Testing M2T Transformations
A Systematic Literature Review

André Abadel2, Fabiano Ferraril and Daniel Lucrédio!

1Computing Department, Federal University of S&o Carlos,
Rodovia Washington Luis, km 235, 13565-905, Sdo Carlos, SP, Brazil
2Federal Institute of Education, Science and Technology of Mato Grosso,
Estrada de Acesso a BR-158, s/n, 78600-000, Barra do Gar¢as, MT, Brazil

Keywords: Model-Driven Development, MDD, Model-to-Text, M2T, Testing Transformation Model, Complex Data.

Abstract: Context: Model-Driven Development (MDD) is about to become a reality in the development of enterprise
information systems due to its benefits, such as reduction of development and maintenance costs, and support
for controlled evolution. Consequently, testing model transformations, considering their high complexity par-
ticularly regarding Model-to-Text (M2T) transformations, plays a key role to increase the confidence in the
produced artefacts. Objective: this paper aims to characterize testing approaches and test selection criteria
that focus on M2T transformations, in particular white-box approaches. Method: the objective is accom-
plished through a systematic literature review. We defined research questions regarding the testing of M2T
transformations and extracted and analyzed data from a set of primary studies. Results: we identified a va-
riety of incipient white-box testing approaches for this context. They mostly rely on mapping strategies and
traceability of artefacts. Most of them focus on well-formedness and correctness of models and source code,
although we could notice a change of focus in most recent research. Conclusions: current solutions for testing
M2T transformations have begun to change the initial focus on well-formedness and correctness of models.
Some approaches involve techniques that establish coverage criteria for testing, whereas others try to solve the

testability across many transformations languages.

1 INTRODUCTION

A crucial success factor in the development of in-
formation systems is the alignment of system and
business goals, business semantics and business
processes. Recently, Model-Driven Development
(MDD) concepts, methodologies and technology have
been employed in the development and evolution of
web information systems (Soltani and Benslimane,
2012; Panfilenko et al., 2013; Basso et al., 2014;
Mayo et al., 2014; Garzotto, 2011). Overall, research
initiatives aim to integrate MDD with other paradigms
and technologies such as BPM (Business Process
Model), SOA (Service-Oriented Architectures) and
Agile Methods. Note that MDD does not only pro-
vide a structured and systematic approach to system
development, but also offers developers the possibil-
ity of using model transformation technologies to de-
rive models of a lower abstraction level that can be
further refined, and even generating software code au-
tomatically (Pastor and Espafia, 2012).

The need for software solutions in the business

Abade A., Ferrari F. and Lucrédio D..
Testing M2T Transformations - A Systematic Literature Review.
DOI: 10.5220/0005378501770187

practice faces the increasing complexity of these solu-
tions and the permanent rising of requirements related
to performance, reliability and shorter technology cy-
cles. There is also the pressure for cost reduction and
frequent requirement changes. Together, these factors
do not allow the industry to undervalue the integra-
tion of new concepts and techniques for software en-
gineering (Panfilenko et al., 2013). Thus, in the MDD
field, ensuring that models and transformations are ef-
fective and efficient becomes a major challenge. Note
that the transformations of models involve different
abstraction levels, and the complexity of the MDD
paradigm is directly related to three elements involved
in these transformations: the input (or source) mod-
els, the transformation rules and the output artefacts
(Sendall and Kozaczynski, 2003; Guerra et al., 2013).

Software testing can be an effective approach
for validating model transformations. According to
Fleurey et al. (2004), the testing of model transfor-
mations is different from testing of traditional im-
plementations because the former requires complex
models as test input data, in particular when com-

177

In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 177-187

ISBN: 978-989-758-097-0

Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)

ICEIS 2015 - 17th International Conference on Enterprise Information Systems

pared with simple data types. Testing in MDD rep-
resents a new challenge compared to testing in tradi-
tional systems (Beizer, 1990) or object-oriented sys-
tems (Binder, 1999). This is due to the fact that the
involved data are models, which have significantly
more complex structures than simple data types or tra-
ditional objects (Fraternali and Tisi, 2010). In fact,
the testing-related problems in MDD more closely re-
sembles those of testing interpreters or virtual ma-
chines (Sirer and Bershad, 1999), and are also related
to the testing of grammars (Ld&mmel, Ralf, 2001) or
compilers (Kalinov et al., 2003).

