
Bug Prediction for an ATM Monitoring Software
Use of Logistic Regression Analysis for Bug Prediction

Ozkan Sari1,2 and Oya Kalipsiz2
1Department of Computer Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey

2ATM Software Development Department, Provus Bilisim Hizmetleri, Sariyer, Istanbul, Turkey

Keywords: Software Metrics and Measurement, Software Engineering, Bug Prediction, Logistic Regression Analysis.

Abstract: Software testing which is carried out for the elimination of the software defects is one of the significant
activities to achieve software quality. However, testing each fragment of the software is impossible and
defects still occur even after several detailed test activities. Therefore, there is a need for effective methods
to detect bugs in software. It is possible to detect faulty portions of the code earlier by examining the
characteristics of the code. Serving this purpose, bug prediction activities help to detect the presence of
defects as early as possible in an automated fashion. As a part of the ongoing thesis study, an effective
model is aimed to be developed in order to predict software entities having bugs. A public bug database and
ATM monitoring software source code are used for the creation of the model and to find the performance of
the study.

1 INTRODUCTION

It is natural that all software has a certain amount of
defects. The important thing is to detect and
eliminate these defects. Test activities help to
achieve this goal, but even after testing it cannot be
said that the software is totally defect free. It is also
impossible to check all combinations of inputs,
outputs and conditions during the test (Khannur A.,
2014). Finding and fixing a defect after delivery is
often more expensive up to 100 times. (Boehm and
Basili, 2001) In order to find the defects that cannot
be detected during test activities and detect these
defects as early as possible, an effective method
should be devised.

Considering the nature of the software
development process, bugs are always possible and
hard to detect. The time and developers are also
limited and there is not much resource to find bugs
and fix them. Thus, bug prediction has been an area
of interest for a long time and several academic
studies have been performed on this area of research.

Throughout this paper, we use the terms defect
and bug synonymously. A fault or defect is a flaw in
the software, which causes it to behave incorrectly.
Most bug prediction models reports which software
entities are likely to contain faults and which are
likely to be defect free. Those models are referred as

classification models (Weyuker, E. J. et. al., 2010).
The purpose of this study is to find faulty

software files/classes by examining the specific
metrics of the code and evaluating them with logistic
regression analysis in order to form a model.

The developed logistic regression model is
wanted to be simple and easy to be used in real
software development projects. After the model is
formed, it is used to detect bugs in the source code
of an Automated Teller Machine (ATM) monitoring
system project, which is actively used and still being
developed according to the customer needs. This
monitoring system is selected instead of larger and
more elaborate software, because of the owner
company’s demands and support for such a case
study.

This paper is organized as follows. In section II,
we introduce some bug prediction approaches which
are related to our study. Section III is about data
analysis techniques, particularly about logistic
regression. In section IV, the data set used to create
the logistic regression model is introduced. In
Section V, how logistic regression model is created
is explained. Section VI is about the use of proposed
model in real software development project data and
demonstrates the performance of the developed
logistic regression model. Finally, Section VII
concludes the paper with some remarks and notes

382 Sari O. and Kalipsiz O..
Bug Prediction for an ATM Monitoring Software - Use of Logistic Regression Analysis for Bug Prediction.
DOI: 10.5220/0005382803820387
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 382-387
ISBN: 978-989-758-097-0
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

about possible future works.

2 BUG PREDICTION
APPROACHES

Different bug prediction approaches propose
different kind of methods to solve this problem.
Some of the many prediction techniques related to
our study are source code metrics, process metrics
and previous defects.

2.1 Source Code Metrics

Metrics like cohesion, coupling, complexity, lines of
code and object-oriented metrics are used as an
instrument to measure source code properties to
promote software quality. Most of the bug prediction
approaches utilizes the source code metrics. CK
metrics (Chidamber and Kemerer, 1994) and object-
oriented metrics are some of the well-known source
code metrics. Some of these metrics used in this
study, are given in Table 1.

Table 1: CK & OO Metrics Used in this study.

