
A DSL for Configuration Management of Integrated Network
Management System

Rosangela Pieroni1,2 and Rosângela Aparecida Dellosso Penteado1
1Department of Computing, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil

2CPqD (Research And Development Center In Telecommunications), 13086-902, Campinas, SP, Brazil

Keywords: Model-Driven Development (MDD), Domain Specific Languages (DSL), Integrated Network Management.

Abstract: A management system of networks that takes all elements into consideration, regardless of the network
technology, is one of the most emphasized requests by telecommunication companies. However, developing
this system is not a trivial task. Furthermore, the software development process based on source code makes
the task even more complex and requires a great effort of the developers to perform code update and
maximize the reuse of software artifacts to insert a new network technology. In this paper, we propose a
DSL approach to specify new network technologies into integrated network management system developed
by a real company. An experiment was conducted according to all steps proposed by Wohlin (Wohlin et al.,
2000) to validate our DSL approach versus specialization of classes with the purpose of increasing
advantages with respect to time and number of errors inserted in the source code. Although the time spent to
develop the application using the two approaches was not statistically different, all other results obtained
such as code generated automatically without present errors and all comments reported by the participants
regarding the ease of use of DSL, it encourages the development of new DSLs to others functions of the
integrated network management system.

1 INTRODUCTION

The developing a management system of networks
that takes all elements into consideration, regardless
of the network technology, is one of the most
emphasized requests by telecommunication
companies. The advantage of an integrated
management is to obtain the information of the
network elements from a single software system.
Once this is obtained, another advantage is to
correlate the alarms of network elements and find
the cause of the problem more assertively and,
finally, fix it. This results in the provision of better
quality services, which will be available in the
telecommunication network to its users.
The main customers of the integrated network
management are those who already have a
telecommunication network comprising elements of
various technologies. Customers are interested in
increasing assertiveness of the network problem
search to make the necessary corrections without
diminishing the quality of services provided. In this
context, it may be necessary to add new network
technologies into the system. However, developing

an integrated network management system is not a
trivial task and it is necessary to know each network
technology. Furthermore, the software development
process based on source code makes the task even
more complex and requires a great effort of the
developers to perform code update and maximize the
reuse of software artifacts to insert a new network
technology.

Model Driven Development (MDD) is an
alternative to decreasing or minimizing these
problems, considering the importance of models in
software development process (Mellor; Clark;
Futagami, 2003). In this paper, we propose a DSL
approach to specify new network tecnologies. Thus,
the system will be able to discover the new network
elements belonging to a new network technology,
and, from this discovery, these new elements will be
managed by the system. To evaluate this approach,
we will consider an integrated network management
system developed by a company, whose name is
withheld for reasons of confidentiality. Although the
network management consists of five management
areas (configuration, fault, security, performance
and accounting), the system analyzed consists of

355Pieroni R. and Aparecida Dellosso Penteado R..
A DSL for Configuration Management of Integrated Network Management System.
DOI: 10.5220/0005379903550364
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 355-364
ISBN: 978-989-758-097-0
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

only two of them, configuration and fault.
Configuration management performs the discovery
of the network elements belonging to technologies
known by the system. The fault management
handles events received from the discovered
network elements. When these events are classified
as alarms, correlation rules are applied in order to
find out the root cause of the problem in the
telecommunication network more assertively. Thus,
the trouble ticket process to solve the problem and
make the network operational and available again
becomes more effective.

In this section we have described the general
purpose of this paper. In Section 2 we will show the
background study that resulted in this paper. In
Section 3 we will present the DSL approach. In
Section 4 we will describe the experiment done to
validate the DSL. In Section 5 we will present the
analysis of data gathered during the experiment. In
Section 6 we will present the threats to the
experiment’s validity. In Section 7 we will present
works related to the theme. In Section 8 we will
present the limitations of the proposed solution. In
Section 9 we will present the conclusion and
intended future work. Finally, in Section 10 we will
present the references.

2 BACKGROUND

Model Driven Development (MDD) is a technique
for developing software systems in which models of
high-level abstraction describe the system functions
(Gronback, 2009; Lucrédio et al, 2008; Völter,
2008). These models are refined in other models
until they are transformed into a source code. Thus,
the higher level of abstraction model becomes part
of the software.