Studies conducted by Harman (2008) claim that
the testing of model transformations leaves a number
of open issues, which are related with the combination
of software testing and the types of transformation
that happen in MDD. Much effort has been put into
the establishment of Model-to-Model (M2M) trans-
formation testing techniques in the last years (Amrani
et al., 2012; Vallecillo et al., 2012).

Most of the approaches for testing Model-to-
Text (M2T) transformations are derived from M2M-
related techniques. Consequently, specific knowledge
regarding M2T testing is still limited, and hence pro-
vides only moderate support to developers, e.g. to
those using the Template Method behavioural pat-
tern. Thus, Wimmer and Burgueo (2013) highlight
the need for testing approaches that are able to support
the correct generation of software artefacts by means
of M2T transformations.

Motivated by research opportunities determined
by numerous issues involving the testing of model
transformations, Selim et al. (2012) provided a his-
torical perspective in order to recognise the main re-
search investigations. The authors identify core and
emerging topics and proposed approaches. Despite
the fact that Selim et al. (2012) work dates from 2012
and that their discussions did not exclusively address
the testing in context of M2T transformations, three
phases are highlighted and need further research and
investigations, namely: (i) generation of test data; (ii)
test adequacy criteria; and (iii) the definition of test
data sets.

This paper presents the results of a systematic lit-
erature review that summarises the state-of-the-art re-
garding the testing of M2T transformations. More
specifically, this study aims to identify which struc-
tural (white-box) testing techniques and test selection
criteria have been investigated to date, how complex
data has been characterised within the identified ap-
proaches, and which is the predominant behavioural
pattern used in transformation engines. A systematic
literature review is a type of scientific research which
aims to present an unbiased review about a research

178

topic, following a methodology that is reliable, ac-
curate and that allows auditing (Kitchenham, 2004;
Fabbri et al., 2013).

The remainder of this paper is organised as fol-
lows: The next section provides basic background.
The study planning is described in Section 3; the sec-
tion also lists the selected primary studies. In the
sequence, Section 4 presents an analysis of data ex-
tracted from the selected studies. Section 5 compares
the identified testing approaches and Section 6 con-
cludes this paper.

2 BACKGROUND

2.1 Model-Driven Development - MDD

In Software Engineering, MDD is a software develop-
ment paradigm that handles models as primary arte-
facts from which code or other artefacts are generated.
The Model Driven Architecture (MDA), proposed by
the-Object Management Group (OMG), is one of the
embodiments of the MDD concept. In MDA-based
processes, models play a key role in the software de-
velopment (Object Management Group, 2003).

Model transformation has been characterised as a
primary step for the MDD paradigm. It can be defined
by a set of rules that together describe how a model
in the source language can be transformed into one
or more models in the target language (Kleppe et al.,
2003).

A transformation involving two or more models
can be classified as: transformation from model to
model (M2M or Model-to-Model); and transforma-
tion from model to text (M2T or Model-to-Text).
M2T transformations are used to generate the source
code and documents, implement serialised models,
and create visualisation and exploration models, thus
automating several software engineering tasks (Rose
etal., 2012).

One issue addressed in M2T transformations
refers to the way of implementing the code generator.
According to Czarnecki and Helsen (2006) and Rose
etal. (2012), the most common approaches to accom-
plish M2T transformations are based on the Visitor
and Template Method behavioural patterns. A Tem-
plate Method is an abstract definition of an algorithm;
it defines the algorithm step by step. Each step in-
vokes an abstract operation or a primitive operation.
The Visitor pattern, on the other hand, represents an
operation to be performed on the elements of an ob-
jectstructure. It allows the creation of a new operation
without changing the class of the elements on which
it operates.

To define these transformations, a tool that allows
software engineers to build mapping rules from M2M
or M2T is necessary. It should allow mapping rules to
be specified and created as naturally as possible, since
the construction of a transformer is already a com-
plex task by itself. Finally, a mechanism to apply the
specified transformations, possibly maintaining some
form of traceability between the mapped elements, is
required (Lucredio et al., 2012).

2.2 Testing and MDD

Testing consists of a dynamic analysis of the prod-
uct which is relevant to the identification and elimi-
nation of defects that remain. It represents the latest
revision of the specification, design and coding (Har-
rold, 2000). In general, the testing techniques can
be divided into code-based (white-box or structural)
and specification-based (black-box or functional). It
is important to notice that neither is complete, since
they aim to identify different types of defects. When
applied together, they can raise the level of software
reliability.