Name Description

wmc Weighted Method Count

dit Depth of Inheritance Tree

lcom Lack of Cohesion in Methods

noa Number of attributes

nom Number of methods

2.2 Process Metrics

This approach states that the changes in the source
code leads to bugs (Moser et al., 2008). The metrics
such as number of revisions, number of authors who
make changes, average lines added/removed in a
revision are used in process metrics.

Table 2: Metrics used by Moser et al.

Name Description

NR Number of revisions

NFIX Number of times a file has been a part of fix

NAUTH Number of authors who has previously
changed the file

LINES Number of lines added or removed

The changes in the source code are mostly analyzed
from a software configuration management (SCM)
system. For instance, NFIX metric represents the

number of bug fixes performed on the file, which is
extracted from the commit comments of a versioning
system like SVN or CVS.

Some of the process metrics related to our study
is given in Table 2.

2.3 Previous Defects

By inspecting previous defects in a source code
fragment, future defects might be predicted.
Zimmermann proposed that the number of past bug
fixes correlates with the number of future fixes
(Zimmermann T. et al., 2007).

In our study, we focused on whether or not the
class file has a previous bug or not, instead of the
exact number of bug fixes in the class file. That’s
because, we realized that a bug fix might be
committed in several different commit steps and in
such cases the number might be misleading. As
given in Table 2, the “BUGS UNTIL” metric
denotes if the file had a past defect and the “BUGS
AFTER” metric denotes if the file has a bug after the
inspected SVN version.

3 DATA ANALYSIS

Data analysis is one of the many techniques which
can be used for defect prediction. As a part of this
study, regression analysis and specifically logistic
regression analysis is used to create a model to
estimate the relationship among source code metrics
and bug probability.

3.1 Linear Regression Analysis

Regression analysis is used for predicting values or
assessing the effects of one or more response
variables from a collection of predictor variable
values. This technique shows the casual relationship
between events and factors (Johnson, R. A. et. al.,
2007). One can observe the casual relationship in
several incidents in life. For example, the market
value of a house might be explained with living area
in square feet, location and so on.

The classical linear regression model with a
single response variable Y with predictor variables zi
and a random error ε takes the following form:

ܻ ൌ ଴ߚ ൅ ଵݖଵߚ ൅ …൅	ߚ௥ݖ௥ ൅ 	ߝ	 (1)

The response variable Y is also called dependent
variable, and zi’s are independent variables.

Bug�Prediction�for�an�ATM�Monitoring�Software�-�Use�of�Logistic�Regression�Analysis�for�Bug�Prediction

383

Table 3: A sample from the bug prediction data set.

File / Class name wmc dit lcom noa nom … BUGS UNTIL BUGS AFTER

IndexBinaryFolder 20.0 2 15 1 6.0 … 1 0

CachedIndexEntry 1.0 1 0 2 1.0 … 0 0

ASTNode 176.0 1 190 131 20.0 … 1 1

MemberTypeBinding 12.0 6 10 0 5.0 … 1 0

CodeSnippetParser 115.0 2 820 7 41.0 … 1 0

… … … … … … … … …

3.2 Logistic Regression Analysis

Different from linear regression, logistic regression
analysis is a classification technique which is not
based on all quantitative variables but some or all of
the variables are qualitative. In its simplest setting,
the response variable Y in logistic regression model
is restricted to two values, which can be coded as 0
and 1 (H. Okamura et. al., 2010). General form of
the logistic regression model is as follows:

log
ሻݔሺ݌

1 െ ሻݔሺ݌
ൌ ଴ߚ ൅ .	ݔ	 (2) ߚ

The probability of belonging to a category is found
using the following equation:

;	ݔሺ݌ ܾ, ሻݓ ൌ 	
݁ఉబା	௫	.ఉ

1 ൅	݁ఉబା	௫	.ఉ
 (3)

The equations in (2) and (3), is used to form a
logistic regression model from the selected data set.