In MDD, the functions are represented by models
and correspond to the business domain rules of a
system. All models are specified according to the
language of its metamodel (meaning, the
representation obtained by high level models of
abstraction regarding the business domain rules).
The models are incorporated as a part of the final
software product by modeling techniques and
automatic code generation (Durelli, 2011).

With the use of high level models of abstraction
and automatic code generation, software developers
are shielded from the complexities of the
implementation platform (France; Rumpe, 2007).
They may dedicate themselves more to the business
domain (Hutchinson et al., 2011), because the
complexity of the software is hidden by the artifact

automatic generators. These artifacts reflect the
solution expressed in models of high abstraction
level (Schmidt, 2006). MDD may, therefore: provide
software reuse more procedurally enables faster
development, lower costs, make software production
more flexible, and allow changes to be made more
quickly (Antkiewicz; Czarnecki, 2006).

Domain Specific Language (DSL) is defined as a
small and declarative computer language which is
used in a particular domain in order to perform
specific tasks (Fowler, 2005; Deursen et al., 2000).
DSLs are used in MDD to facilitate modeling and
transformations, since they are restricted to a domain
language that allows the generation of the code
proposed by MDD (Djukic et al., 2011).

The advantages of DSL are, as follows: it allows
specific abstractions of a domain which are pre-
defined and directly represent concepts of the
application domain; it increases the level of
abstraction; it generates concise codes; it prepares
the codes to be reused; it generates just enough
documentation for its use; it provides the
stakeholders, as well as domain experts and
developers with insights about the system. This way,
developers can worry about other parts of the
business system and validate and optimize only the
domain level.

However, DSL requires modeling tools,
processing and code generators that are more
complex in comparison to those used in traditional
development. Thus, when a DSL is developed, the
team’s experience in these tools should be evaluated
and, where necessary, a learning curve shall be
considered as an option. Moreover, when there is an
expert in the domain problems in the development
team it’s possible to make the development more
incisive, adding relevant knowledge of the domain.
In classical development, there is not always the
presence of an expert in the field of business on the
development team to assist the work of the
requirements analyst, who is responsible for the
gathering of software requirements with the
stakeholders.

3 DSL DEVELOPMENT

Evidence of the importance and necessity to apply
software reuse techniques in a higher level of
abstraction is derived from the characteristics of
integrated network management system. We
proposed applying MDD concepts to develop a
DSL, which will facilitate the process of specifying
a new network technology in the integrated network

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

356

management system. To exemplify, once the new
network technology is specified in the model and the
automatic code generation has taken place, the latter
will hide the complexity of development platforms
from the developers, the software can be developed
within the schedule targets and effort reduction and,
consequently, it will be possible to meet the market's
increasing demands, keeping up with quality
standards of telecommunications services provision.

Eclipse Modelling Framework (EMF) (EMF,
2013) was the tool chosen to develop our purpose.
EMF models are represented according to its
metamodel, called Ecore. Acceleo (Acceleo, 2013)
was the specific tool used to create the templates to
transform Model to Code (M2C) in this approach.

To apply the concepts of MDD and develop
DSL, a specific function was selected among the
configuration management functions of the
integrated network management system of a real
company. This system has many functions (common
and specific ones) and is continuously evolving due
to the requests of other functions arising from
various customers. Therefore, it was necessary to
establish a baseline system and delimit the scope of
the specification of a new network technology. Thus,
the application of the concepts of MDD through the
DSL development did not cover the entire integrated
management system networks. The function selected
was chosen because it was considered critical due to
the variety of technologies that should be managed
by the system and for being one of the features that
most suffers change requirements.

The metamodel of the DSL for configuration
management for the integrated network management
system can be seen in Figure 1. The business rules to
specify a new network technology are presented by
this metamodel and basically define that the network
technology could have zero or several configuration
groups. These configuration groups can refer to a
field type or a table type. The elements of these
configuration groups are the attributes. These
attributes are specific of network technology and
must be presented in the MIB (Management
Information Base) of the network element. The
communication protocol used to perform discovery
of the network elements is SNMP (Simple Network
Management Protocol) therefore, the elements must
have a MIB which is basically retrieved
management information.