The high abstraction level of MDD is a key con-
cern that rules the complexity of the three main ele-
ments in this paradigm, namely: the input models, the
transformation rules and the output artefacts. Conse-
quently, applying existing testing techniques to model
transformations becomes a cumbersome task.

The testability of model transformations aims at
facilitating the generation of test data and ensuring
better coverage through adjustments of the test crite-
ria. Studies of Harman (2008) and Selim et al. (2012)
claim that the models of transformer tests open a num-
ber of issues which relate to the combination of soft-
ware testing and the types of transformations that oc-
cur in MDD. Fleury et al. (2004) and Selim et al.
(2012) highlight that functional testing, on the one
hand, guarantees the correctness of transformations.
White-box testing, on the other hand, aims to guar-
antee high coverage of the transformations, both in
terms of the input/output artefacts and the transfor-
mation rules themselves.

The relevance of the issues surrounding the trans-
formation of models and their combination with soft-
ware testing has motivated and underlie the sys-
tematic review reported in the paper. Since the
MDD paradigm aims to produce effective, defect-free
source code at a late stage in the software lifecycle,
it important to investigate the evolution and applica-
tion of testing techniques and test selection criteria in
the context of the complexity that comes along with,
specifically, M2T transformations.

Testing M2T Transformations - A Systematic Literature Review

3 THE REVIEW PROCESS AND
RESULTS

This section presents the study planning and sum-
marises the main procedures to perform the system-
atic review herein described. A systematic review
aims to obtain the pieces of work that provide re-
search evidence on a specific subject, which are called
primary studies?.

3.1 Study Planning

To identify the white-box testing approaches (tech-
niques and test selection criteria) that have been
proposed and applied to M2T transformations, we
planned a systematic literature review (or simply sys-
tematic review) following the process defined by Fab-
bri et al. (2013). To provide transparency and allow
replicability and audit of the whole process (which
are requirements of systematic reviews (Kitchenham,
2004), we used the StArt Tool (State of the Art
through Systematic Review) (Hernandes et al., 2012),
which supports all process phases and stores all inter-
mediate results together with the study selection deci-
sions.

Research Questions

n Software Engineering, the research questions of a
systematic review usually address solutions for a spe-
cific problem with a given research topic. When it
comes to M2T transformations, there are several in-
teresting related issues. For our review, we defined
three research questions, each one associated with in-
clusion and exclusion criteria, as follows:

Primary Question (PQ) - Which white-box testing
approaches have been investigated for M2T trans-
formations in the context of MDD so far?

Secondary Question 1 (SQ1) - Amongst the test-
ing approaches that have been investigated for
M2T transformations in the context of MDD,
which ones are specific regarding the use of the
Template Method behavioural pattern?

Secondary Question 2 (SQ2) - Amongst the test-
ing approaches that have been investigated for
M2T transformations in the context of MDD,
which ones characterise the complexity of the data
used in the transformation mechanisms?

1The term “primary study” has so far been used in the
Evidence based Software Engineering domain (Kitchenham
et al., 2004)to describe a variety of research results, from
well-founded experimental procedures to incipient research
approaches. Systematic reviews, on the other hand, are con-
sidered “secondary studies”.

179

ICEIS 2015 - 17th International Conference on Enterprise Information Systems

Search String

According to Petersen et al. (2008) and Fabbri et al.
(2013), the process of collecting the set of primary
studies begins by defining the search string. There-
fore, the search string should be formulated on the
experience of researchers and reviewers involved and
must have a comprehensive scope, for the purpose of
recovering all primary studies of interest. Reading the
primary studies retrieved with the search string enable
the researcher to verify their relevance. For initial se-
lection, key information should be spotted in the study
title and/or summary. Subsequently, final selection re-
lies on the full reading of the study.

Even though different indexed research reposi-
tories define their own syntax for building search
strings, we initially defined the following generic
string that was later customised for each search en-
gine:

(““model driven development’” OR ““model driven
software development”” OR MDD OR MDSD OR
““model-driven engineering’” OR MDE)

AND
(test* OR ““coverage criteria’’ OR “‘software
testing”” OR ““white box’”)
AND
(““model transformation’” OR ““model to text
transformation”” OR ““model to code
transformation”” OR M2T OR M2C)

Primary Study Sources

The search strategy and selection of primary stud-
ies were defined according to the sources of stud-
ies, keywords, selection criteria, types of studies and
languages of the studies. We selected the follow-
ing sources to search for primary studies: indexed
electronic databases (IEEE Xplore Digital Library 2,
ACM Digital Library 2 and Elsevier Scopus 4). In ad-
dition, we hand searched 18 journals and conference
proceedings suggested by specialists®, all related to
software testing and MDD, published from 2008 to
2013. The list of journals and conference proceedings
is presented in Table 1.