4 DATA SET

The bug prediction dataset by D'Ambros et al. is
used in our study. The dataset contains data about
some popular java-based software systems, namely,
Eclipse JDT Core (http://www.eclipse.org/jdt/core/),
Eclipse PDE UI (https://eclipse.org/pde/pde-ui/),
Eclipse OSGI Equinox Framework
(http://eclipse.org/equinox/framework/), Apache
Lucene (http://lucene.apache.org/) and Eclipse
Mylyn (http://eclipse.org/mylyn/). The database
contains metric values of 5371 java class files
(D'Ambros et. al., 2010).

The dataset includes the following pieces of
information for each class:
 Values of 17 source code metrics (CK + 11

object oriented metrics)
 Values of 15 metrics computed from CVS

change log data
 Categorized (with severity and priority) post-

release defect counts

Only the metrics suitable to the ATM Monitoring
software and can easily be retrieved from its source
code are used in our study but all the samples are
used to create a logistic regression model to predict
whether a class has a defect or not. A small sample
of data is given at Table 3.

5 APPLICATION

The data set explained in section IV is used in
logistic regression analysis. 10% of the data are
spared for tests, 90% of them are used in the
analysis.

Table 4: Logistic Regression Model Calculations.

Estimate Std. Error Z Value Pr(>|z|)

(Int.) -3.4680919 0.2484656 -13.9580000 < 2e-16 ***

WMC 0.0062890 0.0011536 5.4510000 5.00e-08 ***

DIT -0.0702946 0.0347372 -2.0240000 0.04301 *

LCOM -0.0001523 0.0000478 -3.1860000 0.00144 **

NOM 0.0248885 0.0056447 4.4090000 1.04e-05 ***

NOA 0.0225958 0.0039736 5.6860000 1.30e-08 ***

BUG 1.4098361 0.2428095 5.8060000 6.39e-09 ***

Significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Error ~ WMC+DIT+LCOM+NOM+NOA+BUG

Logistic regression model is created to find the
probability of the existence of a defect/bug in a class
file. Variables and their estimates, along with
standard error and significance of the model are
given in Table 4. Calculations have been performed
on the statistical computing tool R
(https://www.rstudio.com/).

The problem statement of this study is that, given
a version X of a software system S, to find for each
class of X, the presence of defects reported after
version X until a future version Y.

Logistic regression model equation obtained as a

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

384

result of calculations on the statistical computing
tool R-studio is as follows:

ܻ ൌ ሻ݌ሺݐ݅݃݋݈	 ൌ 	െ3.4680919	 ൅

	0.0062890 ∗ –	ܥܯܹ 	0.0702946 ∗ 	ܶܫܦ െ
0.0001523 ∗ 	ܯܱܥܮ ൅ 	0.0248885 ∗
	ܯܱܰ ൅ 	0.0225958 ∗ 	ܣܱܰ ൅

ݔ1.4098361	 ∗ ܩܷܤ

(4)

By using the value Y in equation 4, one can
calculate the probability of a file/class to be
classified as faulty as in equation 5.

݌ ൌ
expሺYሻ

1 ൅ exp	ሺYሻ
 (5)

The logistic regression model here is validated by
the spared 10% test data and the success rate of the
model is calculated as 84.642%, as given in Table 5.

Table 5: Logistic Regression Model Test Results.

Sample 573

True Classification 485

False Classification 88

Success Rate 84.642%

6 USE OF THE MODEL

The next step in our study is to use the logistic
model in real software development project data,
which is the source code from the ATM Monitoring
Software, developed in Provus Bilisim Hizmetleri in
Istanbul, Turkey. In order to use the model in a
private source code base, the metrics compatible
with the model must be generated and the success of
the model must be validated.

6.1 ATM Monitoring Software

ATM Monitoring System is complex and online
software of several different modules and
components, which gives service to different banks
in Turkey, Albania and Cyprus. Software code has
been developed using Java based technologies since
2004 and it consists of more than 250.000 lines of
code. In our study, only File Distribution Project
component source codes are used.

