
Finding Good Compiler Optimization Sets
A Case-based Reasoning Approach

Nilton Luiz Queiroz Junior and Anderson Faustino da Silva
Department of Informatics, State University of Maringá, Maringá, Brazil

Keywords: Machine Learning, Metaheuristics, Cases-based Reasonig, Compiler Optimization Sets.

Abstract: Case-Based Reasoning have been used for a long times to solve several problems. The first Case-Based Rea-
soning used to find good compiler optimization sets, for an unseen program, proposed several strategies to
tune the system. However, this work did not indicate the best parametrization. In addition, it evaluated the
proposed approach using only kernels. Our paper revisit this work, in order to present an detail analysis of an
Case-Based Reasoning system, applied in the context of compilers. In adition, we propose new strategies to
tune the system. Experiments indicate that Case-Based Reasoning is a good choice to find compiler optimiza-
tion sets that outperform a well-engineered compiler optimization level. Our Case-Based Reasoning approach
achieves an average performance of 4.84% and 7.59% for cBench and SPEC CPU2006, respectively. In addi-
tion, experiments also indicate that Case-Based Reasoning outperforms the approach proposed by Purini and
Jain, namely Best10.

1 INTRODUCTION

Case-Based Reasoning (CBR) (Richter and Weber,
2013), an approach considered a subfield of machine
learning (Mitchell, 1997; Shalev-Shwartz and Ben-
David, 2014), tries to solve a new problem using
a solution of an previous similar situation. It can
be seen as a learning process (Aamodt and Plaza,
1994), which stores past experiences in a knowledge
database, and can be updated incorporating new ex-
periences (Jimenez et al., 2011).

Over the years, this approach have been applied to
several problems, such as: estimate the project cost
to web hypermedia (Mendes and Watson, 2002), es-
timate the Q-factor of an optical network (Jimenez
et al., 2011), management of typhoon disasters (Zhou
and Wang, 2014), and estimate good compiler opti-
mization sets (Lima et al., 2013).

Compilers are programs that transform source
code from one language (source language) to an-
other (target language) (Aho et al., 2006; Srikant and
Shankar, 2007; Cooper and Torczon, 2011). During
this process, the compiler applies several optimiza-
tions (Muchnick, 1997), in order to improve the target
code. However, some optimizations can be good to a
class of programs, and bad to another. Then, the most
appropriate approach is to find the best compiler op-
timizations to each program. The literature presents

different approaches to mitigate this problem (Zhou
and Lin, 2012; Lima et al., 2013; Purini and Jain,
2013). The first CBR approach in this context (Lima
et al., 2013) indicates that it approach is able to in-
fer good solutions to new problems - good compiler
optimization sets to unseen programs.

In this paper we revisit the work of Limaet al.
(Lima et al., 2013) to explore new strategies of finding
good compiler optimization sets to a unseen program.
Lima et al. (Lima et al., 2013) used dynamic fea-
tures to represent analogies and a leave-one-out cross-
validation approach. Our work uses dynamic features
or static features to represent analogies. In addition,
our work uses different training and test datasets for
cross-validation.

The main contributions of this paper are:

• We describe different CBR parametrization.

• We give a new similarity metric to measure the
similarity between two programs.

• We present a program characterization approach
using static features.

• We present different strategies to build a collec-
tion of past experiences.

• We present a detail experimental analysis of CBR
approach in the context of compilers.

This paper is organized as follows. Section 2
presents related work. Section 3 explains briefly

504 Queiroz Junior N. and da Silva A..
Finding Good Compiler Optimization Sets - A Case-based Reasoning Approach.
DOI: 10.5220/0005380605040515
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 504-515
ISBN: 978-989-758-096-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

CBR. Section 4 details our CBR approach, which goal
is to find good compiler optimization sets. Section 5
presents the experimental setup. Section 6 details the
experimental results. Finally, Section 7 presents con-
clusions and future work.

2 RELATED WORKS

In the context of compilers, the work of Purini and
Jain finds a small set of compiler optimizations sets
(COS), which cover several programs (Purini and
Jain, 2013). Using iterative compilation, Zhou evalu-
ates a random and a genetic strategy, in order to find
good compiler optimizations (Zhou and Lin, 2012).
Our work tries to mitigate the same problem. How-
ever, using a different approach.

Lima et al. proposed the first CBR approach to
find good COS to a unseen program. This approach
uses different strategies to select past results and mea-
sure the similarity between programs (Lima et al.,
2013). The work of Limaet al. does not indicate
which parametrization is the best. In addition, the
benchmark used is composed only by kernels. It is a
problem, in general we use complete applications and
not kernels. Therefore, we revisit this work in order
to cover these gaps.

Jimenez used a CBR approach to estimate Q-
factor in optical networks. His approach obtained
a successful classification in 94% of cases (Jimenez
et al., 2011). Erbacher used a same approach to auto-
matically report hostile actors in a network (Erbacher
and Hutchinson, 2012). To implement a system able
to generate combat strategies, Kimet al. (Kim et al.,
2014) proposed a CBR approach that retrieves past
experiences and modify them to the current situation.
The main difference between these works and the our
is the context where the CBR is applied.

3 CASE-BASED REASONING

CBR, a machine learning approach, can be subdivided
in four processes:

1. Retrieve a case from a collection of (past experi-
ences) previous cases by similarity measure.

2. Reuse the knowledge of an old case to solve a new
case.

3. Revise the result of this new case, evaluating the
success of the solution.

4. Retain the useful experience for future reuses.

Every CBR, in specially the retrieve process,
needs some parameters, such as:

Collection guide indicates the strategy used to build
the collection of previous cases.

Similarity measure measures the level of similarity
between a previous case and a new one.

Standardization transforms all attributes values ac-
cording to a specific rule.

Number of analogies indicates the number of previ-
ous cases that will be used to estimate a solution
to an unseen problem.

In general, the cases that compose the collection
of previous cases come from real world experiences.
However, in our context, there is not a public real
world collection, used by the scientific community.
Therefore, we need to generate a collection of past
experiences to use it as previous cases.

4 FINDING GOOD COMPILER
OPTIMIZATION SETS USING A
CBR APPROACH

The main goal of the CBR described in this paper
is to find a COS, which is able to achieve a perfor-
mance improvement over a well-engineered compiler
optimization level.

The CBR approach divides the process of finding
an effective COS into:

1. An offline phase; and

2. An online phase.

The offline phase collects pieces of information
about a set of training programs, and downsamples
the search space in order to provide a small space,
which can be handled by the online phase in a easy
and fast way. Therefore, the offline phase creates a
collection of previous cases, which will be used to
determine the knowledge that will be used to solve an
unseen case, in other words, to determine a COS that
should be enabled on an unseen program.

The online phase will infer from the cases pro-
vided by the offline phase, the best COS that fits the
feature of unseen program as defined by its input.