The searches in the indexed repositories returned
202 entries®. The full list of primary studies identi-
fied by the searches was evaluated against a set of in-
clusion and exclusion criteria which are described in

Zhttp://www.ieeexplore.ieee.org — access: october/2014

3http://dl.acm.org — access: october/2014

4http://www.scopus.com — access: october/2014

5Approaching specialists in a given field is one of the
recommendations of (Kitchenham, 2004).

6Note that not all entries are in fact primary studies. For
example, some are proceedings’ front matters, while others
are abstracts of conference invited talks and tutorials.

180

Table 1: List of Conferences and Journals indicated.

ID| Description

1 | ACIS - Software Engineering Research and Applications
ASE - Automated Software Engineering

3 | CAISE - Conference on Advanced Information Systems En-

gineering

4 | ENASE - Evaluation of Novel Approaches to Software Engi-
neering

5 | GPCE - Generative Programming and Component Engineer-
ing

6 | GTTSE - Generative and Transformational Techniques in
Software Engineering

7 | ICMT - International Conference on Model Transformation
ICSR - International Conference on Software Reuse

9 | ICST - International Conference on Software Testing, Verifi-
cation, and Validation

10| ICTSS - International Conference on Testing Software and
Systems

11| ISSTA - International Symposium on Software Testing and
Analysis

12| MoDELS - Model Driven Engineering Languages and Sys-
tems

13| MODELSWARD - Model-Driven Engineering and Software
Development

14| SBCars - Brazilian Symposium on Software Components,
Architectures and Reuse

15| SBES - Brazilian Symposium on Software Engineering

16| SLE - Software Language Engineering

17| SoCO - Soft Computing Models in Industrial and Environ-
mental Applications

18| SoSyM Journal - Software and System Modeling

(o0}

the sequence. We also describe the selection process
(preliminary and final selection).

Inclusion and Exclusion Criteria

Inclusion criteria were used to determine which
studies were relevant to the research questions of the
systematic review. The following inclusion criteria
were applied:

+ Publications, technical reports or “grey” literature
that describe empirical studies, of any particular
study design, in which the testing of M2T trans-
formations was applied to any technology.

+ Studies that describe the problems / barriers for
the use of white-box testing approaches in M2T
transformations.

+ Studies describing techniques / methods to testing
M2T transformations.

+ Studies which allowed the identification of be-
havioural pattern used in M2T transformations.

Exclusion criteria were defined to protect the in-
terests of the main theme and the research questions.
Several studies were excluded for not addressing the
testing of M2T transformations, or not even mention-
ing the behavioural pattern used in the M2T transfor-
mations.

Studies that met the following criteria were ex-
cluded from the review:

- Studies that are not relevant to the research ques-
tions.

- Studies that did not allow access to full text.

- Studies that did not describing techniques / meth-
ods to testing M2T transformations.

Preliminary Selection

After applying the inclusion and exclusion criteria
to each primary study based on their titles and ab-
stracts, the preliminary set of relevant primary studies
included 49 entries. At this stage, 21 primary studies
were included as a result of the analysis of specific
conference proceedings and journals, thus summing
up 70 entries in the preliminary list. Table2 presents
the number of studies accepted, discarded and dupli-
cated (i.e. retrieved by more than one search engine)
after the preliminary selection phase.

Table 2: Number of studies accepted, discarded and dupli-
cated during the preliminary selection.

Preliminary Selection
Source
Accepted Discarded Duplicated
ACM 14 (20,00%) | 43 (36,13%) 12 (35,29%)
IEEE 11 (15,71%) | 23(19,33%) | 01 (02,94%)
Scopus 24 (34,29%) 53 (44,54%) 21 (61,76%)
Specialists | 21 (30,00%) 00 (00,00%) 00 (00,00%)
Total 70 (100,0%) | 119 (100,0%) | 34 (100,0%)

Data Extraction Strategy and Final Selection

We extracted data from the selected studies to ad-
dress each of the research questions. We classified
studies according to the following categories: be-
havioural pattern; research type (evaluation research,
solution proposal, validation research, philosophical
paper, opinion paper and personal experience); char-
acterisation (or not) of the complexity of the data used
in the transformation mechanisms; testing approach.
Discrepancies observed during the analysis were dis-
cussed amongst the involved researchers (co-authors
of this paper).