Part of the classes diagram of this system, which
is responsible for specifying a new network
technology, in classical development, can be seen in
Figure 2. In this classes diagram, in order to perform
the discovery of a new network element belonging

Figure 1: Metamodel for configuration management.

to a new technology it is necessary to implement two
Java classes: Discovery<Technology>Session and
Discovery<Technology>, where <Technology> is
replaced with the name of the technology. The
Discovery<Technology>Session class is responsible
for registering the new technology in the list of
technologies managed by the system. And the
Discovery<Technology> class is responsible for
defining the attributes of the network elements of the
new technology to be managed by the system. In
Discovery<Technology> class are encapsulated the
particularities of the new technology to be managed
by the system. Thus, when a new technology
emerges and needs to be managed by the system, the
developer must implement two new classes
corresponding to the new technologies:
Discovery<Technology>Session and
Discovery<Technology>.

Acceleo tool (Acceleo, 2013) is used to
transform the specified model into Java code using
templates. The template developed corresponds to
the two Java classes. Thus, the code must to be
written by the developers to specify a new network
technology in a classic development process is
automatically generated when the DSL approach is
used.

A�DSL�for�Configuration�Management�of�Integrated�Network�Management�System

357

Figure 2: Network technology classes diagram.

The specification of the new network technology
using the model and making the transformation
model to code replaces the work of the developer of
a real company that, currently, needs to conduct the
specialization of classes manually for each new
network technology that must be managed by
integrated network management system.

The specification of a new network technology
depends exclusively on the requirements that the
network expert sets. This specification is a
requirement document used by the developers to
create the model. An example can be seen in Figure
3. In this specification, the technology is called
Cisco, and its MIB identification (OID) is
.1.3.6.1.4.1.13727.2300.1.1.1. This technology has a
configuration group of field type called wlOlsr. This
configuration group has two attributes:
wlOlsrIpGateway and wlOlsrInternetGateway,
which have the MIB identification
.1.3.6.1.4.1.13727.2300.2.1.1.2.1.1.0 and
.1.3.6.1.4.1.13727.2300.2.1.1.2.1.2.0, respectively.
This technology has also a configuration group of
table type called ethNetworkIpsecTable. This
configuration group has four attributes:
ethNetworkIpsecTable, mode, source IP and
destination IP, which have the MIB identification
.1.3.6.1.4.1.13727.2300.2.1.1.3.3.1.1,
.1.3.6.1.4.1.13727.2300.2.1.1.3.3.1.2,
.1.3.6.1.4.1.13727.2300.2.1.1.3.3.1.3 and
.1.3.6.1.4.1.13727.2300.2.1.1.3.3.1.6, respectively.

The model for this new network technology
specified using our proposed metamodel can be seen
in Figure 4. The new network technology is
represented by a tree. GIConfiguration is the root of
tree, the technology Cisco has two configuration
groups, and each group has its attributes. Each
attribute has a property window where it is possible
to inform the MIB identification and the name such
as it is in the specification of a new network

technology. For instance, the ethNetworkIpsecTable
attribute can be seen in Figure 5.

Figure 3: Specification of a network technology.

After the developer specifying the model for a new
network technology, the code generation
corresponding to the model can be requested. In
turn, the code of two classes
Discovery<Technology> and
Discovery<Technology>Session is generated
completely autonomously, i.e., the developers do not
have to write any code. For instance, the code
generated to the field configuration group is the code
shown in Figure 6. The code to the table
configuration group is the code shown in Figure 7.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

358

Figure 4: Network technology model.

Figure 5: Attributes property window.

4 EVALUATION OF THE
APPROACH

In this section we present an experiment conducted
using our DSL approach. It, has been compared with
the previous method, which is the specialization of
classes, currently used for the definition of a new
network technology.

This experiment was conducted according to all
steps proposed by Wohlin (Wohlin et al., 2000). It
was defined as: (i) analysis of the DSL developed
and described in Section 3, (ii) with the purpose of
increasing advantages, (iii) with respect to efficiency
(time) and easiness (number of errors inserted in the
source code), (iv) from the points of view of ten
developers who develop integrated networks
management system, (v) in the context of the real
company.