4.1 The Offline Phase

The offline phase builds a collection of previous cases
storing for training programs several success cases.
It means that the downsampling technique should
be guided to retain good cases, besides pruning the

Finding�Good�Compiler�Optimization�Sets�-�A�Case-based�Reasoning�Approach

505

Algorithm 1: Offline Phase.

Input : Ps // Training programs
B // Baseline

Output : A collection of cases
collection← []
for eachP∈ Psdo

sets← []
in f o← { };
// Compile the program P using
// the highest compiler level (baseline),
// and get the number of
// hardware instructions executed
bas← getPerformance(B,P)
while not reach the stop conditiondo

// Generate a new and unique case, i. e.,
// a compiler optimization set
case← generateCase()
// Compile the program P using the
// new case, and get the number
// of hardware instructions executed
value← getPerformance(case,P)
sets.append((case, value))

// Get the feature of program P,
// and normalize it
in f o← getNormalizedFeature(P)
collection.append((P.name, info, bas, sets))

return collection

search space. The Algorithm 1 describes briefly the
offline phase.

Algorithm 1 indicates that the feature for each
training program is normalized. It is performed by the
offline phase, due to different programs have different
features, for example the number of hardware instruc-
tions executed, runtime, and others. In addition, each
feature should be collected compiling and running the
training program without any compiler optimization
enabled. It guarantees that the optimizations will not
influence the program behavior.

4.2 The Online Phase

The online phase performs the CBR, in order to find
an effective COS, which should be enabled on the
unseen (test) program. The Algorithm 2 describes
briefly this phase.

For the test program, the online phase collects its
features and compares them with the features of each
training program, with the help of a similarity model
that ranks the training programs. This rank indicates
what training program is the most similar to test pro-
gram. In summary, the online phase selects from the
most similar training programs previous cases, evalu-
ates these cases and returns the best one.

Algorithm 2: Online Phase.

Input : C // Collection
P // Test program
B // Baseline
N // Number of analogies (cases)
S // Similarity

Output : The best case
cases← []
best case← B
// Compile the program P using the baseline,
// and get the number of hardware
// instructions executed
best per f← getPerformance(B,P)
// Get the features of the program P,
// and normalize them
in f o← getNormalizedInformation(P)
// Build a collection with only success cases
// (cases that improved the performance
// of training programs)
C′← f ilterCollection(C)
// Rank the training programs
// based on similarity model S
rank← getRank(C′, in f o,S)
// Get the potential previous cases
cases← getAnalogies(C′,L, rank)
// Evaluate the potential cases
for eachcase∈ casesdo

// Compile the program P using the
// case, and get the number
// of hardware instructions executed
per f← getPerformance(case,P)
if per f < best per f then

best per f← per f
best case← case

return bestcase, bestperf

4.3 Parametrization

The parametrization of our CBR is as follows.

Collection Guide. Several strategies can be used to
build a collection of previous cases. In our work,
we use iterative and metaheuristic algorithms to
perform this task. The iterative algorithm gener-
ates the collection by a uniform random sampling
of the optimization space. While, the metaheuris-
tic algorithms use a sophisticated way to build a
collection. The metaheuristic are genetic algo-
rithm with rank selection, genetic algorithm with
tournament selector, and simulated annealing. In
addition, we build a collection that is composed
by all the previous collections.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

506

Similarity Model. In order to measure the similarity
between two programs, the CBR system can be
tunned to use a strategy chosen from:

Cosine. In this model, the similarity betweenPi
andPj is defined as:

sim(Fi ,Fj) =

m
∑

w=1
Fiw×Fjw

√

m
∑

w=1
(Fiw)2×

√

m
∑

w=1
(Fjw)2

Jaccard. In this model, the similarity betweenFi
andFj is defined as:

sim(Fi ,Fj) =
1
m

m
∑

w=1

min(Fiw,Fjw)

max(Fiw,Fjw)

Euclidean. In this model, the similarity between
Fi andFj is defined as:

sim(Fi ,Fj) =
1√

∑m
w=1 (Fiw−Fjw)2

In both models,m is the quantity of features. The
first two similarity models were proposed by Lima
et al. (Lima et al., 2013). In our work, we use
these two models and a model based on Euclidean
distance. As mentioned previously by Limaet al.,
these models are based on similarity coefficients
used to compare statistical sampling, and indicate
that large difference between two feature vectors
should return a low similarity value.

Feature. A similarity model measures the similarity
between two programs, based on their features.
Our CBR is able to use dynamic or static fea-
tures to describe the program behavior. Dynamic
features are composed by hardware performance
counters (Mucci et al., 1999), which describe the
program behavior during its execution. Static fea-
tures are composed by compiler statistics, which
describe the program behavior during its compila-
tion. Table 1 presents the dynamic features used
in our work, and Table 2 presents the static fea-
tures. In addition, these tables indicate the most
important feature (*). Our CBR system can use
all features, only the most important features, or
a weighted strategy. In the weighted strategy the
feature vectors are weighted to reflect the relative
importance of each feature. In our system, the
weight of an important feature has value 2, while
the other has value 1.

Standardization. The system should divide each
feature for the most important one (**). It trans-
forms all attributes values in order to standardize
the features of training and test programs.

Number of Analogies. The best strategy is to choose
several analogies to increase the probability of

Table 1: Dynamic Feature.

Type Performance Counter

Cache

PAPI L2 DCR PAPI L3 DCR

PAPI L2 TCA∗ PAPI L3 TCA

PAPI L2 DCW PAPI L3 DCW

PAPI L1 ICM PAPI L2 STM

PAPI L1 DCM PAPI L3 TCM

PAPI L2 TCM PAPI L3 TCR

PAPI L2 TCR PAPI L3 DCA

PAPI L2 DCA PAPI L3 TCW

PAPI L2 TCW PAPI L2 ICR

PAPI L2 DCH∗ PAPI L1 STM

PAPI L1 TCM PAPI L1 LDM

PAPI L2 DCM PAPI L2 ICA

PAPI L3 ICR PAPI L2 ICM

PAPI L3 ICA PAPI L2 ICH∗

Branch

PAPI BR PRC PAPI BR UCN

PAPI BR NTK PAPI BR INS∗

PAPI BR MSP PAPI BR TKN

PAPI BR CN

SIMD PAPI VEC SP∗ PAPI VEC DP∗

Floating Point

PAPI FDV INS PAPI FP INS

PAPI FP OPS PAPI SP OPS

PAPI DP OPS

TLB PAPI TLB DM∗ PAPI TLB IM

Cycles
PAPI REF CYC PAPI TOT CYC∗

PAPI STL ICY PAPI STL ICY

Instructions PAPI TOT INS ∗∗

Table 2: Static Feature.

