUT (Car-
taxo et al., 2008).

2.3 Statistical Tests

Statistical tests are based on the development of a sys-
tem behavior model and, from it, the specification of a
usage model that represents it, such as the probability
of use of system functions. In (Walton et al., 1995),
the authors state that usage models can be represented
by Markov chains, and propose an eight-step method-
ology for creating those models, among which we
highlight: review the software specification; identify
the use of the software and set environmental parame-
ters; develop the structure of the usage model and see
if it conforms to the specification; develop and verify
the probability distribution for the model. It is note-
worthy that the usage model defines only functional
aspects of a software, not considering non-functional
or structural aspects of the modeled software.
According to (Poore and Trammell, 1999), among
the benefits of statistical software testing using us-
age models are: (i) automatic test generation: the use
of usage models is ideal for automatic test genera-
tion, e.g, using Markov chains for performing statis-
tical software testing; (ii) efficient testing: testing be-
come very structured and contribute to achieve more
efficient results; and (iii) quantitative management of
testing: quantitative results of the tests end up helping
in management and decision making. As limitations,

406

the authors cites the possibility of explosion of states,
if the model is very detailed, or loss of information if
the model is more abstract.

In this work we use the probabilistic LTS (PLTS)
as the formalism for modeling the probabilistic be-
havior of the SUT. A PLTS extends an LTS adding,
for each transition, a probability of occurrence be-
tween 0 and 1 such that the sum of the probabilities of
the outgoing transitions from the same state is always
1. When removing the labels of the PLTS transitions,
the resulting model is a Discrete Time Markov Chain
(DTMC). We assume that the model is a proper rep-
resentation of the system being modelled and that the
transition probabilities are correct.

3 THETCG TOOL

LoTuS is an open source lightweight tool for graph-
ical modeling of the system behavior using LTS. It
provides an interactive and simple way for the cre-
ation, composition and manipulation of LTSs. Fur-
thermore, it allows the user to associate the LTS tran-
sitions to guard conditions and probabilities of execu-
tion, which makes possible modeling PLTSs. One of
the main benefits of LoTuS is that it is extensible, pro-
viding a Java API with which a developer can create
plugins to add new features to the tool. Some plugins
have been developed and are available on the tool’s
website, such as a plugin for generation of execution
traces and a plugin for annotation of probability of oc-
currence in the model’s transitions from a file contain-
ing a bag of traces. The idea, therefore, is to permit
the users to choose the plugins that they want to work
with and to allow them to create their own plugins that
meet their needs.

TCG (Test Case Generation) is a plugin to gen-
erate and select test cases for probabilistic and non-
probabilistic models created by the user in LoTusS.
The plugin is available as a jar file such that, to be
loaded by LoTus, it needs simply to be placed in the
tool’s extensions folder. When launched, LoTusS au-
tomatically loads all plugins that are in that folder. As
LoTus, the tool is free to download 2 and use.

The plugin creates the menu item “TCG” in the
LoTuS’ main menu. From it, two sub-menus are dis-
played, Functional and Statistical, that contain the
available criteria for the generation and selection of
test cases for non-probabilistic and probabilistic mod-
els, respectively.

3http://jeri.larces.uece.br/lotus/plugins/tcg

TCG - A Model-based Testing Tool for Functional and Statistical Testing

3.1 Test Case Generation

As discussed in Section 2, TCG addresses two kinds
of test generation families: Structural model cover-
age criteria and Statistical test generation methods.
Regarding the former, Utting and Legeard (2007)
highlight four main categories: Control-flow-oriented
coverage criteria, Data-flow-oriented coverage crite-
ria, Transition-based coverage criteria, and UML-
based coverage criteria. As TCG deals with state ma-
chine based formalisms (LTS and PLTS) with no in-
formation about control flow condition (guards) or in-
put data, it provides only Transition-based coverage
criteria.

More specifically, TCG implements 8 transition-
based coverage criteria, which are:

All States: returns a set of paths in which the union
of them cover all the states of the LTS.

