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Abstract: Software testing which is carried out for the elimination of the software defects is one of the significant 
activities to achieve software quality. However, testing each fragment of the software is impossible and 
defects still occur even after several detailed test activities. Therefore, there is a need for effective methods 
to detect bugs in software. It is possible to detect faulty portions of the code earlier by examining the 
characteristics of the code. Serving this purpose, bug prediction activities help to detect the presence of 
defects as early as possible in an automated fashion. As a part of the ongoing thesis study, an effective 
model is aimed to be developed in order to predict software entities having bugs. A public bug database and 
ATM monitoring software source code are used for the creation of the model and to find the performance of 
the study. 

1 INTRODUCTION 

It is natural that all software has a certain amount of 
defects. The important thing is to detect and 
eliminate these defects. Test activities help to 
achieve this goal, but even after testing it cannot be 
said that the software is totally defect free. It is also 
impossible to check all combinations of inputs, 
outputs and conditions during the test (Khannur A., 
2014). Finding and fixing a defect after delivery is 
often more expensive up to 100 times. (Boehm and 
Basili, 2001) In order to find the defects that cannot 
be detected during test activities and detect these 
defects as early as possible, an effective method 
should be devised. 

Considering the nature of the software 
development process, bugs are always possible and 
hard to detect. The time and developers are also 
limited and there is not much resource to find bugs 
and fix them. Thus, bug prediction has been an area 
of interest for a long time and several academic 
studies have been performed on this area of research. 

Throughout this paper, we use the terms defect 
and bug synonymously. A fault or defect is a flaw in 
the software, which causes it to behave incorrectly. 
Most bug prediction models reports which software 
entities are likely to contain faults and which are 
likely to be defect free. Those models are referred as 

classification models (Weyuker, E. J. et. al., 2010). 
The purpose of this study is to find faulty 

software files/classes by examining the specific 
metrics of the code and evaluating them with logistic 
regression analysis in order to form a model. 

The developed logistic regression model is 
wanted to be simple and easy to be used in real 
software development projects. After the model is 
formed, it is used to detect bugs in the source code 
of an Automated Teller Machine (ATM) monitoring 
system project, which is actively used and still being 
developed according to the customer needs. This 
monitoring system is selected instead of larger and 
more elaborate software, because of the owner 
company’s demands and support for such a case 
study. 

This paper is organized as follows. In section II, 
we introduce some bug prediction approaches which 
are related to our study. Section III is about data 
analysis techniques, particularly about logistic 
regression. In section IV, the data set used to create 
the logistic regression model is introduced. In 
Section V, how logistic regression model is created 
is explained. Section VI is about the use of proposed 
model in real software development project data and 
demonstrates the performance of the developed 
logistic regression model. Finally, Section VII 
concludes the paper with some remarks and notes 
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about possible future works. 

2 BUG PREDICTION 
APPROACHES 

Different bug prediction approaches propose 
different kind of methods to solve this problem. 
Some of the many prediction techniques related to 
our study are source code metrics, process metrics 
and previous defects. 

2.1 Source Code Metrics 

Metrics like cohesion, coupling, complexity, lines of 
code and object-oriented metrics are used as an 
instrument to measure source code properties to 
promote software quality. Most of the bug prediction 
approaches utilizes the source code metrics. CK 
metrics (Chidamber and Kemerer, 1994) and object-
oriented metrics are some of the well-known source 
code metrics. Some of these metrics used in this 
study, are given in Table 1. 

Table 1: CK & OO Metrics Used in this study. 

Name Description 

wmc Weighted Method Count 

dit Depth of Inheritance Tree 

lcom Lack of Cohesion in Methods 

noa Number of attributes 

nom Number of methods 

2.2 Process Metrics 

This approach states that the changes in the source 
code leads to bugs (Moser et al., 2008). The metrics 
such as number of revisions, number of authors who 
make changes, average lines added/removed in a 
revision are used in process metrics.  

Table 2: Metrics used by Moser et al. 