Static Data

Binary Instructions
Number of Add insts

Number of Sub insts

Memory Instructions

Number of Store insts∗

Number of Load insts∗

Number of memory instructions∗

Number of GetElementPtr insts

Number of Alloca insts

Terminator Instructions
Number of Ret insts

Number of Br insts

Other Instructions

Number of ICmp insts

Number of PHI insts

Number of machine instrs printed∗

Number of Call insts

Function Number of non-external functions

Basic block Number of basic blocks

Floating Point Instructions Number of floating point instructions∗

Total Instructions Number of instructions (of all types)∗ ∗∗

choosing a good one. Our system is able to eval-
uate several number of cases. However, the most
similar training program can not be able to pro-
vide the required number of analogies. If it is the
case, the second most similar program will pro-
vide it, and so on.

Finding�Good�Compiler�Optimization�Sets�-�A�Case-based�Reasoning�Approach

507

5 EXPERIMENTAL SETUP

In our experiments, we will evaluate different config-
urations of our CBR system. The main configuration
of the experimental environment is given by:

Hardware. We used a machine with a Intel processor
Core I7-3779, 8 MB of cache, and 8 GB of RAM.

Operating System. The operating system was
Ubuntu 14.04, with kernel 3.13.0-37-generic.

Compiler. We adopted LLVM 3.5 (Lattner and
Adve, 2004; LLVM Team, 2014) as compiler in-
frastructure.

Baseline. The baseline is the LLVM’s highest com-
piler optimization level, -O3. The baseline indi-
cates the threshold that our system should over-
come.

Optimizations. The optimizations used to compose
a case are present in Table 3. We use only the
optimizations used by the highest compiler opti-
mization level -O3.

Table 3: LLVM’s optimizations used by -O3.

Optimizations

-inline -prune-eh -scalar-evolution

-argpromotion -inline-cost -indvars

-gvn -functionattrs -loop-idiom

-slp-vectorizer -sroa -loop-deletion

-globaldce -domtree -loop-unroll

-constmerge -early-cse -memdep

-targetlibinfo -lazy-value-info -memcpyopt

-no-aa -jump-threading -sccp

-tbaa -loop-unswitch -dse

-basicaa -tailcallelim -adce

-notti -reassociate -barrier

-globalopt -loops -branch-prob

-ipsccp -loop-simplify -block-freq

-deadargelim -lcssa -loop-vectorize

-instcombine -loop-rotate -strip-dead-prototypes

-simplifycfg -licm -verify

-basiccg -correlated-propagation

Cases.The process of creating a case is guided by
the criteria:

• Every optimization appears only once in a case;

• Every optimization can appear in any position;

• Every optimization should address the compi-
lation infrastructure rules; and

• All cases have the same length.

The first criterion indicates that the offline phase
does not explore the use of one optimization sev-
eral times. Although, this occurs in LLVM’s -O3
optimization level. Second can be viewed as an

organization of the case (or COS). In the collec-
tion, every case is represented as a sequence of op-
timizations. It means that there is a predefined or-
der to apply each specific optimization. The third
indicates that a new case can not violate the safety
of the infrastructure. By the fourth criterion, the
offline phase tries to give to every case the same
characteristic.

Collection Guide. The creation of the collections
was guided as follows.

Random. This iterative algorithm generates in a
random way 500 cases.

Genetic Algorithm with Rank Selector. The
parameters chosen in this strategy were:
chromosomesize← 40 (the number of op-
timizations in a case),population← 60,
generation← 100, mutationrate ← 0.02,
andcrossoverrate← 0.9. The algorithm will
finish whether the standard deviation of the
current fitness score is less than 0.01 or the
best fitness score does not change in three
consecutive generations. In addition, this
strategy uses elitism. It means that the best
solution of the generationN − 1 is kept in
generationN.

Genetic Algorithm with Tournament Selector.
It is similar to the previous strategy, but instead
of using a rank selector it uses a tournament
selector.

Simulated Annealing. In this strategy, the ini-
tial temperature is the half of hardware instruc-
tions executed, the perturbation function only
changes one random optimization in a random
position, the acceptance probability is given by
the Equation 1, and the temperature is adjusting
multiplying it by the constantα, which value is
0.95. The stop criteria is 500 iterations.

P(N) = e−
∆(C)−∆(N)

T (1)

All. This strategy only merges the previous col-
lections.

Training Programs. For the generation of the col-
lections of previous cases, we used 61 microker-
nel programs take from LLVM’s test-suite. All
the programs are single-file, and have short run-
ning times. Table 4 shows the microkernels.

Test Programs. We used for evaluating our CBR ap-
proach the benchmarks, cBench (cBench, 2014)
with dataset 1, and SPEC CPU2006 (Henning,
2006) with training dataset.

Validation. The results is based on the arithmetic
average of five executions, excluding the best

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

508

Table 4: Microkernels.

Microkernel programs

ackermann hash perlin

ary3 heapsort perm

bubblesort himenobmtxpa pi

chomp huffbench puzzle

dry intmm puzzle-stanford

dt lists queens

fannkuch lowercase queens-mcgill

fbench lpbench quicksort

ffbench mandel-2 random

fib2 mandel realmm

fldry matrix recursive

flops-1 methcall reedsolomon

flops-2 misr richardsbenchmark

flops-3 n-body salsa20

flops-4 nestedloop sieve

flops-5 nsieve-bits spectral-norm

flops-6 objinst strcat

flops-7 oourafft towers

flops-8 oscar treesort

flops partialsums whetstone

fp-convert

and the worst values. In the experiments, the
machine workload was minimum as possible, in
other words, each instance was executed sequen-
tial. In addition, the machine did not have exter-
nal interference, and the runtime variance was less
than 0.01.

5.1 An Overview of the Collections

To analyze the improvement obtained by each strat-
egy of creating the collections, we summaries the col-
lections in Table 5. In this table, the column #P means
the number of programs with good cases.

Table 5: Summary.

Good Worst BestCollection #P #Sets
Cases (%) Perf. (%) Perf. (%)

Random 55 30500 19.57 -99.99 58.33
Genetic
Algorithm 57 27973 39.42 -99.99 51.87
Rank
Genetic
Algorithm 56 27543 56.77 -99.99 51.87
Tournament
Simulated
Annealing

45 30500 7.42 -99.99 54.22

All 57 116455 30,54 -99.99 58.33

Most cases generated by simulated annealing do
not overcome the baseline. However, this strategy
was able to find some cases that achieve a good im-
provement over the baseline. It indicate this strategy
has difficulty to escape from some bad improvement,
which is probably due to the disturbing function (the
function that chooses the neighbor). Besides, the ini-
tial solution influences the final result, which could be

the source to several cases achieve bad improvements.
The overview of the other strategies shows a dif-

ferent scenario. The genetic algorithms generated a
better distribution. They have more success cases, if
we take the average as criteria to evaluate the col-
lection quality. However, if we take the maximum
improvement obtained for each program, simulated
annealing generates better results than genetic algo-
rithms, and random strategy.