All Transitions: returns a set of paths in which the
union of them cover all transitions of the LTS.

All paths: performs an exhaustive search, gener-
ating a large number of paths. In order to avoid an
infinite execution, the user can set a timer as the
stop condition, meaning that the algorithm will
terminate after that time slot has passed and the
test cases produced within that period will be re-
turned.

All-loop-free paths: returns all paths that do not
contain any cycle, consequently, each generated
path will not contain any repeated state.

All-one-loop paths: returns all paths that contain
at most one cycle, consequently, each generated
path will contain at most one and only one re-
peated state.

Shortest path: returns the shortest complete path.

Random path: also known as random walk, re-
turns a number of random paths specified by the
user. For each path, the choice on which state to
go is made non-deterministically.

Probabilistic random path: similar to its non-
probabilistic counterpart, with the proviso that the
random choice is based on the probability distri-
bution of the current state’s outgoing transitions.

The result of the application of the test generation
technique is one or a set of paths, each one represent-
ing a test case. For the statistical tests, each path is
shown with its probability of occurrence, which is cal-
culated by multiplying the probability of each transi-
tion between to consecutive states in the path.

3.2 Test Case Selection

Sometimes the number of test cases generated by the
tool can be very large, which makes testing all test
cases not applicable in most practical cases. Thus, it
is necessary to reduce the set of test cases. We pay
particular attention to strategies for selecting the parts
(functionalities) of the software on which the testing
must concentrate in order to avoid loss of time and
effort by testing all possible test cases.

TCG provides 5 techniques for test case selection:
Test purpose, Similarity of Paths, Weight similarity of
Paths, Most Probable Path and Minimum Probability
of Path.

3.2.1 Test Purpose

A test purpose is a specific objective (or property) that
the tester would like to test, and can be seen as a spec-
ification of a test case. Test purposes can be used to
select test cases. This approach is also referred to as
“user guided” test selection. The test purposes ap-
proach was formally elaborated by (de Vries, 2001).

The notation to express test purposes may be the
same as the notation used for the model, such as a
statechart or an LTS, or it may be a different one
(e.g., in UML, a behavior model based on class dia-
grams and state machines, and explicit test case spec-
ifications formalized with message sequence chart di-
agrams) (Utting and Legeard, 2007). In TCG, the test
purpose follows the same approach used in (Cartaxo
et al., 2008), which consists of using regular expres-
sions composed by a sequence of model labels, possi-
bly with a * among the labels. In that case, the * rep-
resents any transition label or simply no label. The
sequence can end either with the word “ACCEPT”,
which means that all the test cases that satisfy the test
purpose are desirable, or “REJECT”, which means
that we want the counterpart, i.e., all the test cases
that do not satisfy the test purpose.

To specify the test purpose, the user must obey
to one of the following rules: (i)*&ACCEPT: returns
all possible paths; (ii)*a*&ACCEPT: returns all paths
that have the label a; (iii) *a&ACCEPT: returns all
paths that end with the label a; (iv) *a*b&ACCEPT:
returns all paths that have the label a and end with la-
bel b; *a,b&ACCEPT: returns all paths that end with
label a followed by label b; (vi) a*&ACCEPT: returns
all paths that start with label a. Although the rules
presented here consider only one or two labels, test
purpose rules for three or more labels can be easily
derived from those rules.

The same formation rules are valid for the se-
guences ending with “REJECT”. However, the re-
turned test cases are exactly the ones that do not sat-

407

ICEIS 2015 - 17th International Conference on Enterprise Information Systems

isfy the same sequence ending with “ACCEPT”. For
instance, the sequence *&REJECT returns no paths,
while the sequence *a*&REJECT returns all paths
that do not contain the label a.

3.2.2 Similarity of Paths

The idea is that whenever full coverage on model-
based test case generation is unfeasible and/or test
cases are mostly redundant, a similarity function
can be automatically applied to discard similar test
cases, keeping the most representative ones that
still provides an adequate coverage of the functional
model (Cartaxo et al., 2011). Given an LTS and a path
coverage percentage as goal, the strategy reduces the
size of the general test suite (according to the percent-
age), assuring that the remaining test cases are the less
similar and covers the LTS transitions as much as pos-
sible.