Name Description 

NR Number of revisions 

NFIX Number of times a file has been a part of fix 

NAUTH Number of authors who has previously 
changed the file 

LINES Number of lines added or removed 
 

The changes in the source code are mostly analyzed 
from a software configuration management (SCM) 
system. For instance, NFIX metric represents the 

number of bug fixes performed on the file, which is 
extracted from the commit comments of a versioning 
system like SVN or CVS. 

Some of the process metrics related to our study 
is given in Table 2. 

2.3 Previous Defects 

By inspecting previous defects in a source code 
fragment, future defects might be predicted. 
Zimmermann proposed that the number of past bug 
fixes correlates with the number of future fixes 
(Zimmermann T. et al., 2007).   

In our study, we focused on whether or not the 
class file has a previous bug or not, instead of the 
exact number of bug fixes in the class file. That’s 
because, we realized that a bug fix might be 
committed in several different commit steps and in 
such cases the number might be misleading. As 
given in Table 2, the “BUGS UNTIL” metric 
denotes if the file had a past defect and the “BUGS 
AFTER” metric denotes if the file has a bug after the 
inspected SVN version.   

3 DATA ANALYSIS 

Data analysis is one of the many techniques which 
can be used for defect prediction. As a part of this 
study, regression analysis and specifically logistic 
regression analysis is used to create a model to 
estimate the relationship among source code metrics 
and bug probability. 

3.1 Linear Regression Analysis 

Regression analysis is used for predicting values or 
assessing the effects of one or more response 
variables from a collection of predictor variable 
values. This technique shows the casual relationship 
between events and factors (Johnson, R. A. et. al., 
2007). One can observe the casual relationship in 
several incidents in life. For example, the market 
value of a house might be explained with living area 
in square feet, location and so on. 

The classical linear regression model with a 
single response variable Y with predictor variables zi 
and a random error ε takes the following form: 

ܻ ൌ ଴ߚ ൅ ଵݖଵߚ ൅ …൅	ߚ௥ݖ௥ ൅ 	ߝ	 (1)

The response variable Y is also called dependent 
variable, and zi’s are independent variables. 
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Table 3: A sample from the bug prediction data set. 

File / Class name   wmc   dit   lcom noa nom … BUGS UNTIL BUGS AFTER 

IndexBinaryFolder   20.0   2   15   1   6.0  … 1 0 

CachedIndexEntry   1.0   1   0   2   1.0  … 0 0 

ASTNode   176.0   1   190   131   20.0 … 1 1 

MemberTypeBinding   12.0   6   10   0   5.0  … 1 0 

CodeSnippetParser   115.0   2   820   7   41.0 … 1 0 

… … … … … … … … … 
 

3.2 Logistic Regression Analysis 

Different from linear regression, logistic regression 
analysis is a classification technique which is not 
based on all quantitative variables but some or all of 
the variables are qualitative. In its simplest setting, 
the response variable Y in logistic regression model 
is restricted to two values, which can be coded as 0 
and 1 (H. Okamura et. al., 2010). General form of 
the logistic regression model is as follows: 

log
ሻݔሺ݌

1 െ ሻݔሺ݌
ൌ ଴ߚ ൅ .	ݔ	 (2) ߚ

The probability of belonging to a category is found 
using the following equation: 

;	ݔሺ݌ ܾ, ሻݓ ൌ 	
݁ఉబା	௫	.ఉ

1 ൅	݁ఉబା	௫	.ఉ
 (3)

The equations in (2) and (3), is used to form a 
logistic regression model from the selected data set. 

4 DATA SET 

The bug prediction dataset by D'Ambros et al. is 
used in our study. The dataset contains data about 
some popular java-based software systems, namely, 
Eclipse JDT Core (http://www.eclipse.org/jdt/core/), 
Eclipse PDE UI (https://eclipse.org/pde/pde-ui/), 
Eclipse OSGI Equinox Framework 
(http://eclipse.org/equinox/framework/), Apache 
Lucene (http://lucene.apache.org/) and Eclipse 
Mylyn (http://eclipse.org/mylyn/). The database 
contains metric values of 5371 java class files 
(D'Ambros et. al., 2010). 