These differences can be justified by the charac-
teristics of each implementation. Simulated anneal-
ing just change one optimization in each new case,
while the others metaheuristics try more changes in
each new case.

The number of cases is a small portion of the opti-
mization space. It indicates that the strategies used to
generate the collections was able to downsample the
search space in order to provide a small space with
good cases.

6 EXPERIMENTAL RESULTS

The goal of our CBR approach is to find a COS that
outperforms the well-engineered compiler optimiza-
tion level -O3, in terms of hardware instructions exe-
cuted.

Our experiments was conducted in a way to an-
swer the following questions:

• What is the best parametrization of the CBR ap-
proach applied in the context of compilers?

• What is the best characterization of programs?

• What is the improvement obtained by the CBR ap-
proach in real applications?

• What is the best strategy to create a collection of
previous cases?

Tables 6 and 7 show the results obtained by each
CBR configuration. In these tables, API stands for
average percentage improvement, APIE stands for
average percentage improvement excluding the pro-
grams showing no improvement, and NPI stands for
the number of programs achieving improvement.

Strategies that use static features do not generate
different results. It means that the use of these con-
figurations always ranks the training programs in the
same way. It explains the use of only one entry for
static features.

6.1 Overview

Collection Guide. Analyzing the different strategies
to construct the collections shows that the random

Finding�Good�Compiler�Optimization�Sets�-�A�Case-based�Reasoning�Approach

509

Table 6: Results obtained by cBench.

cBench 1 Analogy 3 Analogies 5 Analogies

Base Similarity API APIE NPI API APIE NPI API APIE NPI

Genetic
Algorithm

Rank
Selection

(GR)

Dynamic
Feature
(DF)

All
(AL)

Cosine -1.88 5.91 12 -1.12 6.58 14 0.71 7.15 19
Jaccard -2.86 5.55 13 -1.61 5.78 16 -1.21 5.8 17

Euclidean -1.18 6.27 13 -0.62 6.45 15 0.7 6.7 19
Most

Informative
(MI)

Cosine -5.51 3.58 13 -3.41 4.28 14 -1.47 6.32 16
Jaccard -1.89 4.81 13 -0.56 5.28 17 0.18 5.79 18

Euclidean -0.4 4.57 14 0.09 4.83 16 1.5 5.35 20

Weight
(WE)

Cosine -2.13 5.94 12 -1.02 6.49 14 0.79 7.07 19
Jaccard -2.86 5.55 13 -1.61 5.78 16 -1.03 6.11 17

Euclidean -1.02 6.29 13 -0.46 6.07 16 0.78 6.39 20
Static

Feature
(SF)

Cosine -7.59 5.45 8 -6.8 5.15 10 -6.71 5.15 10
Jaccard -1.88 5.84 16 0.17 5.77 18 0.19 5.79 18

Euclidean -4.28 6.06 12 -3.71 6.03 13 -3.41 5.61 14

Genetic
Algorithm

Tournament
Selection

(GT)

Dynamic
Feature
(DF)

All
(AL)

Cosine -1.87 4.4 15 -0.41 4.97 18 0.1 5.52 18
Jaccard -1.52 4.97 16 0.14 5.83 18 0.48 5.95 19

Euclidean -1.87 4.4 15 -0.41 4.97 18 0.1 5.52 18
Most

Informative
(MI)

Cosine -4.38 4.31 13 -2.69 5.87 14 -2.28 6.06 15
Jaccard -3.77 4.39 13 -1.23 6.13 17 -0.82 5.92 19

Euclidean -2.8 3.5 15 -1.5 3.67 18 -1.06 4.08 18

Weight
(WE)

Cosine -1.61 4.03 16 -0.45 4.45 19 0.05 4.92 19
Jaccard -1.85 4.97 16 -0.19 5.83 18 0.15 5.95 19

Euclidean -0.57 4.12 15 0.61 4.54 18 1.26 4.98 19
Static

Feature
(SF)

Cosine -5.84 4.02 11 -5.54 4.16 12 -5.43 4.17 12
Jaccard -2.66 6.02 13 -2.21 5.63 16 -1.82 5.63 16

Euclidean -3.31 3.67 13 -2.16 5.11 14 -2.11 5.13 14

Simulated
Annealing

(SA)

Dynamic
Feature
(DF)

All
(AL)

Cosine -4.97 3.88 12 -2.04 5.78 17 -1.72 5.87 18
Jaccard -2.97 6.29 16 0.79 7.11 18 2.35 6.64 20

Euclidean -5.89 4.39 10 -3.43 6.94 13 -2.8 6.58 16
Most

Informative
(MI)

Cosine -8.73 4.94 8 -1.65 6.25 13 0.74 6.39 17
Jaccard -4.19 5.46 13 -0.4 6.38 18 0.32 6.37 19

Euclidean -6.12 1.69 11 -3.57 3.85 17 -2.02 6.2 18

Weight
(WE)

Cosine -5.68 4.13 11 -2.75 6.07 16 -2.42 6.46 16
Jaccard -3.1 6.69 15 0.52 7.27 17 1.87 6.93 18

Euclidean -6.36 4.39 10 -3.83 6.6 14 -3.31 6.94 15
Static

Feature
(SF)

Cosine -8.88 4.73 9 -1.49 5.56 15 -0.93 5.37 18
Jaccard -4.4 3.66 9 -2.01 4.08 17 -1.25 4.72 18

Euclidean -5.25 4.54 12 -0.86 6.04 15 0.04 5.92 19

Random
(RA)

Dynamic
Feature
(DF)

All
(AL)

Cosine -3.16 5.23 11 1.21 6.28 20 1.92 6.88 21
Jaccard -3.25 7.11 10 0.05 6.62 16 1.14 6.59 19

Euclidean -2.95 4.84 12 1.05 6.03 20 1.82 6.73 21
Most

Informative
(MI)

Cosine -2.01 5.41 11 1.04 6.43 18 2.14 6.39 22
Jaccard -0.98 6.6 13 2.02 6.52 19 2.58 6.84 20

Euclidean -3.06 3.24 12 2.02 5.18 22 3.05 6.24 23

Weight
(WE)

Cosine -2.49 5.23 11 1.14 6.18 20 1.83 6.78 21
Jaccard -3.42 6.9 10 -0.04 6.35 16 1.05 6.37 19

Euclidean -1.72 5.12 12 2.2 6.41 19 2.92 7.02 20
Static

Feature
(SF)

Cosine -3.34 6.71 11 0.5 6.47 18 1.46 7.27 19
Jaccard 0.27 7.78 15 3.0 7.28 20 3.95 7.61 22