The similarity degree between each pair of test
cases (model paths) is defined by the number of equal
actions that both paths have. This similarity degree
indicates how close the test cases are. The choice is
made by finding the smallest test case, i.e, the one
with the smallest number of actions. In case both test
cases have the same length, then the tool chooses one
of them randomly.

3.2.3 Weighted Similarity of Paths

This approach is similar to the Similarity of Paths,
with the proviso that the path probability is taken
into account for the selection of the remaining test
cases (Bertolino et al., 2008). The main difference
is in the calculation of the similarity degree.
Weighted Similarity of Paths foresees the test
cases selection by prioritizing accordingly with the
probability of each test case. The idea is that when
choosing between two similar test cases to be dis-
carded, the one that has a greater probability of oc-
currence is kept. In addition, if the probabilities of
the two test cases are the same, then the algorithm
follows the Similarity of Path’s steps. Therefore, we
aim at testing suites that have the most different test
cases and yet these are also the most important ones.

3.2.4 Remaining Techniques

The two other selection techniques are the most prob-
able paths and the minimum probability of a path.
The former consists of showing the N most probable
paths, where N is informed by the user (the default
value is 1, which means that only the most probable
path is returned). The latter allows the user to inform
the minimum occurrence probability expected for a

408

test case. The tool returns only the test cases that sat-
isfy that boundary. This selection technique comple-
ments the previous one and helps the user prioritize
the most important test cases. Although intuitive, the
minimum probability of a path has not been found in
other MBT statistical testing tools.

4 CASE STUDY

The case study has been carried out with an applica-
tion called TeleAssistance (TA), a distributed system
for remote assistance of patients (Epifani et al., 2009).
We set up two scenarios: in the first one, we con-
sidered the non-probabilistic model, while the second
one we assumed that the user annotated the model
with execution probabilities, turning it into a PLTS.

The TeleAssistance offers three choices: sending
the patient’s vital parameters, sending a panic alarm
by pressing a button and stopping the application.
The data of the first message is forwarded to a Med-
ical Laboratory service (LAB) to be analyzed. The
LAB replies by sending one of the following results:
change drug, change doses or send an alarm. The
latter message triggers the intervention of a First-Aid
Squad (FAS) whose task is to attend to the patient at
home in case of emergency. When the patient presses
the panic button, the application also generates an
alarm sent to the FAS. Finally, the patient may decide
to stop the TA service. TA can fail in the following
situations: sending an alarm to the FAS, receiving the
data analysis from the LAB, or sending a change dose
or change drug notification to the patient. In all cases,
the system goes to a final state indicating that a failure
has occurred.

Figure 2(a) shows an excerpt of the LoTuS” main
screen. At the top there is the TA behaviour model,
and at the bottom the TCG main panel, from which
the user can select the test case generation and selec-
tion techniques. In that example, the user selected
the All-one-loop paths generator and no selector tech-
nique. Figure 2(b) depicts the result of the application
of the technique previously chosen. Note that when a
test case is selected, LoTusS highlights the correspond-
ing path in the model.

4.1 Scenario 1: Using a
Non-probabilistic Model

The first analysis consisted of generating the abstract
test cases using the main coverage criteria. Table 1
shows the result. As expected, the All Paths crite-
rion generated the greatest number of test cases (760),

TCG - A Model-based Testing Tool for Functional and Statistical Testing

attendopA pButtonMsg a failedAgalyses
send@larm
alParamMsg analyseData o changeDrug falled(hangeDm
e ‘ failedChangéDoses
grangeDoses
@)

Stop Conditions:

¥ Al One Loop Paths [RRRIES Time Limit ~ Time (secs)

Gen:
Test Purpose: | *&ACCEPT

Submit

(a)