The dataset includes the following pieces of 
information for each class: 
 Values of 17 source code metrics (CK + 11 

object oriented metrics) 
 Values of 15 metrics computed from CVS 

change log data 
 Categorized (with severity and priority) post-

release defect counts 

Only the metrics suitable to the ATM Monitoring 
software and can easily be retrieved from its source 
code are used in our study but all the samples are 
used to create a logistic regression model to predict 
whether a class has a defect or not. A small sample 
of data is given at Table 3. 

5 APPLICATION 

The data set explained in section IV is used in 
logistic regression analysis. 10% of the data are 
spared for tests, 90% of them are used in the 
analysis.  

Table 4: Logistic Regression Model Calculations. 

Estimate Std. Error Z Value Pr(>|z|)

(Int.) -3.4680919 0.2484656 -13.9580000 < 2e-16 *** 

WMC 0.0062890 0.0011536 5.4510000 5.00e-08 *** 

DIT -0.0702946 0.0347372 -2.0240000 0.04301 * 

LCOM -0.0001523 0.0000478 -3.1860000 0.00144 ** 

NOM 0.0248885 0.0056447 4.4090000 1.04e-05 *** 

NOA 0.0225958 0.0039736 5.6860000 1.30e-08 *** 

BUG 1.4098361 0.2428095 5.8060000 6.39e-09 *** 

Significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Error ~ WMC+DIT+LCOM+NOM+NOA+BUG 

 

Logistic regression model is created to find the 
probability of the existence of a defect/bug in a class 
file. Variables and their estimates, along with 
standard error and significance of the model are 
given in Table 4.  Calculations have been performed 
on the statistical computing tool R 
(https://www.rstudio.com/). 

The problem statement of this study is that, given 
a version X of a software system S, to find for each 
class of X, the presence of defects reported after 
version X until a future version Y. 

Logistic regression model equation obtained as a 
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result of calculations on the statistical computing 
tool R-studio is as follows: 

ܻ ൌ ሻ݌ሺݐ݅݃݋݈	 ൌ 	െ3.4680919	 ൅

	0.0062890 ∗ –	ܥܯܹ 	0.0702946 ∗ 	ܶܫܦ െ
0.0001523 ∗ 	ܯܱܥܮ ൅ 	0.0248885 ∗
	ܯܱܰ ൅ 	0.0225958 ∗ 	ܣܱܰ ൅

ݔ1.4098361	 ∗   ܩܷܤ

(4)

By using the value Y in equation 4, one can 
calculate the probability of a file/class to be 
classified as faulty as in equation 5. 

݌ ൌ
expሺYሻ

1 ൅ exp	ሺYሻ
 (5)

The logistic regression model here is validated by 
the spared 10% test data and the success rate of the 
model is calculated as 84.642%, as given in Table 5.  

Table 5: Logistic Regression Model Test Results. 

Sample 573 

True Classification 485 

False Classification 88 

Success Rate 84.642% 

6 USE OF THE MODEL 

The next step in our study is to use the logistic 
model in real software development project data, 
which is the source code from the ATM Monitoring 
Software, developed in Provus Bilisim Hizmetleri in 
Istanbul, Turkey. In order to use the model in a 
private source code base, the metrics compatible 
with the model must be generated and the success of 
the model must be validated. 

6.1 ATM Monitoring Software  

ATM Monitoring System is complex and online 
software of several different modules and 
components, which gives service to different banks 
in Turkey, Albania and Cyprus. Software code has 
been developed using Java based technologies since 
2004 and it consists of more than 250.000 lines of 
code. In our study, only File Distribution Project 
component source codes are used. 

6.2 Data Collection Process 

Data collection process is performed by inspecting 
source codes kept in an internal SVN 
(https://subversion.apache.org/), a SCM repository. 