Euclidean -5.81 4.98 13 0.21 5.39 21 1.28 6.44 21

All
(AL)

Dynamic
Feature
(DF)

All
(AL)

Cosine 0.45 3.86 16 2.43 5.52 20 3.16 5.97 20
Jaccard -3.53 5.35 16 0.38 5.65 20 0.61 5.65 20

Euclidean 0.56 3.8 15 2.67 5.06 20 3.17 5.27 21
Most

Informative
(MI)

Cosine -7.38 2.53 8 -2.17 7.36 12 -1.12 7.31 15
Jaccard -4.69 4.99 11 -0.77 5.79 19 -0.67 5.9 19

Euclidean -3.88 3.95 9 -1.24 5.43 15 1.29 4.75 21

Weight
(WE)

Cosine -1.46 4.1 15 0.6 5.36 19 1.36 5.59 20
Jaccard -3.53 5.35 16 0.38 5.65 20 0.61 5.65 20

Euclidean 0.65 3.81 15 2.78 5.07 20 3.33 4.86 23
Static

Feature
(SF)

Cosine -6.82 3.01 10 -5.36 3.66 12 -5.06 3.89 13
Jaccard -3.21 3.61 12 -1.24 5.12 18 -1.03 4.86 19

Euclidean -6.96 3.37 10 -1.83 5.12 14 -1.54 5.22 15

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

510

Table 7: Results obtained by SPEC CPU2006.

SPEC CPU2006 1 Analogy 3 Analogies 5 Analogies

Base Similarity API APIE NPI API APIE NPI API APIE NPI

Genetic
Algorithm

Rank
Selection

(GR)

Dynamic
Feature
(DF)

All
(AL)

Cosine -3.56 6.61 7 -2.46 7.09 7 -1.88 6.73 8
Jaccard -6.4 5.06 6 -4.96 7.56 6 -4.33 6.92 7

Euclidean -3.12 5.48 8 -1.9 6.14 8 -1.29 6.07 9
Most

Informative
(MI)

Cosine -5.55 6.62 7 -1.34 7.15 8 -0.63 6.96 9
Jaccard -8.67 5.81 6 -4.8 5.55 8 -0.41 5.09 9

Euclidean -6.35 5.34 7 -5.15 5.1 8 -4.25 5.03 9

Weight
(WE)

Cosine -3.93 7.18 6 -2.82 7.74 6 -2.24 7.24 7
Jaccard -6.4 5.06 6 -4.96 7.56 6 -4.33 6.92 7

Euclidean -3.42 5.44 8 -2.21 6.1 8 -1.6 6.04 9
Static

Feature
(SF)

Cosine -12.03 2.97 2 -8.39 2.42 3 -7.97 2.97 4
Jaccard -5.58 5.09 4 -4.92 5.15 4 -4.58 4.32 5

Euclidean -11.71 2.58 3 -8.08 2.27 4 -7.81 3.18 4

Genetic
Algorithm

Tournament
Selection

(GT)

Dynamic
Feature
(DF)

All
(AL)

Cosine -3.4 4.86 7 -2.9 5.4 7 -2.74 5.79 7
Jaccard -1.63 5.99 7 -1.11 6.11 8 -0.56 6.61 8

Euclidean -4.57 4.86 7 -4.12 5.4 7 -3.96 5.79 7
Most

Informative
(MI)

Cosine -8.34 4.42 5 -4.91 4.25 7 -2.87 4.64 7
Jaccard -7.09 7.45 5 -5.71 6.24 7 -2.89 6.9 7

Euclidean -5.15 4.49 8 -1.21 6.99 9 -0.82 6.9 10

Weight
(WE)

Cosine -4.87 4.68 8 -1.81 5.32 9 -1.65 5.63 9
Jaccard -2.35 5.99 7 -1.84 6.11 8 -1.3 6.61 8

Euclidean -5.31 5.07 8 -2.37 5.4 9 -2.21 5.72 9
Static

Feature
(SF)

Cosine -8.65 3.45 6 -8.12 3.25 7 -7.71 3.25 7
Jaccard -3.26 3.14 7 -2.72 3.14 8 -2.26 3.16 8

Euclidean -8.6 3.5 6 -8.09 3.3 7 -7.68 3.3 7

Simulated
Annealing

(SA)

Dynamic
Feature
(DF)

All
(AL)

Cosine -3.12 9.07 3 -1.32 8.37 6 -1.05 7.18 7
Jaccard -8.13 6.12 7 -1.91 7.89 7 -1.59 8.07 7

Euclidean -3.12 9.07 3 -1.28 7.26 7 -0.94 6.53 8
Most

Informative
(MI)

Cosine -3.93 8.1 6 -2.3 9.35 7 -1.63 9.7 7
Jaccard -4.97 5.55 7 -1.26 7.45 8 -0.07 7.57 8

Euclidean -6.15 11.38 2 -3.47 8.87 5 -2.65 8.78 6

Weight
(WE)

Cosine -3.4 9.07 3 -1.67 9.04 5 -1.16 6.87 7
Jaccard -8.65 4.7 7 -2.45 6.41 7 -2.03 6.86 7

Euclidean -2.75 7.94 5 -1.51 8.14 6 -1.03 7.38 7
Static

Feature
(SF)

Cosine -10.04 5.49 5 0.33 5.08 8 0.67 6.01 7
Jaccard -7.09 3.21 5 -1.93 3.82 5 -0.9 5.18 6

Euclidean -10.42 5.49 5 -0.13 5.08 8 0.35 6.01 7

Random
(RA)

Dynamic
Feature
(DF)

All
(AL)

Cosine -5.69 6.64 4 0.21 6.45 9 0.57 6.61 9
Jaccard -6.53 4.95 5 -1.39 5.78 7 -0.69 6.19 8

Euclidean -4.38 5.33 5 0.47 5.86 10 0.87 6.09 10
Most

Informative
(MI)

Cosine -4.94 8.79 6 0.51 9.13 9 1.23 9.61 9
Jaccard -5.07 5.94 6 -1.51 7.39 7 -0.97 7.32 8

Euclidean -6.92 7.41 3 -2.63 7.02 7 -1.74 7.15 8

Weight
(WE)

Cosine -6.02 6.31 4 -2.17 6.52 8 -1.53 6.37 9
Jaccard -6.53 4.95 5 -1.39 5.78 7 -0.69 6.19 8

Euclidean -5.86 6.7 5 -2.37 6.19 8 -0.64 5.84 10
Static

Feature
(SF)

Cosine -3.29 3.9 6 0.85 3.84 9 2.08 5.14 10
Jaccard -4.83 3.1 7 0.24 2.88 10 1.66 4.33 11

Euclidean -3.42 4.01 6 0.57 3.82 9 1.79 4.73 10

All
(AL)

Dynamic
Feature
(DF)

All
(AL)