0,1,3,4,6,1,78,10, 11
0,1,3,4,617891
017891345
017,834,612

Total: 21 Generator: All One Loop Paths Selector: None

Configuration | Results X

States Test Cases #Actions ¥
start, pButtonMsg, alarm, callFAS, attendToPA, vitalParamMsg, analyseD.. 9
start, pButtonMsg, alarm, callFAS, attendToPA, vitalParamMsg, analyseD... 9

2t vitalParamMsg, analyseData, changeDrug, notifyPA, pB

start, vitalParamMsg, analyseDats, sendAlarm, alarm, callFAS, attendToP... 8

Export to CSV

(b)

Figure 2: (a)LoTuS main screen and TA behaviour model and (b)Result of the application of All-one-loop path generator.

Table 1: Comparison among the generation criteria.

Criterion #test cases
All Paths 760
All One-loop paths 21
All Transitions 9
All Free-loop paths 6
All states 4

since it is an exhaustive algorithm, followed by All-
one-loop paths (21), All transitions (9), All-free-loop
paths (6), and All states (4).

The second analysis aimed at showing the appli-
cation of different selection techniques. Then, to il-
lustrate the results, let us assume again that the user
chose the All-one-loop paths generation criteria.

For non-probabilistic models, two selection tech-
niques are available: similarity of paths and test pur-
poses. To exercise the former, we considered 3 sce-
narios, each one with a different similarity degree.
After applying a path coverage of 25%, 50%, and
75%, TCG reduced the original number test cases to
6, 11, and 16, respectively.

Although the similarity of paths can considerably
decrease the test suite size, the user cannot select the
situations that he/she desires to test. In that case, the
test purpose is more adequate. For instance, suppos-
ing the user desires to select only the test case where
a successful termination of the TA happens (the sys-
tem performs the stopMsg message). To do this, the
search string *stopMsg&ACCEPT is used. Note that
to use the test purpose, it is necessary first to generate
the test cases using a particular criteria. This influ-
ences the result of the test purpose.

Applying that test purpose to the original test suite
generated by All-one-loop paths criterion, it resulted
in 5 test cases. If the user, on the other hand, chooses
the All Path coverage criterion and subsequently ap-
plies that test purpose, the resulting test suite size
jumped to 65 test cases.

Therefore, the choice on which generation algo-
rithm to use impacts the number of test cases. The
user should know the pros and cons of each criterion.
For instance, using All Paths may be very expensive
due to its large result set, but it covers practically all
possible system behaviours. Each selection technique
also affects the test case size. So, for instance, if the
user chooses a very low degree of similarity, the num-
ber of test cases tend to be very small, which may not
be enough to test the main software features.

4.2 Scenario 2: Using a Probabilistic
Model

In this scenario, we use the same probabilistic model
of the TA system used in (Epifani et al., 2009), which
represents in the model the probability of execution of
ordinary transitions and the probability of failure for
failure transitions. As the generation techniques are
the same used in the non-probabilistic counterpart, we
focused on applying selection criteria that are specific
of probabilistic models: the weight similarity of paths
and minimum probability of path.

Considering again that the user has already gener-
ated the test cases using the All-one-loop paths tech-
nique, he/she desired to apply the weight similarity
of paths to reduce the test suite size. After applying
the same path coverage used in the Similarity of Paths

409

ICEIS 2015 - 17th International Conference on Enterprise Information Systems

TCG X X X X X X X
MaTelLo X X
JUMBL X X X
fMBT X X X
Conformiq X
Designer
Spec X X X
Explorer
Figure 3: Comparison regarding generation criteria.
TCG X X X X
MaTelLo
JUMBL
fMBT X
Conformiq
Designer
Spec Explorer

Figure 4: Comparison regarding selection criteria.

example (25%, 50%, and 75%), we obtained the test
suites with sizes 6, 13, and 19, respectively. Although
the results seems equal, they are indeed different. The
probabilistic approach selected some test cases that
were removed in the previous one, since they had a
greater probability of execution then its similar path.
This is the case of, for instance, the path 0, 1, 3, 4, 6,
1, 2 (probability 4.78%).