4.1 Planning

The planning phase was divided into six steps
described in the following subsections:

4.1.1 Context Selection

The experiment has been performed in real
company, whose name was omitted for purposes of
confidentiality. It involved the participation of ten
developers who know the integrated network
management system.

4.1.2 Formulation of Hypotheses

Figure 6: Code generated to the field configuration group.

Figure 7: Code generated to the table configuration group.

The questions, metrics and hypotheses defined for
this experiment were:

 Question 1 (Q1): Is the definition of a new
network technology using DSL approach more
efficient than using specialization of classes
approach?

o Measure 1 (M1): Time (t) spent by
participants to define a new network
technology

 Null Hypothesis (H10): There is no significant
time difference in the definition of a new
network technology using DSL or
specialization of classes approach.

 Alternative Hypothesis (H11): The time spent
by participants to define a new network
technology is shorter when DSL approach is
used.

 Alternative Hypothesis (H12): The time spent
by participants to define a new network
technology is shorter when specialization of
classes approach is used.

NodeExtensionTable extTable = new
NodeExtensionTable();
extTable.setFiledSetName("ethNetwork
IpsecTable");
TableValues table = new
TableValues();
table.addColName(".1.3.6.1.4.1.13727
.2300.2.1.1.3.3.1.1",
"ethNetworkIpsecTable");
table.addColName("1.3.6.1.4.1.13727.
2300.2.1.1.3.3.1.2 ", "Mode");
table.addColName(".1.3.6.1.4.1.13727
.2300.2.1.1.3.3.1.3 ", "Source IP");
table.addColName(".1.3.6.1.4.1.13727
.2300.2.1.1.3.3.1.6", "Destination
IP");
session.getTable(table);

extField = new NodeExtensionField();
extField.setFiledSetName("wlOlsr");
extField.addFieldValue("wlOlsrIpGate
way",session.getOID(".1.3.6.1.4.1.13
727.2300.2.1.1.2.1.1.0"));

extField.addFieldValue("wlOlsrIntern
etGateway",session.getOID(".1.3.6.1.
4.1.13727.2300.2.1.1.2.1.2.0"));
ne.addExtensionField(extField);

A�DSL�for�Configuration�Management�of�Integrated�Network�Management�System

359

 Question 2 (Q2): Does the DSL approach
reduce the participants chance of making
mistakes in the source code when defining a
new network technology?

o Measure 2 (M2): Number of problems (p)
found in the source code used to define a new
network technology

 Null Hypothesis (H20): There is no significant
difference in the number of problems found
in the source code when the DSL or the
specialization of classes approach is used.

 Alternative Hypothesis (H21): The number of
problems found in the source code is smaller
when the DSL approach is used.

 Alternative Hypothesis (H22): The number of
problems found in the source code is smaller
when the specialization of classes approach is
used.

4.1.3 Independent Variables

This experiment had the following independent
variables: 1) the integrated network management
system; 2) Eclipse environment; 3) the way the
development of integrated network management
system in a real company is done today, which is
specialization of classes to define a new network
technology; 4) Java programming language; 5) DSL
developed; 6) specifications of two new network
technologies.

4.1.4 Dependent Variables

The dependent variables are, as follows: 1)
efficiency, which is related to the time taken to
define a new network technology and 2) the number
of problems found in the source code generated due
to mistakes made by the participants during the
definition of a new network technology.

4.1.5 Experiment Design

The experimental model used was factor two paired
treatments (Wohlin et al., 2000). In this experiment,
the factor was the use of an approach to define a new
network technology, while the treatments were the
applied approaches – DSL and specialization of
classes.

4.1.6 Instrumentation

Participants received the following materials for the
execution of the experiment: one document
specifying a new network technology; Eclipse EE
configured with the integrated network management

system; Eclipse Modeling with DSL plug-ins; one
guidebook on how to create the DSL model and to
request to generate code from the model; one
guidebook on how to specialize the classes and Data
Collection Form. In this classes specialization
guidebook, classes had been implemented
previously. Therefore, the participants only had to
specify the network technology related. Also, in
Data Collection Form, the participants had to report
the time spent to develop the application, the
interruptions due to doubts and errors, and their
opinions and suggestions about the use of DSL and
specialization of classes.