6.2 Data Collection Process

Data collection process is performed by inspecting
source codes kept in an internal SVN
(https://subversion.apache.org/), a SCM repository.

In order to compute the metric values for different
Java classes, Eclipse IDE (http://www.eclipse.org),
Google Code Pro Analytix Tool
(https://developers.google.com/java-dev-
tools/codepro/) and Eclipse Metrics Plugin
(http://metrics2.sourceforge.net) has been used.

Figure 1 summarizes how the metric values are
gathered. SVN repositories (SCM) keep the current
status of project files and also commit transaction
information. A commit transaction is a set of files
which were modified, deleted, or added to
repository. These transactions also include version
number, date, time, developer and the comment.

As the nature of Java programs, a source file
might consists of one main java class and several
java inner classes. Only java main classes are
considered as a part of this study.

Figure 1: Metric Data Collection.

6.2.1 Calculation of Metric Values

Source code retrieved from SCM is analyzed by
Eclipse Metrics plug-in and Google Code Pro
Analytix tool. These tools output metric values for
each individual java class as separate xml files.
Additional metric values such as previous defects
and change metrics are directly gathered from source
files in SVN repository. To access the SVN
repository and parse the commit transactions and
their comments, SVN Kit library (svnkit.com) has
been used.

As given in Figure 2, a specific SCM version has
been fixed as the prediction version in order to
calculate metric values for source code. Current
version has also been fixed as validation version to
test the performance of the bug prediction
calculations.

In order to parse and convert this gathered
information as a usable format, a metric calculation
program has been developed. The xml files which
include the metric values and additional source file

Bug�Prediction�for�an�ATM�Monitoring�Software�-�Use�of�Logistic�Regression�Analysis�for�Bug�Prediction

385

Figure 2: Code Retrieval Approach.

information is input by this program and metric
values suitable to be used in logistic regression
model equation given in (4) is generated.

6.2.2 Linking Bugs to Classes

As Zimmermann (Zimmermann T. et. al, 2007),
Fischer (Fischer M. et. al, 2003) and Bird (Bird et.
al., 2009) studied linking bugs to versioning system
files, we performed a similar approach and detected
bugs by some keywords from SVN commit
comments.

In order to find if the java class had a defect
which was fixed afterwards, developer comments in
SVN commit transactions have been parsed and
checked against some patterns to mark the change as
a part of bug fix. To be recognized as a bug fix, the
commit comment must include some special
keywords, such as “fix”, “bug” and some words in
Turkish Language specifying a bug fixing activity.

Some additional metrics such as the number of
developers that had previously changed the java file
is also retrieved by checking SVM commit
transactions.

6.3 Performance of the Model

After calculating the metric values required for the
logistic regression equation, probability of a class
having a defect is predicted. Predicted percentage
values more than 50% are accepted that it means to
have defect in the inspected class.

In order to validate the predictions, SVN
transactions after the prediction version are

controlled and it is checked that whether or not any
bug fixed or defect detected. This information is
specified with the “BUGS” variable.

A portion of the real software data with the
required metric values, the prediction and validation
result (bugs) are shown in Table 7.

Using the logistic model equations given in
Equation 4 & 5, the probability of java classes in
ATM Monitoring Software having defect is
calculated and this results are validated as explained
above. The results, as shown in Table 6, show that
the generated logistic regression model is 66.6%
successful in the real software data.

Table 6: Performance Results of the model.

Sample 48

True Classification 32

False Classification 16

Success Rate 66.6%

7 CONCLUSIONS

In this study, a logistic regression model is generated
by using the bug prediction dataset by D'Ambros et
al., which consists of 5371 samples from 5 different
popular open-source projects.

To use this model in a selected real software
development project, the required metric values are
obtained by analyzing the project source code and a
small database of metric values is formed. An ATM
Monitoring System which belongs to the company
Provus who supports this study is selected for this
study.