In the second analysis, we used the minimum
probability of path technique, in which the user can
select only the test cases that satisfy the minimum
probability informed by him/her. Supposing that the
user is interested in testing firstly the scenarios that
have probability of occurrence of at least 10%, TCG
returns only one test case, which is the situation where
the TA user stars and stops the device, without inter-
acting with it (path 0,1,2 - probability 13.72%. The
next most probable path is the one with probability
4,78% mentioned before. This occurred because the
probability of the test cases are low, since the proba-
bility of the last action of each test case is very small
(0.14 for the success transition and 0.04, 0.02, and
0.01 for the failure transitions).

5 RELATED WORK

There are several papers in the area (Shirole and Ku-
mar, 2013)(Shafique and Labiche, 2013)(Aichernig
et al., 2008) that show systematic reviews or surveys
describing various approaches, techniques and MBT

410

tools, comparing them using varied criteria. In this
section we will focus the discussion on work closer to
ours that also propose tools for generation and selec-
tion of functional and statistical test cases.

We have selected a few tools that deal with both
types of models. These tools are shown in Figures 3
and 4. Note that they are the ones that could be down-
loaded and tested.

Figure 3 shows a comparison table among TCG
and the other tools regarding the generation tech-
niques. All transition and (probabilistic) random path
are the most supported criteria and that are provided
by all tools, except Conformig Designer* . On the
other hand, that tool is the only one which implements
the All path criterion. In addition, Spec Explorer® and
JUMBLE also provide criteria that are not supported
by the other tools, namely All States and Shortest
path, respectively. TCG is the only one which im-
plements all discussed generation criteria.

Figure 4 complements the comparison regard-
ing the selection techniques. Fours implement only
one technique: MaTeLo (Most probable path) (Feli-
achi and Le Guen, 2010) and JUMBL, fMBT’, Con-
formigDesigner (Test purpose). Spec Explorer pro-
vides none of the selection techniques. One more
time, TCG is the only one which supports the user

“4http:/Avww.conformig.com/products/
conformig-designer/
Shttp://research.microsoft.com/en-us/projects/
specexplorer/
Shttp://sqrl.eecs.utk.edu/esp/jumbl.html
https://01.org/fmbt

TCG - A Model-based Testing Tool for Functional and Statistical Testing

with all discussed selection techniques, being this a
great benefit of the tool.

6 CONCLUSION

This paper introduced TCG, an MBT tool for func-
tional and statistical tests. It uses as input both LTS
and probabilistic LTS models and provides 8 classic
test case generation techniques along with 5 selection
heuristics. The main contributions are the implemen-
tation of a variety of techniques in only one tool, in-
cluding ones that have not been implemented in sim-
ilar tools, and the introduction of a new selection cri-
teria, the minimum probability of path. We showed
a case study where the tool was used to generate and
select test suites for a distributed system.

Currently we are increasing the tool features by
allowing the automatically generation of test scripts
from the produced test suites. We are also working
on defining and implementing a probabilistic criteria
to compare the whole test suite, and not only individ-
ual test cases. As future work, we intend to use the
tool in other contexts, particularly real cases from the
industry, to assess its usability and applicability, and
implement some prioritization techniques.

REFERENCES

Aichernig, B., Krenn, W., Eriksson, H., and Vinter, J.
(2008). D 1.2 - state of the art survey - part a: Model-
based test case generation. Technical report, AIT Aus-
trian Institute of Technology GmbH.

Antoniol, G., Briand, L., Di Penta, M., and Labiche, Y.
(2002). A case study using the round-trip strategy for
state-based class testing. In Software Reliability Engi-
neering, 2002. ISSRE 2003. Proceedings. 13th Inter-
national Symposium on, pages 269-279.

Beizer, B. (1995). Black-box Testing: Techniques for Func-
tional Testing of Software and Systems. John Wiley &
Sons, Inc., New York, NY, USA.