Cosine -5.51 5.44 6 -3.07 6.44 7 -2.9 6.91 7
Jaccard -4.11 4.46 6 -3.86 4.99 6 -3.06 5.78 7

Euclidean -5.77 5.14 6 -3.1 6.46 7 -2.9 7.01 7
Most

Informative
(MI)

Cosine -6.58 10.56 5 -4.28 9.04 7 -1.69 9.41 7
Jaccard -6.95 4.8 6 -4.66 5.62 6 -1.49 6.24 7

Euclidean -7.92 5.19 6 -4.67 5.92 8 -4.53 6.15 8

Weight
(WE)

Cosine -5.68 5.62 6 -3.16 6.59 7 -2.98 7.06 7
Jaccard -4.11 4.46 6 -3.86 4.99 6 -3.06 5.78 7

Euclidean -5.76 5.09 6 -3.12 6.42 7 -2.92 6.97 7
Static

Feature
(SF)

Cosine -10.31 5.17 4 -6.76 5.55 4 -6.54 5.93 4
Jaccard -3.63 4.52 5 -1.74 4.36 6 -1.57 4.36 6

Euclidean -10.26 5.26 4 -6.73 5.65 4 -6.51 6.03 4

Finding�Good�Compiler�Optimization�Sets�-�A�Case-based�Reasoning�Approach

511

strategy got the best results in general. The use
of random collection reached the best improve-
ments. This strategy is the best for cBench in API,
APIE, and NPI. The improvements of the simu-
lated annealing are qualitative improvements, i.
e., the cases in this collection reaches good im-
provements, but they cover a small number of pro-
grams. It can be seen in the results obtained by
SPEC CPU2006. We also must highlight that the
random approach in SPEC CPU2006 achieves the
best API and NPI. The use of the collection with
all cases not always obtained the best improve-
ment. It occurs due to the potential previous cases
is selected based on training programs, and not
based on test programs. When the system uses
the collection that store all cases, it can chooses
a different case to validate the same test program.
Note that a good case for a training program, not
always is best for a test program.

Similarities. The similarity models have different
performance. In cBench, the Jaccard similar-
ity model reached the best results. This model
achieved the best improvements, and covered the
most programs. In SPEC CPU2006, we have
an scenario that Euclidean distance improved the
most programs in general (NPI). However, the
best percentage improvement for all programs
(API) was obtained by Jaccard, and the best
percentage improvement excluding the programs
showing no improvement (APIE) was obtained by
Cosine.

Analogies. Increasing the number of analogies in-
creases the API, APIE and NPI. This increase
happens because when we choose more optimiza-
tion sets to evaluate, we increase the probability
of chosing a good case. In general, 3 analogies in-
creases the performance up to 15%, and the cover-
age up to 61%, respectively. While, using 5 analo-
gies increases the performance up to 4%, and the
coverage up to 71%. Both, comparing with a con-
figuration that uses only 1 analogy. This give us
an idea that if we have two similar programs P
and Q, and the optimization set S that is good for
P, there is a high probability of S be good for Q.
Otherwise, if S is a bad solution for P it also has a
high probability of being a bad solution for Q.

Test Programs. Observing our two benchmarks,
SPEC CPU2006 can not be covered by our past
examples. cBench reached best results evaluating
this criteria. It indicates that cBench is more sim-
ilar to microkernels than SPEC CPU2006.

Feature. The most informative dynamic features
obtained the best results, specially in SPEC

CPU2006. For cBench, not only dynamic features
are required to cover all programs, we need some
static features too.

6.2 CBR and Best10

In order to compare the performance of our CBR ap-
proach, we implemented the Best10 algorithm pro-
posed by Purini and Jain (Purini and Jain, 2013).
The Best10 algorithm finds the best 10 compiler op-
timization sets that cover several programs. To find
these sets, it is necessary to downsample the compiler
search space. It is done extracting from each train-
ing program, the best case from each collection of
previous cases. In our experiments this new collec-
tion has 183 cases. After excluding the redundancies,
the Best10 algorithm reduces the sample space in 10
cases. The work of Purini and Jain details this algo-
rithm (Purini and Jain, 2013).

Tables 8 and 9 show the best results for each
benchmark, using CBR with 5 analogies (the best
configuration). In addition, these tables show the re-
sults obtained by Best10 algorithm.

The best results obtained by each program indi-
cates that our CBR apprach is able to outperform the
well-engineered compiler optimization level O3, and
Best10 in several programs. CBR outperforms Best10
in 21 programs of cBench, and 15 programs of SPEC
CPU2006.

The results show several configurations reaches
the best improvements, mainly for SPEC CPU2006
and CRC321. In addition, these improvements are
better than that obtained by Best10.

The results also indicate that CBR approach is bet-
ter when using with cBench than SPEC CPU2006. In
cBench, only for 6.45% of programs our CBR ap-
proach did not find a good previous case. This per-
centage increases in SPEC CPU2006 (26.32%). It in-
dicates that our approach needs to be improved, in or-
der to achieve better performance in complex bench-
marks and cover more programs.

The improvement obtained by the CBR approach
is better than that obtained by Best10, in cBench and
SPEC CPU2006. In fact, Best10 does not outperform
CBR. It indicates that the best choice is to analyze

1For CRC32 the configurations that reach the best improvement

are AL.DF.MI.E, AL.SF.AL.J, AL.SF.AL.C, AL.SF.AL.E, SA.DF.AL.J,

SA.DF.MI.J, SA.DF.WE.J, SA.DF.AL.C, SA.DF.MI.C, SA.DF.WE.C,

SA.DF.AL.E, SA.DF.MI.E, SA.DF.WE.E, SA.SF.AL.J, SA.SF.AL.C,

SA.SF.AL.E, RA.DF.MI.J, RA.DF.MI.C, RA.DF.MI.E, RA.SF.AL.J,

RA.SF.AL.C, RA.SF.AL.E, GR.DF.MI.C, GR.SF.AL.J, GR.SF.AL.C,

GR.SF.AL.E, GT.DF.AL.J, GT.DF.MI.J, GT.DF.WE.J, GT.DF.AL.C,

GT.DF.WE.C, GT.DF.AL.E, GT.DF.MI.E, GT.DF.WE.E, GT.SF.AL.J,

GT.SF.AL.C, and GT.SF.AL.E.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

512

Table 8: The Best Results obtained by cBench.