Then, the model is applied to the files in project
source code and bug probabilities are predicted.
Finally, these results are validated by checking the
comments in SCM commit transactions after the
selected prediction version. The results show a 66%
success rate in the selected project source code.

Table 7: Sample Data from Real Software Data.

File/Class dit wmc lcom noa nom BUGS UNTIL Prediction BUGS AFTER

PAYSFDSHelper.java 1 17 0 1 5 1 13.30% 0

PAYSFDSScheduler.java 1 6 0 2 4 0 3.37% 0

FDSMonitor.java 0 5 0 0 5 0 3.52% 0

FDSJobExecutor.java 0 1 0 0 1 0 3.12% 0

ObjectDefinition.java 1 19 0.571 3 7 0 4.00% 1

RunnerComparator.java 1 9 0 0 1 0 3.06% 0

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

386

In future, we plan to create some different
logistic regression models and compare them with
one another and classify their strength and
weaknesses. Furthermore, we will examine more
samples from real software data and form a larger
bug database, which might be published online.

ACKNOWLEDGEMENTS

Authors would like to thank the company of Provus
Bilisim Hizmetleri in Istanbul, Turkey. The source
code of the ATM Monitoring system which is used
in this study belongs to Provus and Provus may not
agree with all of the interpretations/conclusions of
this paper.

REFERENCES

Weyuker, E. J.; Bell, R. M.; Ostrand, T. J., "We're Finding
Most of the Bugs, but What are We Missing?,"
Software Testing, Verification and Validation (ICST),
2010 Third International Conference on , vol., no.,
pp.313,322, 6-10 April 2010.

Khannur, A., Structured Software Testing: The Discipline
of Discovering, Partridge Publishing, 2014, pages 22-
23.

Boehm, B., Basili V. R., “Software Defect Reduction Top
10 List”, IEEE Computer, Vol. 34, No. 1, Jan 2001,
pages 135-137.

Shyam R. Chidamber and Chris F. Kemerer. A metrics
suite for object oriented design. IEEE Trans. Software
Eng., 20(6):476-493, 1994.

Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A
comparative analysis of the efficiency of change
metrics and static code attributes for defect prediction.
In Proceedings of ICSE 2008, pages 181-190, 2008.

Thomas Zimmermann, Rahul Premraj, and Andreas
Zeller. Predicting defects for eclipse. In Proceedings
of PROMISE 2007, page 76. IEEE CS, 2007.

H. Okamura, Y. Etani and T. Dohi, "A multi-factor
software reliability model based on logistic
regression," Proceedings of 21st IEEE International
Symposium on Software Reliability Engineering
(ISSRE'10), pp. 31-40, IEEE CPS (2010).

Kuwa, D.; Dohi, T., "Generalized Logit Regression-Based
Software Reliability Modeling with Metrics Data,"
Computer Software and Applications Conference
(COMPSAC), 2013 IEEE 37th Annual , vol., no.,
pp.246,255, 22-26 July 2013.

Johnson, R. A., Wichern D. W., Applied Multivariate
Statistical Analysis, Pearson, 6th Edition, April 2,
2007.

Marco D'Ambros, Michele Lanza, and Romain Robbes.
An extensive comparison of bug prediction
approaches. In MSR '10: Proceedings of the 7th

International Working Conference on Mining
Software Repositories, s. 31-41, 2010.

Michael Fischer, Martin Pinzger, and Harald Gall.
Populating a release history database from version
control and bug tracking systems. In Proceedings of
ICSM 2003, pages 23-32. IEEE CS, 2003.

Christian Bird, Adrian Bachmann, Eirik Aune, John
Duffy, Abraham Bernstein, Vladimir Filkov, and
Premkumar Devanbu. Fair and balanced?: bias in bug-
fix datasets. In Proceedings of ESEC/FSE 2009, pages
121-130, New York, NY, USA, 2009. ACM.

Bug�Prediction�for�an�ATM�Monitoring�Software�-�Use�of�Logistic�Regression�Analysis�for�Bug�Prediction

387