In a second, final iteration, from the 70 pre-
selected studies, we selected only those ones which
fulfilled a set of relevant research issues and speci-
fied testing approaches used in the model transforma-
tions. In order to perform this final selection, stud-
ies accepted in the preliminary selection phase went
through a complete reading and were again classified
based on the inclusion and exclusion criteria. This re-
sulted in a final list of 9 primary studies. Details are
provided in the sequence.

Testing M2T Transformations - A Systematic Literature Review

3.2 Final Selection Results

Table 3 presents the list of 9 selected primary studies.
Studies are sorted by year of publication and grouped
by source. Other information items available in the ta-
ble are study identifier (ID), authors, and information
related to the research questions which are detailed
later in the paper. Note that the ID of selected studies
will be used hereafter to facilitate the identification of
each piece of work.

According to Kitchenham (2004), the final set of
selected studies should avoid overlapping of primary
studies. For example, if we identify two or more
pieces of work that describe the same testing approach
(e.g. the latter as the evolution of the former), the fi-
nal selection should include only the more recent one.
Taking this into consideration, Table 4 lists all over-
lapping results we identified.

Studies listed in Table 3 were classified accord-
ing to a set of relevant research issues and specified
approaches used in the model transformations. Each
characteristic was named facet. Figure 1 depicts the
distribution of studies according to each facet. It pro-
vides a quantification of studies associated with the
research questions defined for the review.

4 ANALYSIS AND DISCUSSION

This section presents the analysis and discussion of
the results obtained in the systematic review. The de-
scription of results is organised according to the facets
depicted in Figure 1. The facets concern properties
which are relevant to the research questions that will
be discussed in the sequence.

It should be clarified that the behavioural pattern
defined for the transformations, as well as the char-
acterisation of complex data, impacts on the formu-
lation of techniques and approaches to test the M2T
transformations. For instance, the Template Method
often makes use of a reference implementation (Lu-
credio et al., 2012), allowing that coverage criteria
can be defined with respect to the input models, the
templates and the generated code.

Facet 1 - Behavioural Pattern — This facet groups the
studies according to the behavioural pattern of the
transformer design. The classification is based on the
categories defined by Czarnecki and Helsen (2006)
and Rose et al. (2012). After analysing the char-
acteristics of the transformations languages used in
each study, we obtained the following groups: (a) ap-
proaches that apply the Visitor pattern (S6, S7); and
(b) approaches that apply the Template Method pat-
tern (S1, S2, S3, S4, S5, S8, S9).

181

ICEIS 2015 - 17th International Conference on Enterprise Information Systems

Table 3: Final selection of primary studies.

Characterise Structural Test
Year | Source ID Title Authors Complex Visitor | Template
Data Pattern Method
2008 Specialist S1 | Unit Testing Model Management Op- | (Polack et al., No - X
erations 2008)
Scopus S2 | Using model transformation to support | (Naslavsky et al., No - X
model-based test coverage measure- | 2008)
ment
2010 | ACM S3 | Multi-level Testes for Model Driven | (Fraternali and No - X
Web Applications Tisi, 2010)
2011 | Scopus S4 | Model-driven testing: Transformations | (Lamancha et al., No - X
from test models to test code 2011)
Specialist S5 | A Method for Testing Model to Text | (Tisoetal., 2013) Parcial - X
Transformations
2013 | Specialist S6 | An Approach to Testing Java Im- | (Chavez et al., No X -
plementation against Its UML Class- | 2013)
Model
ACM S7 | Transformation Rules for Platform In- | (Eriksson et al., Parcial X -
dependent Testing: An Empirical | 2013)
Study
Scopus S8 | MTC Flow: A Tool to Design, De- | (Alvarez and No - X
velop and Deploy Model Transforma- | Casallas, 2013)
tion Chains
Specialist S9 | Testing M2T/T2M transformations (Wimmer and Bur- No - X
guefio, 2013)

Table 4: Overlapping results of primary studies.

Year Final Selection Year Subsumed studies
2013 (Tiso et al., 2013) 2012 (Tiso et al., 2012)
2013 (Eriksson et al., 2013) 2012 (Eriksson et al., 2012)

The results shown in Figure 1 are consis-
tent with the standardisation efforts of the OMG
MOFM2T (Object Management Group, 2012). They
show that 78% of the selected studies support trans-
formations by applying the Template Method pattern,
while only 22% emphasises the application of the Vis-
itor pattern. Following this trend, the work of Rose
et al. (2012) defines a model of features that supports
the decision making process regarding the use of M2T
transformation languages, based on MOF standards.