4.2 Operation

After defining and planning the experiment, its
operations were carried out in two steps: Preparation
and Execution.

4.2.1 Preparation

At first, the participants filled a form reporting their
experiences with the concepts and technologies used
in the experiment. Afterwards, the participants were
trained in specialization of classes and in our
approach to define a new network technology. After
training, the participants were able to carry out the
experiment tasks.

4.2.2 Execution

Before starting the execution of the experiment, the
participants were positioned into the blocks and
received the materials referent to Task 1. Each
participant had access to an individual computer
equipped with the tools required for the application
development.

The tasks of the two blocks can be seen in Table
1. In task 1, while block 1 developed application 1
applying specialization of classes, block 2 applied
DSL to the same application. Then, in task 2, while
block 1 developed application 2 applying DSL,
block 2 applied specialization of classes to the same
application.

Table 1: Tasks of the blocks.

 Block 1 Block 2
Task

1
Application

1
Specialization

of classes
DSL

Task
2

Application
2

DSL Specialization
of classes

When all participants were commanded to execute
Task 1, they started measuring the time. Block 1

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

360

used Eclipse IDE to implement source-code to a new
network technology and block 2 used the DSL
developed to create a model and generate code
automatically to a new network technology. When
they finished the implementation, they stopped
measuring the time. Then, they executed the
implementation test to verify whether it was
developed as expected. If the test showed a
problem, the participants had to report it in the Data
Collection Form and reinitialize to measure the time
used to fix the problem found. This way, the time
measured corresponded to the time spent to
implementation correctly and not to test the
application. Task 2 was performed in a similar way
to Task 1, but now block 1 used the DSL developed
and block 2 used Eclipse IDE. In the end, the
participants commented the difficulties and
advantages of applying each approach.

5 ANALYSIS OF DATA

The experiment data is presented in Table 2. In
general, the groups developed the tasks satisfactorily
and the collected data was within the expected
limits. This means that the treatments were executed
correctly and in accordance with the planning. The
analysis of data is divided into two subsections:
Descriptive Statistics and Hypotheses Testing.

5.1 Descriptive Statistics

In Table 2, it can be seen that the participants of the
DSL approach spent less time to develop an
application in comparison to the use of
specialization of classes approach, i.e.,
approximately 45.5% against 54.5% (it can be seen
in the last line of the Table 2). Analyzing the time
spent for each participant both in the specialization
of classes and in the DSL approach, four of them
took the same time both approaches and six of them
took less time using the DSL approach. According to
the feedback provided by the participants in a form,
this result is due to the fact that, in the DSL
approach the code is generated correctly and
automatically. On the other hand, when the
participants developed the application applying the
specialization of classes approach, they spent more
time fixing the problems found. Moreover, most of
the participants reported that they found it easier
to specify the new network technology using the
DSL approach that the model created using the DSL
approach provides a broader view of the new
network technology and that it is necessary to know

Java language to use specialization of class
approach.

Regarding problems, 100% of them occurred in
the specialization of classes approach. The problems
reported by the participants were two: typing
mistakes in specifications of new network
technology and Java code error.

5.2 Hypotheses Testing

The objective of this section is to verify any degree
of significance, that is, whether it is possible to
reject the null hypothesis based on the data set
obtained. As we had defined two null hypotheses,
this section is divided into two: Hypotheses Testing
Time and Hypotheses Testing Problems.

5.2.1 Hypotheses Testing Time

Since some statistical tests are only applicable if the
population follows a normal distribution, we applied
the Shapiro-Wilk test to verify whether the
experiment data departs from linearity before
choosing a proper statistical test. All the tests were
executed with the support of Action Tool
(Estatcamp, 2013), which is the software for
statistical analysis, integrated with MS Excel.