Bertolino, A., Cartaxo, E., Machado, P., and Marchetti, E.
(2008). Weighting influence of user behavior in soft-
ware validation. In Database and Expert Systems Ap-
plication, 2008. DEXA ’08. 19th International Work-
shop on, pages 495-500.

Binder, R. V. (1999). Testing Object-oriented Systems:
Models, Patterns, and Tools. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

Cartaxo, E. G., Andrade, W. L., Neto, F. G. O., and
Machado, P. D. L. (2008). Lts-bt: A tool to gener-
ate and select functional test cases for embedded sys-
tems. In Proceedings of the 2008 ACM Symposium
on Applied Computing, SAC ’08, pages 1540-1544.
ACM.

Cartaxo, E. G., Machado, P. D. L., and Neto, F. G. O.
(2011). On the use of a similarity function for test

case selection in the context of model-based testing.
Softw. Test. Verif. Reliab., 21(2):75-100.

Dalal, S. R, Jain, A., Karunanithi, N., Leaton, J. M., Lott,
C. M,, Patton, G. C., and Horowitz, B. M. (1999).
Model-based testing in practice. In Proceedings of the
21st International Conference on Software Engineer-
ing, ICSE ’99, pages 285-294. ACM.

de Vries, R. G. (2001). In Tretmans, G. J. and Brinksma,
H., editors, Formal Approaches to Testing of Soft-
ware 2001 (FATES’01), Aarhus, Denmark, volume
NS-01-4 of BRICS Notes Series, pages 61-76, Aarhus,
Denkmark.

Epifani, 1., Ghezzi, C., Mirandola, R., and Tamburrelli,
G. (2009). Model evolution by run-time adaptation.
In ICSE ’09: Proceedings of the 31st International
Conference on Software Engineering, pages 111-121,
Vancouver, Canada. ACM.

Feliachi, A. and Le Guen, H. (2010). Generating transi-
tion probabilities for automatic model-based test gen-
eration. In Software Testing, Verification and Valida-
tion (ICST), 2010 Third International Conference on,
pages 99-102.

Keller, R. M. (1976). Formal verification of parallel pro-
grams. Commun. ACM, 19:371-384.

Poore, J. and Trammell, C. (1999). Application of statisti-
cal science to testing and evaluating software intensive
systems. In Science and Engineering for Software De-
velopment: A Recognition of Harlan D. Mills’ Legacy,
1999. Proceedings, pages 40-57.

Sayre, K. and Poore, J. H. (1999). Partition testing with us-
age models. In Proceedings of the Science and Engi-
neering for Software Development: A Recognition of
Harlan D. Mills’ Legacy, SESD ’99, pages 24—. IEEE
Computer Society.

Shafique, M. and Labiche, Y. (2013). A systematic review
of state-based test tools. International Journal on Soft-
ware Tools for Technology Transfer, pages 1-18.

Shirole, M. and Kumar, R. (2013). Uml behavioral model
based test case generation: A survey. SIGSOFT Softw.
Eng. Notes, 38(4):1-13.

Trammell, C. (1995). Quantifying the reliability of soft-
ware: Statistical testing based on a usage model. In
Proceedings of the 2Nd IEEE Software Engineering
Standards Symposium, ISESS ’95, pages 208—, Wash-
ington, DC, USA. IEEE Computer Society.

Utting, M. and Legeard, B. (2007). Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

Walton, G. H. and Poore, J. H. (2000). Generating transition
probabilities to support model-based software testing.
Softw. Pract. Exper., 30(10):1095-1106.

Walton, G. H., Poore, J. H., and Trammell, C. J. (1995).
Statistical testing of software based on a usage model.
Softw. Pract. Exper., 25(1):97-108.

Weissleder, S. and Schlingloff, H. (2014). An evalu-
ation of model-based testing in embedded applica-
tions. In Software Testing, Verification and Validation
(ICST), 2014 IEEE Seventh International Conference
on, pages 223-232.

Zhou, K., Wang, X., Hou, G., and Jie Wang, S. A.
(2012). Software reliability test based on markov us-
age model. Journal of Software, 7(9):2061-2068.

411