CBR Best10Program
Configurations Imp. (%) (%)

bitcount
AL.DF.AL.C, AL.DF.WE.C
AL.DF.AL.E, AL.DF.MI.E
AL.DF.WE.E

1.276 -45.748

qsort1 GR.DF.MI.C 10.958 6.709
susanc RA.SF.AL.J 31.561 27.042
susane SA.DF.MI.C 4.279 1.862

susans

SA.DF.AL.J, SA.DF.WE.J
SA.DF.AL.C, SA.DF.WE.C
SA.DF.AL.E, SA.DF.MI.E
SA.DF.WE.E

1.119 0.784

bzip2d SA.DF.MI.J 20.796 39.972
bzip2e RA.DF.MI.J 5.996 4.394

jpeg c
RA.DF.AL.J, RA.DF.MI.J
RA.DF.WE.J

11.436 5.686

jpeg d RA.SF.AL.C, RA.SF.AL.E 8.086 4.894
lame AL.SF.AL.J 7.554 8.748
mad GR.SF.AL.J 2.038 1.303
tiff2bw RA.DF.MI.E 16.784 7.449
tiff2rgba SA.DF.MI.E 14.194 7.485

tiffdither
SA.DF.AL.J, SA.DF.WE.J
SA.DF.MI.C

-0.048 0.121

tiffmedian
RA.DF.MI.J, RA.DF.AL.C
RA.DF.WE.C, RA.DF.AL.E
RA.DF.WE.E

16.972 23.049

dijkstra GR.DF.AL.J, GR.DF.WE.J 1.586 0.415
patricia GT.DF.MI.E 0.321 0.562

ghostscript SA.DF.MI.J 0.191 0.318
rsynth RA.DF.MI.C 0.482 0.376
stringsearch1 RA.DF.MI.J, RA.DF.MI.E -2.432 -18.242

blowfish d GR.DF.MI.E, GT.DF.MI.J 4.074 4.124

blowfish e
GR.DF.MI.E, GT.DF.AL.J
GT.DF.MI.J
GT.DF.WE.J

4.053 3.943

pgp d RA.SF.AL.J, RA.SF.AL.C 4.159 1.902
pgp e SA.SF.AL.E 1.216 0.587

rijndael d
SA.DF.AL.C, SA.DF.WE.C
SA.DF.AL.E, SA.DF.MI.E
SA.DF.WE.E

13.125 0.003

rijndael e
SA.DF.AL.C, SA.DF.WE.C
SA.DF.AL.E, SA.DF.MI.E
SA.DF.WE.E

14.659 -2.211

sha SA.DF.AL.J, SA.DF.WE.J 6.969 7.605

CRC32 *1 2.126 2.126

adpcmc
AL.DF.AL.C, GT.DF.AL.C
GT.DF.WE.C, GT.DF.AL.E
GT.DF.WE.E

13.336 5.831

adpcmd RA.SF.AL.J 16.96 11.183
gsm SA.DF.AL.C, SA.DF.WE 1.609 1.967

API 7.593 3.656
APIE 8.202 6.412
NPI 29 28

the characteristic of a specific program, and not try to
cover several programs.

6.3 Coverage

The results shown in the previous section presented a
difficult, in using a CBR approach to find the best pre-
vious case that outperforms the well-engineered com-
piler level -O3, namely: it is necessary to try several
configurations. This is a problem, due to the high re-
sponse time. However, it is possible to use few con-
figurations and obtain good results.

Table 9: Best Results obtained by SPEC CPU2006.

CBR Best10
Program

Configurations Imp. (%) (%)

perlbench AL.DF.MI.C, SA.DF.MI.C 12.926 10.138

bzip2 RA.DF.MI.C 6.882 7.280

gcc GR.DF.MI.C 13.43 -2.929

mcf RA.SF.AL.C, RA.SF.AL.E 10.128 9.307

milc
GT.DF.AL.J, GT.DF.WE.J

GT.DF.WE.C, GT.DF.MI.E

GT.DF.WE.E

3.49 -1.568

namd AL.DF.MI.J, SA.DF.MI.J 5.582 4.928

gobmk RA.DF.AL.J, RA.DF.WE.J -0.176 -2.006

dealII
GR.DF.AL.J, GR.DF.MI.J

GR.DF.WE.J
-9.654 -4.262

soplex AL.DF.MI.C -0.174 0.376

povray
GR.DF.AL.E, GR.DF.MI.E

GR.DF.WE.E
0.485 0.679

hmmer SA.DF.MI.E, RA.DF.MI.E 6.57 3.064

sjeng SA.DF.MI.C, RA.DF.MI.C 6.75 5.495

libquantum

SA.DF.AL.J, SA.DF.MI.J

SA.DF.AL.C, SA.DF.MI.C

SA.DF.WE.C, SA.DF.AL.E

SA.DF.MI.E, SA.DF.WE.E

RA.DF.MI.J, RA.DF.AL.C

RA.DF.MI.C, RA.DF.WE.C

RA.DF.AL.E, RA.DF.MI.E

RA.DF.WE.E

19.287 19.126

h264ref GT.DF.MI.C 1.825 -1.352

lbm
SA.SF.AL.C, SA.SF.AL.E

RA.SF.AL.C, RA.SF.AL.E
0.587 0.557

omnetpp AL.SF.AL.J, GR.SF.AL.J -1.303 -1.427

astar GT.SF.AL.C, GT.SF.AL.E 3.062 -6.417

sphinx3
GT.DF.AL.J, GT.DF.MI.J

GT.DF.WE.J
13.99 12.811

xalancbmk

AL.DF.AL.C, AL.DF.MI.C

AL.DF.WE.C, AL.DF.AL.E

AL.DF.MI.E, AL.DF.WE.E

GR.DF.AL.C, GR.DF.MI.C

GR.DF.WE.C, GR.DF.AL.E

GR.DF.MI.E, GR.DF.WE.E

-1.719 -3.017

API 4.840 2.897

APIE 7.499 6.706

NPI 14 11

Using only three different configurations, it is pos-
sible to reach good results, without significant loss of
performance. It is shown in Tables 10.

These results show a trade-off between perfor-
mance and response time. It means that the best per-
formance requires a high response time.

In cBench, it is necessary to tune several parame-
ters to reach good results. However, there is a loss of
performance up to 22.10%. For cBench, it is difficulty
to reduce the variety of parameters. cBench needs at
least three different collections of previous cases, and
to use dynamic and static features.

In SPEC CPU2006, the system need to be tunned
only in the similarity model. For this benchmark, the

Finding�Good�Compiler�Optimization�Sets�-�A�Case-based�Reasoning�Approach

513

Table 10: Coverage Summary.

cBench

Restriction
Description

of the best

Group

APIE
Number

of

groups

No Restriction
RA.SF.AL.J

SA.SF.AL.E

AL.DF.MI.E

6.389 6

Only two Collections - - -

Only one Collection - - -

SPEC CPU2006

Restriction
Description

of the best

Group

APIE
Number

of

groups

No Restriction
RA.DF.MI.C

GR.DF.MI.E

GR.DF.MI.C

6.678 76

Only two Collections
RA.DF.MI.C

GR.DF.MI.E

GR.DF.MI.C

6.678 49

Only one Collection
GR.DF.MI.E

GR.DF.MI.C

GR.DF.MI.J

5.978 1

lost of improvement ranges from 10.95% to 20.28%.
In this benchmark, the reduced number of collections
is an excellent result, because this reduces the time
spent in the offline phase.