Facet 2 - Characterisation of Complex Data — Basi-
cally, the complexity of transformations is defined by
the high level of abstraction used in input models,
by the complexity of the transformation rules and by
the diversity of software artefacts that may be gener-
ated (Baudry et al., 2010). In detriment of the analyti-
cal model and of the formal model, the computational
model encapsulates all semantics of the developed so-
lution, i.e.beyond the abstract data types, the compu-

182

tational models also establish relationships, cardinal-
ity, and the directional flow of associations between
objects belonging to a given context.

According to Baudry et al. (2010), the complexity
of the input/output data manipulated by model trans-
formations bring new challenges, thus requiring adap-
tations of testing techniques. In spite of it, we found
out that 78% of studies did not address issues related
to complex data involved in transformations (S1, S2,
S3, S4, S6, S8, S9). Only 22% of the studies partially
characterise complex data in transformations using
some representation strategy (S5, S7).

Facet 3 - Testing Approach — Software testing consists
in a dynamic analysis of the product. It is relevant to
the detection and subsequent elimination of software
defects. Testing represents the latest revision of the
specification, design and coding. In general, testing
techniques can be classified between those based on
source code (structural) and those based on the speci-

Beha

Testing M2T Transformations - A Systematic Literature Review

viour

Pattern

(%)
A4

@ " @ @
Cl Visitor . .

Characterization

Testing

of Complex Data Partly No Yes

Formal Method-
based Testing

Traceability- Approach

based Testing

OCL-based
Testing

Figure 1: Bubble chart - Results distribution by facet.

fication (functional).

Overall, the studies investigate structural testing
for M2T transformations. Such technique examines
the internal structure of the software to derive test re-
quirements. This facet groups primary studies that in-
vestigate structural-based testing approaches that fo-
cus.on the following. property or software ‘specifica-
tion methods: (a) Traceability, with 56% of studies
(S1, S2, S3, S4, S8); (b) OCL, with 22% of studies
(S6, S9); and (c) Formal Methods, with 22% of stud-
ies (S5, S7). The next section provides more details
of this facet.

5 COMPARISON BETWEEN
APPROACHES

To keep our analysis aligned with the facets defined
in the previous section, we next compare the testing
approaches by means of their common characteris-
tics. For this, three groups are defined as follows:
(A) M2T Testing with Visitor Pattern; (B) M2T Test-
ing with Template Method Pattern; and (C) Complex
Data Characterisation for M2T Testing. The analyses
are grouped according to the categories of the Test-
ing Approach facet. Following this organisation, for
groups (A) and (B) we compared the selected studies
based on the categories included in the third facet de-
picted in Figure 1, namely: Traceability-based Test-
ing, OCL-based Testing and Formal Method-based
Testing.

A - M2T TESTING WITH VISITOR PATTERN

Two testing approaches show these characteristics.
They are the studies S6 and S7 listed in Table 3. Note
that this group does not include any primary study that
addresses Traceability-based Testing.

OCL-based Testing

Study S6, by Chavez et al. (2013), proposes an inno-
vative approach named CCUJ. The authors describe
how to automate such an approach, which allows the
conformance checking (well-formedness) between a
UML design and Java implementation using trace-
ability techniques and mappings. The CCUJ approach
checks whether the Java implementation is consistent
with the OCL specification in terms of pre- and post-
conditions associated with the class diagrams; con-
sequently, conformance checking is needed. In this
work, the authors do not explicitly define the cover-
age criteria for structural testing, since much of the
methodology was concerned with validation of well-
formedness. The study describes the methodology,
however does not address the issue of complex data
characterisation.

Formal Method-based Testing

Studies S7, by Eriksson et al. (2013) propose that the
structural testing for M2T transformations and their
coverage criteria are defined by means of arrays com-
posed of predicates and their clauses. One of the
processes of these approaches consists in quantify-
ing how many clauses form a predicate; the goal is
to estimate the number of test requirements based on
logical expressions. These approaches discuss how to
resolve the discrepancy in the number of test require-
ments between the model and generated source code,
considered in their empirical evaluations on average
60% higher. These approaches partially characterise
the input/output complex data involved in M2T trans-
formations. Basically, both studies cover all the is-
sues that define the problems for Testing M2T Trans-
formations. However, the authors highlight that only
one compiler was used for transformations, thus in-
validating the results to other transformers.