In order to compute the metric values for different 
Java classes, Eclipse IDE (http://www.eclipse.org), 
Google Code Pro Analytix Tool 
(https://developers.google.com/java-dev-
tools/codepro/) and Eclipse Metrics Plugin 
(http://metrics2.sourceforge.net) has been used.  

Figure 1 summarizes how the metric values are 
gathered. SVN repositories (SCM) keep the current 
status of project files and also commit transaction 
information. A commit transaction is a set of files 
which were modified, deleted, or added to 
repository. These transactions also include version 
number, date, time, developer and the comment. 

As the nature of Java programs, a source file 
might consists of one main java class and several 
java inner classes. Only java main classes are 
considered as a part of this study. 

 

 

Figure 1: Metric Data Collection. 

6.2.1 Calculation of Metric Values 

Source code retrieved from SCM is analyzed by 
Eclipse Metrics plug-in and Google Code Pro 
Analytix tool. These tools output metric values for 
each individual java class as separate xml files. 
Additional metric values such as previous defects 
and change metrics are directly gathered from source 
files in SVN repository. To access the SVN 
repository and parse the commit transactions and 
their comments, SVN Kit library (svnkit.com) has 
been used. 

As given in Figure 2, a specific SCM version has 
been fixed as the prediction version in order to 
calculate metric values for source code. Current 
version has also been fixed as validation version to 
test the performance of the bug prediction 
calculations. 

In order to parse and convert this gathered 
information as a usable format, a metric calculation 
program has been developed. The xml files which 
include the metric values and  additional  source  file 
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Figure 2: Code Retrieval Approach. 

information is input by this program and metric 
values suitable to be used in logistic regression 
model equation given in (4) is generated. 

6.2.2 Linking Bugs to Classes 

As Zimmermann (Zimmermann T. et. al, 2007), 
Fischer (Fischer M. et. al, 2003) and Bird (Bird et. 
al., 2009) studied linking bugs to versioning system 
files, we performed a similar approach and detected 
bugs by some keywords from SVN commit 
comments. 

In order to find if the java class had a defect 
which was fixed afterwards, developer comments in 
SVN commit transactions have been parsed and 
checked against some patterns to mark the change as 
a part of bug fix. To be recognized as a bug fix, the 
commit comment must include some special 
keywords, such as “fix”, “bug” and some words in 
Turkish Language specifying a bug fixing activity. 

Some additional metrics such as the number of 
developers that had previously changed the java file 
is also retrieved by checking SVM commit 
transactions. 

6.3 Performance of the Model  

After calculating the metric values required for the 
logistic regression equation, probability of a class 
having a defect is predicted. Predicted percentage 
values more than 50% are accepted that it means to 
have defect in the inspected class.  

In order to validate the predictions, SVN 
transactions after the prediction version are 

controlled and it is checked that whether or not any 
bug fixed or defect detected. This information is 
specified with the “BUGS” variable. 

A portion of the real software data with the 
required metric values, the prediction and validation 
result (bugs) are shown in Table 7. 

Using the logistic model equations given in 
Equation 4 & 5, the probability of java classes in 
ATM Monitoring Software having defect is 
calculated and this results are validated as explained 
above. The results, as shown in Table 6, show that 
the generated logistic regression model is 66.6% 
successful in the real software data.  

Table 6: Performance Results of the model. 

Sample 48 

True Classification 32 

False Classification 16 

Success Rate 66.6% 

7 CONCLUSIONS 

In this study, a logistic regression model is generated 
by using the bug prediction dataset by D'Ambros et 
al., which consists of 5371 samples from 5 different 
popular open-source projects.  

To use this model in a selected real software 
development project, the required metric values are 
obtained by analyzing the project source code and a 
small database of metric values is formed. An ATM 
Monitoring System which belongs to the company 
Provus who supports this study is selected for this 
study. 

Then, the model is applied to the files in project 
source code and bug probabilities are predicted. 
Finally, these results are validated by checking the 
comments in SCM commit transactions after the 
selected prediction version. The results show a 66% 
success rate in the selected project source code. 