When the result of the Shapiro-Wilk test on a
data set is smaller than 0.05 that means the chance of
data following a normal distribution is less than 5%.
Thus, it is considered, statistically, that the data did
not follow a normal distribution. The result of the
Shapiro-Wilk test considering the time spent using
specialization of classes approach was 0.6726 and
0.3606 using DSL approach. Since the result was
greater than 0.05 using both approaches, it can be
stated with a confidence level of 95% that the
experiment data related to the time spent in
application development is normally distributed.

Once the data regarding time collected in the
experiment is normalized, we decided to apply the
Paired T-Test to the experiment data to verify the
hypotheses of the experiment Q1. According to
Paried T-Test, when the result is less than 0.05, it
means that the chance of both sets of data being
statistically similar is less than 5%. So in this case,
the null hypothesis should be rejected. The result of
this test was 0.1474. Since 0.1474 is greater than
0.05, with a confidence level of 95%, we can state
there is no difference between the time spent using
the specialization of classes approach and the DSL
approach. Therefore, the null hypothesis (H10) must
be accepted.

A�DSL�for�Configuration�Management�of�Integrated�Network�Management�System

361

Table 2: Experiment data set.

Task
Specialization of Classes DSL

Participant Time(min) Problems Participant Time(min) Problems

1

S1 17 2 S6 6 0
S2 16 0 S7 15 0
S3 13 1 S8 11 0
S4 17 0 S9 15 0
S5 12 0 S10 16 0

Average 15 0,6 Average 12,6 0

2

S6 10 1 S1 13 0
S7 15 0 S2 14 0
S8 11 1 S3 9 0
S9 15 1 S4 13 0

S10 22 4 S5 12 0
Average 14,6 1,4 Average 12,2 0

Average 14,8 1 12,4 0
Percentage 54,5 100 45,5 0

5.2.2 Hypotheses Testing Problems

Similarly, we used the Shapiro-Wilk test, and its
result on the data of the number of problems in the
source code was 0.0068 using the specialization of
classes approach; and it was impossible to
calculate it using the DSL approach because all
data is equal to zero. Since the result was less than
0.05, it can be stated, with a confidence level of
95% that the data related to the number of
problems using specialization of classes approach
does not follow a normal distribution.

Thus, as the number of problems seen in the
data collected in the experiment is not normalized,
we decided to apply the Wilcoxon Signed Rank
test to the experiment data to verify the hypotheses
of the experiment Q2. According to Wilcoxon
Signed Rank test, when the result is less than 0.05
it means that the chances of both sets of data are
statistically similar – less than 5%. Therefore, the
null hypothesis should be rejected. The result of
this test was 0.0235. Since result is less than 0.05,
with a confidence level of 95%, the null hypothesis
(H20) was refuted and the H21 was accepted.
Therefore, statistically, we can conclude that the
DSL approach reduces the number of problems
compared to the specialization approach.

6 THREATS TO VALIDITY

6.1 Internal Validity

Experience level of participants: different levels of
knowledge of the participants could affect the

collected data. To mitigate this threat, we divided
the participants into two balanced blocks according
to their knowledge regarding Java programming,
design patterns, MDD and DSL. All participants
had prior experience in specialization of classes
and they were trained in the DSL approach.

Number of participants: it can be argued that
the experiment was applied with few participants.
However, they are developers who work in a real
company, participating directly or indirectly in the
development of integrated network management
system. Therefore, they are able to conduct the
experiment and make pertinent comments
regarding the two approaches applied.

Environment of the experiment: different
computers and installations could affect the
recorded timings. However, the participants used
the same hardware configurations, operation
system and software configurations.

6.2 External Validity

Interaction between configuration and treatment:
the exercises performed in the experiment were an
example of the specification of a new network
technology. Only two specifications were
developed and both had similar complexity. To
mitigate this threat, the tasks were designed
considering a real network technology.

6.3 Conclusion Validity

Measure reliability: it refers to metrics used for
measuring development effort. To mitigate this
threat we only have the time spent, which was

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

362

captured in forms filled by the participants.
Low statistic power: the ability of a statistic test

in revealing reliable data. To mitigate it, we
applied two tests: T-Tests to statistically analyze
the time spent to develop the application, and
Wilcoxon Signed-Rank test to statistically analyze
the number of problems found in the application.