183

ICEIS 2015 - 17th International Conference on Enterprise Information Systems

B - M2T TESTING WITH TEMPLATE METHOD
PATTERN

Eight testing approaches address the testing of M2T
transformations that focus on the Template Method
pattern. These studies are S1, S2, S3, S4, S5, S8
and S9 listed in Table 3. We next provide an analysis
and comparison between them.

Traceability-based Testing

Study S1, by Polack et al. (2008), makes use of unit
testing to ensure the correctness of the operations of
the model with respect to the generated source code.
For that, the authors propose a prototype which speci-
fies the execution of this transformation upon the Ep-
silon platform. This approach uses the know-how of
testing of M2M transformations to tackle the testing
of M2T transformations. Even though unit testing is
not a new concept for the development of software,
it is considered an important strategy for developers
to improve code quality, during the understanding of
the functional requirements of a class or method (Os-
herove, 2009). A variety of approaches for structural
testing of M2M transformations apply this strategy to
establish good training models and correctness crite-
ria.

Studies S2 Naslavsky et al. (2008) and S4 Laman-
chaetal. (2011) deal with testing of M2T transforma-
tions by applying Model-Based Testing (MBT). MBT
is a technique for automatically generating test cases
based on models extracted from software artefacts.
Thus, its main goal is the creation of artefacts that
describe the requirements and behaviour of the sys-
tem itself, aimed at automating the testing process.
Once the model is developed, it can be used in vari-
ous ways and for various stages of the software devel-
opment process, such as requirements specification,
code generation, analysis of system reliability and
testing (Broy et al., 2005). The approach proposed
by Naslavsky et al. (2008) (S2) relies on a strategy of
mapping and traceability, via annotations in the code,
to measure the coverage achieved by test cases exer-
cised by the models derived with the MBT approach.
Lamancha et al. (2011) (S4) propose a framework
to automate the testing in the context of MBT. This
framework consists in creating test models for both
types of transformations: M2M and M2T. To gener-
ate test cases with this approach, MOFScript is used
according to OMG standards (Oldevik, 2011). The
contribution of this study is guided primarily by auto-
mated generation of test cases through mapping and
traceability technique.

The approach of Fraternali and Tisi (2010) (S3)
focuses on testing environment issues. Testing envi-
ronment refers to the infrastructure upon which the

184

test runs, including hardware configurations, soft-
ware, automation tools, testing team, organisational
aspects, supplies, and network documentation. Its
purpose is to facilitate testing under well-known and
controlled conditions. In this perspective, (Fraternali
and Tisi, 2010) address the definition, management
and execution of tests for web applications under the
MDD paradigm, in its various abstraction levels. The
approach is aligned with the flow of transformations
MDA and source code. The proposed methodology
makes use of WebML and WebRatio platform to im-
plement a framework that manages the test cases,
keeping traceability across the levels.

Study S8 Alvarez and Casallas (2013) describes a tool
called MTC Flow that allows developers to create ap-
plications according to the MDD paradigm. The tool
provides a graphical DSL to specify the MTC work-
flow model independently of the transformation tech-
nology. Another important feature is the manage-
ment of alternative execution paths using a Tag Sys-
tem to mark the elements in the MTCs design. These
marks later will guide the MTC execution engine.. In
this approach, the integration of the different layers
of the MDA provides interoperability. Testing tech-
niques available in the tool’s environment underlies
the validation of correctness and well-formedness of
the models.

OCL-based Testing

Wimmer and Burguefio (2013) (S9) make know-how
inherited from testing in M2M context to compose a
proposal for M2T / T2M test regardless of the lan-
guages used both for source models and output arte-
facts. The authors specify the contracts and transfor-
mation rules through an extension of OCL, supporting
the design and execution of unit tests in order to vali-
date the established rules and contracts.

Formal Method-based Testing

Studies S5 by Tiso et al. (2013), present a method
to test M2T transformations, which uses a set of inte-
grated approaches. The development of model trans-
formations is part of this method. This proposal is a
set of rules that characterise the well-formedness and
correctness of the model, in addition to the character-
isation by means of stereotypes of UML diagrams for
selecting source models. Thus, this method has the
objective of organising test input data to establish test
coverage criteria of the model.