Table 7: Sample Data from Real Software Data. 

File/Class dit wmc lcom noa nom BUGS UNTIL Prediction BUGS AFTER

PAYSFDSHelper.java  1 17 0 1 5 1 13.30% 0 

PAYSFDSScheduler.java  1 6 0 2 4 0 3.37% 0 

FDSMonitor.java  0 5 0 0 5 0 3.52% 0 

FDSJobExecutor.java  0 1 0 0 1 0 3.12% 0 

ObjectDefinition.java  1 19 0.571 3 7 0 4.00% 1 

RunnerComparator.java  1 9 0 0 1 0 3.06% 0 
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In future, we plan to create some different 
logistic regression models and compare them with 
one another and classify their strength and 
weaknesses. Furthermore, we will examine more 
samples from real software data and form a larger 
bug database, which might be published online. 

ACKNOWLEDGEMENTS 

Authors would like to thank the company of Provus 
Bilisim Hizmetleri in Istanbul, Turkey. The source 
code of the ATM Monitoring system which is used 
in this study belongs to Provus and Provus may not 
agree with all of the interpretations/conclusions of 
this paper. 

REFERENCES 

Weyuker, E. J.; Bell, R. M.; Ostrand, T. J., "We're Finding 
Most of the Bugs, but What are We Missing?," 
Software Testing, Verification and Validation (ICST), 
2010 Third International Conference on , vol., no., 
pp.313,322, 6-10 April 2010. 

Khannur, A., Structured Software Testing: The Discipline 
of Discovering, Partridge Publishing, 2014, pages 22-
23. 

Boehm, B., Basili V. R., “Software Defect Reduction Top 
10 List”, IEEE Computer, Vol. 34, No. 1, Jan 2001, 
pages 135-137. 

Shyam R. Chidamber and Chris F. Kemerer. A metrics 
suite for object oriented design. IEEE Trans. Software 
Eng., 20(6):476-493, 1994. 

Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A 
comparative analysis of the efficiency of change 
metrics and static code attributes for defect prediction. 
In Proceedings of ICSE 2008, pages 181-190, 2008. 

Thomas Zimmermann, Rahul Premraj, and Andreas 
Zeller. Predicting defects for eclipse. In Proceedings 
of PROMISE 2007, page 76. IEEE CS, 2007. 

H. Okamura, Y. Etani and T. Dohi, "A multi-factor 
software reliability model based on logistic 
regression," Proceedings of 21st IEEE International 
Symposium on Software Reliability Engineering 
(ISSRE'10), pp. 31-40, IEEE CPS (2010). 

Kuwa, D.; Dohi, T., "Generalized Logit Regression-Based 
Software Reliability Modeling with Metrics Data," 
Computer Software and Applications Conference 
(COMPSAC), 2013 IEEE 37th Annual , vol., no., 
pp.246,255, 22-26 July 2013. 

Johnson, R. A., Wichern D. W., Applied Multivariate 
Statistical Analysis, Pearson, 6th Edition, April 2, 
2007. 

Marco D'Ambros, Michele Lanza, and Romain Robbes. 
An extensive comparison of bug prediction 
approaches. In MSR '10: Proceedings of the 7th 

International Working Conference on Mining 
Software Repositories, s. 31-41, 2010. 

Michael Fischer, Martin Pinzger, and Harald Gall. 
Populating a release history database from version 
control and bug tracking systems. In Proceedings of 
ICSM 2003, pages 23-32. IEEE CS, 2003.  

Christian Bird, Adrian Bachmann, Eirik Aune, John 
Duffy, Abraham Bernstein, Vladimir Filkov, and 
Premkumar Devanbu. Fair and balanced?: bias in bug-
fix datasets. In Proceedings of ESEC/FSE 2009, pages 
121-130, New York, NY, USA, 2009. ACM. 

 

Bug�Prediction�for�an�ATM�Monitoring�Software�-�Use�of�Logistic�Regression�Analysis�for�Bug�Prediction

387