7 RELATED WORKS

Santosh and Madanagopal, 2009, proposed a
Generic Proxy Agent framework to facilitate
management of heterogeneous network elements.
This framework consists of two components,
namely an SNMP Proxy Agent and Mediation
device. The mediation device is a separate software
module which actually communicates to Network
Elements by converting SNMP requests into
proprietary protocol messages and vice versa. A
proxy agent performs the translation of SNMP
requests into non-SNMP requests and vice versa.
The developed Generic SNMP Proxy Agent
framework operates with any type of Network
Element (NE) from different vendors, equipped
with its proprietary protocols. It also provides the
flexibility to add them in the network. The
developed framework assures independent
communication and management of multiple
heterogeneous NEs. The framework maintains the
list of MIBs and allows listed MIBs and its OIDs
to be registered in a limitless quantity as required
by the Proxy Agent.

Ma-kun Guo et al., 2010, proposed a kind of
network management system based on Extensible
Markup Language (XML) which has advantages in
platform-free, efficiency and flexibility to solve
problems related to extensibility configuration
management and efficient application development
processes. This approach proposes one kind of
model of SNMP MIB to transform it in XML view
and a common network management system.
Technology of the system can be used as network
management and software system development
reference. The rapid development of the network,
of SNMP scalability, efficiency, safety and other
issues of defects, XML-based network
management technology turns into a great
opportunity for development.

Our approach was developed in an integrated
network management system developed by the real
company. This system aims at managing different
types of networks and technologies such as: IP,
IP/MPLS, WiMAX, GPON, transport networks

(WDM, SDH, PDH, optical modems and SHDSL)
and plant telecommunications infrastructure. Using
the DSL approach it is possible to specify new
network technologies in a high level of abstraction,
i.e., in a model.

8 LIMITATIONS

Only one function of the integrated network
management system was chosen to integrate the
DSL developed. Thus, the DSL developed does not
cover the entire system. DSL has been developed
in Eclipse platform, therefore it is necessary that
the developer knows the Eclipse development
environment.

9 CONCLUDING REMARKS
AND FUTURE WORK

In this paper we proposed an approach that uses
DSL to facilitate the specification of a new
network technology in the integrated network
management system, and it was used by a real
company. In this approach the new network
technology is defined in a model and the
corresponding code is generated automatically.
Our approach promotes the reusing everything
from the model up to code generation. The code is
generated from a template and the template, in
turn, allows for the specification of the model,
which was made according to the rules defined in
the metamodel.

In addition, since the models are created
accordingly to the metamodel, the rules have
already been validated at the time of creation of the
model. The possibility of mistakes existing in the
Java code generated from the model is smaller than
when implemented manually because the templates
used in the generation of the code have been tested
previously.

The reports of the participants of the
experiment emphasized the easiness of use of DSL,
both in the specification of new network
technology and in a broader view of the
requirement that DSL provides, as in the
generation of Java code from the specified model
without having the concern with writing Java code.

The results obtained in the experiment were
analysed in descriptive statistics and hypotheses
testing. According to the descriptive statistics is
possible to observe that the time spent to develop

A�DSL�for�Configuration�Management�of�Integrated�Network�Management�System

363

the application using DSL approach was shorter
when specialization of classes approach was used.
However, in the hypotheses testing time according
to Paried T-Test the null hypothesis was accepted.
This hypotheses testing time result can indicate
that there were few participants in the experiment
and the time data set did not show difference.

Regarding problems, in both the descriptive
statistics and hypotheses testing, the errors in the
source code did not occur when the DSL approach
was used.

Although the null hypothesis was accepted in
the hypotheses testing time, all other results
obtained such as the descriptive statistical analysis,
code generated automatically without present
errors and all comments reported by the
participants regarding the ease of use of DSL, it
encourages the development of new DSLs to
others functions of the integrated network
management system.

In future works we intend to analyze the
functions of integrated network management
systems and propose the development of other
DSLs. And other modelling resources and MDD
technology could be useful tools to allow a more
graphical interface.