7 CONCLUSIONS AND FUTURE
WORK

Case-based Reasoning Approach.In this paper
we revisited the work of Limaet al., in oder to
explore new strategies of finding good compiler
optimization sets. The strategy is to create an
exploratory space that will be used by the Case-
based Reasoning approach to predict the compiler
optimization set, which should be enabled on an
unseen program.

Results. Our work indicate that if the main goal
is to find the best configuration that achieves the
best results, an interesting way it to use a random
strategy to build a collection of previous cases,
static features and Jaccard similarity model. On
the other hand, if the main goal is to cover more
programs, the use of dynamic features will be
more useful, and metaheuristics. The use of meta-
heuristics improves the covering range.

In our results, the random strategy was a good
choice to create a collection. Although, it was not
expected. It does not mean we do not have to use
metaheuristics to create collections. The results

indicate that the collection created by the genetic
algorithm with rank selector cover the maximum
programs of the SPEC CPU2006 benchmark.

It is possible to find few configurations that
achieves a good performance. It reduces the time
spend in offline and online phases. However, there
is a trade-off between response time and perfor-
mance. Reducing the response time, in general,
decreases the average percentage improvement.

The CBR approach obtained good improve-
ments. It obtained an average percentage im-
provement of 4.84% for SPEC CPU2006, where
some programs achieved a improvement up to
10%. For cBench, the CBR obtained an aver-
age of 7.499%, where some improvements up to
15%. Besides, our CBR approach outperforms
the approach proposed by Purini and Jain, namely
Best10.

Critical Discussion. This work shows that it is dif-
ficult to achieve performance based on only one
configuration. Although, it is possible to achieve
a performance better than state-of-the-art algo-
rithms, it is necessary a high response time. Be-
sides, it is difficult to achieve a good performance
for complex programs.

We should note that finding the best compiler
optimization set for a specific program, as defined
by its input, is a problem without solution. There-
fore, the metric that we use is the best improve-
ment achieves by the best algorithm, presented in
the literature (the state-of-the-art).
The deficiency of all compiler optimizations or-

chestration strategies is to handle programs (train-
ing and test) as a black box. Programs are com-
posed by several different blocks. It indicates that
each block will probably be best optimized by a
specific compiler optimization set. It has to be in-
vestigated by new projects, in order to improve the
state-of-the-art.

Future Work. We plan to propose new strategies
to characterize programs, new strategies to create
collections of previous cases, and new strategies
to select previous cases. In addition, we are inter-
ested in proposing a CBR approach that is able to
find different previous cases for different parts of
the program.

ACKNOWLEDGEMENTS

The authors would like to thank CAPES for the finan-
cial support.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

514

REFERENCES

Aamodt, A. and Plaza, E. (1994). Case-based reasoning;
foundational issues, methodological variations, and
system approaches.AI Communications, 7(1):39–59.

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006).
Compilers: Principles, Techniques and tools. Prentice
Hall.

cBench (2014). The collective benchmarks.
http://ctuning.org/wiki/index.php/CTools:CBench.
Access: January, 20 - 2015.

Cooper, K. and Torczon, L. (2011).Engineering a Com-
piler. Morgan Kaufmann, USA, 2nd edition.

Erbacher, R. and Hutchinson, S. (2012). Extending case-
based reasoning to network alert reporting. InPro-
ceeding of the International Conference on Cyber Se-
curity, pages 187–194.

Henning, J. L. (2006). Spec cpu2006 benchmark de-
scriptions. SIGARCH Computer Architecture News,
34(4):1–17.

Jimenez, T., de Miguel, I., Aguado, J., Duran, R., Mer-
ayo, N., Fernandez, N., Sanchez, D., Fernandez, P.,
Atallah, N., Abril, E., and Lorenzo, R. (2011). Case-
based reasoning to estimate the q-factor in optical net-
works: An initial approach. InProceedings of the Eu-
ropean Conference on Networks and Optical Commu-
nications, pages 181–184.

Kim, W., Baik, S. W., Kwon, S., Han, C., Hong, C., and
Kim, J. (2014). Real-time strategy generation system
using case-based reasoning. InProceedings of the In-
ternational Symposium on Computer, Consumer and
Control, pages 1159–1162.

Lattner, C. and Adve, V. (2004). Llvm: A compilation
framework for lifelong program analysis & transfor-
mation. In Proceedings of the International Sym-
posium on Code Generation and Optimization, Palo
Alto, California.

Lima, E. D., De Souza Xavier, T., Faustino da Silva, A.,
and Beatryz Ruiz, L. (2013). Compiling for perfor-
mance and power efficiency. InProceedings of the In-
ternational Workshop onPower and Timing Modeling,
Optimization and Simulation, pages 142–149.

LLVM Team (2014). The llvm compiler infrastructure.
http://llvm.org. Access: January, 20 - 2015.

Mendes, E. and Watson, I. (2002). A Comparison of
Case-Based Reasoning Approaches to Web Hyperme-
dia Project Cost Estimation.Proceedings of the Inter-
national Conference on World Wide Web, pages 272–
280.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill,
Inc., New York, NY, USA, 1 edition.

Mucci, P. J., Browne, S., Deane, C., and Ho, G. (1999).
Papi: A portable interface to hardware performance
counters. InProceedings of the Department of De-
fense HPCMP Users Group Conference, pages 7–10.

Muchnick, S. S. (1997).Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Purini, S. and Jain, L. (2013). Finding good optimization se-
quences covering program space.ACM Transactions
on Architecture and Code Optimization, 9(4):1–23.

Richter, M. M. and Weber, R. (2013).Case-Based Reason-
ing: A Textbook. Springer, USA.

Shalev-Shwartz, S. and Ben-David, S. (2014).Understand-
ing Machine Learning: From Theory to Algorithms.
Cambridge University Press, Cambridge, USA.

Srikant, Y. N. and Shankar, P. (2007).The Compiler Design
Handbook: Optimizations and Machine Code Gener-
ation. CRC Press, Inc., Boca Raton, FL, USA, 2nd
edition.

Zhou, X. and Wang, F. (2014). A spatial awareness case-
based reasoning approach for typhoon disaster man-
agement. InProceedings of the IEEE International
Conference on Software Engineering and Service Sci-
ence, pages 893–896.

Zhou, Y.-Q. and Lin, N.-W. (2012). A Study on Optimizing
Execution Time and Code Size in Iterative Compila-
tion. Third International Conference on Innovations
in Bio-Inspired Computing and Applications, pages
104–109.

Finding�Good�Compiler�Optimization�Sets�-�A�Case-based�Reasoning�Approach

515