REFERENCES

Acceleo. 2013. Available in:
http://www.eclipse.org/acceleo/ and in:
http://www.acceleo.org/>.

Antkiewicz, M., Czarnecki, K., Stephan, M., 2009.
Engineering of Framework-Specific Modeling
Languages. IEEE Transactions on Software
Engineering, v. 35, n. 6, p. 795-823.

Antkiewicz, M., Czarnecki, K. Framework-specific
modeling languages with round-trip engineering. In:
NIERSTRASZ, O. et al. (Ed.). Model Driven
Engineering Languages and Systems (MoDELS
2006). [S.l.]: Springer Berlin / Heidelberg, 2006.
(Lecture Notes in Computer Science, v. 4199/2006),
p. 692–706.

Deursen, A. V., Klint, P., Visser, J., 2000. Domain-
specific languages: An annotated bibliography.
SIGPLAN Notices - ACM Press, v. 35, n. 6, p. 26–
36.

Djukic, V., Lukovic, I., Popovic, A., 2011. Domain-
Specific Modeling in Document Engineering. In:
Federated Conference on Computer Science and
Information Systems – FedCSIS. Szczecin, Polônia.
Proceedings… Washington: IEEE Computer
Society. p. 817-824.

Durelli, R. S., 2011. Uma abordagem apoiada por
linguagens específicas de domínio para criação de

linhas de produtos de software embarcado, UFSCar.
EMF. 2013. Eclipse Modeling Framework. Available in:

<http://www.eclipse.org/modeling/emf/>.
ESTATCAMP, 2013. Portal Action. Available in:

HTTP://www.portalaction.com.br.
Fowler, M., 2005. Language Workbenches: The Killer-

App for Domain Specific Languages? [S.l.]:
martinfowler.com. Available in:
<http://www.martinfowler.com/articles/languageWo
rkbench.html>.

Fowler, M. et al., 1999. Refactoring: Improving the
Design of Existing Code. [S.l.]: Addison Wesley.

France, R., Rumpe, B., 2007. Model-Driven
Development of Complex Software: A Research
Roadmap. In: 29th International Conference on
Software Engineering – Future of Software
Engineering – ICSE. Minneapolis, USA.
Proceedings… Washington: IEEE Computer Society
2007.p.37-54.

Gronback, R. C. Eclipse Modeling Project: A Domain-
Specific Language (DSL) Toolkit. 1. ed. Addison-
Wesley Professional, 2009. 736 p.

Hutchinson, J., Whittle, J., Rounccefield, M.,
Kristoffersen, S., 2011. Empirical Assessment of
MDE in Industry. In: 33RD International
Conference on Software Engineering – ICSE.
Honolulu, HI, EUA. Proceedings…New York:
ACM. p. 471-480.

Lucrédio, D., Fortes, R., Almeida, E., Meira, S.
Performing Domain Analysis for Model-Driven
Software Reuse. In: International conference on
Software Reuse: High Confidence Software Reuse in
Large Systems, 10th, 2008, Berlin. Proceedings…
2008. p. 200-211.

Ma-kun Guo, Yi-min Yu, Min Wang, Qi Yu, Research
and Implementation of Network Management
System Based on XML View. 2010. In:
International Conference on Logistics Engineering
and Intelligent Transportation Systems (LEITS),
IEEE.

Mellor, S. J., Clark, A. N., Futagami, T., 2003. Model-
Driven Development. IEEE Software, v.20, n.5, p.
14-18, Setembro 2003.

Santosh, S., Chavan and R. Madanagopal. 2009. Generic
SNMP Proxy Agent Framework for Management of
Heterogeneous Network Elements. In: First
International Conference on COMmunication
Systems And NETworks. Pages 331-336. IEEE Press
Piscataway, NJ, USA.

Schmidt, D. Guest Editor’s Introduction: Model-Driven
Engineering. IEEE Computer, v.39, n. 6, p. 25-31,
2006.

 Völter, M. MD Best Practices, 2008. Available in:
<http://www.voelter.de/>.

Wohlin, C. et al., 2000. Experimentation in Software
Engineering: An Introduction. [S.l.]: Kluwer
Academic Publishers.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

364