C - CoMPLEX DATA CHARACTERISATION FOR
M2T TESTING

Most real-world applications use complex input data
structures, which are represented as objects that re-
sult from the aggregation or composition of other ob-
jects. In a context of structural testing, which requires

knowledge about the internal implementation struc-
ture to devise relevant test input data, understanding
such input data structure is fundamental. This com-
prehension shall enable the definition of effective test
data that will determine high coverage, and hence
high confidence on the software correctness.

Once it becomes possible to adequately represent
the elements of the source models in a MDD ap-
proach, testers becomes able to compose complex in-
put data sets that exercise specific parts of the trans-
former. Such specific parts are related, for exam-
ple, to a particular type of artefact that will be gen-
erated. As an example, while a set of input ele-
ments can exercise the transformer to generate Java
artefacts (i.e.Java classes), another particular set can
exercise the transformer to generate SQL artefacts
(i.e.database queries).

In this systematic review, two studies (S5 and S7)
partially characterise complex data for M2T trans-
formations using some data representation strategy.
Study S7 (Eriksson et al., 2013) use predicate logic
to compose arrangements of complex data in order to
resolve the discrepancy in the number of test require-
ments between the source model and the generated
code. The limitations reported by the authors con-
cerns the use of only one transformer with the Visitor
behavioural pattern, and the lack of reports regarding
the effective characterisation of complex data for dif-
ferent types of artefacts that can be generated accord-
ing to the MDD paradigm.

As previously described in this section, study
S5 (Tiso et al., 2013) have the objective of organ-
ising test input data to establish test coverage crite-
ria of the model. However, the data characterisation
described in these studies has a generic nature. The
authors do not particularly address complex data rep-
resentation for textual models; the generic approach
might be customised for the output of M2T transfor-
mations.

6 CONCLUSION

A systematic review is not a simple summary of
the published research on a particular topic. It is a
methodology for building knowledge by means of ev-
idence reported in primary studies, which allows re-
searchers to go a step beyond an ordinary review. In
this context, this paper reported on the results of a
systematic review that characterised the state-of-the-
art with respect to the testing of M2T transformations
in the context of MDD. The results provide a cate-
gorisation of the common features found in testing
approaches, as well as their recurring problems and

Testing M2T Transformations - A Systematic Literature Review

limitations.

In a high-level analysis, we conclude that the ex-
isting solutions for the testing of M2T transforma-
tions have begun to change the initial focus on well-
formedness and correctness of models. Even though
they are still in a small number, some approaches are
prominent proposals regarding the use of techniques
that establish coverage criteria for testing, whereas
others already try to solve the testability across many
transformation languages. Nevertheless, the solutions
found in the literature cannot yet be considered es-
tablished, so this research topic needs to be further
explored.

Regarding our research questions, the results re-
veal that the focus is on structural testing of M2T
transformations. Approaches in this context are
evolving, especially with the use of traceability map-
pings and transformations. However, most of the eval-
uated approaches deal exclusively with issues of well-
formedness and correctness of models. We could not
identify approaches that characterised the complexity
of the data manipulated by model transformations that
somehow optimise the coverage criteria by establish-
ing a discipline for test design.

Still regarding the research questions, we con-
clude that structural testing approaches for M2T
transformations focus on the Template Method be-
havioural pattern, when compared with the Visitor
pattern. This corroborates the OMG effort for defin-
ing standards for M2T transformations, raising the
relevance of templates as transformation artefacts,
and hence their quality assurance through testing.

We highlight that a main threat to the validity
of our study concerns the small number of selected
papers after the application of the search string and
the criteria to include papers for evaluation. As a
future work and as a way to mitigate such threat,
we plan to consider additional databases, increas-
ing the scope of results obtained through the search
machines. Another possible measure to reduce the
threat consists in the application of the backward
snowballing technique in the selected primary stud-
ies (Jalali and Wohlin, 2012).

Even though we were able to identify approaches
for testing M2T transformations, the main problems
still require much research and investigation. The
complexity of the source model, the transformer itself
and the output artefacts pose an important challenge
for future research.

ACKNOWLEDGEMENTS

The authors would like to thank the financial support

185

ICEIS 2015 - 17th International Conference on Enterprise Information Systems

received from the Federal Institute of Education, Sci-
ence and Technology of Mato Grosso and the Gradu-
ate Degree Program in Computer Science of the Fed-
eral University of Sdo Carlos .

REFERENCES

Alvarez, C. and Casallas, R. (2013). Mtc flow: A tool
to design, develop and deploy model transformation
chains. In Workshop on ACadeMics Tooling with
Eclipse (ACME), pages 1-9. ACM.

Amrani, M., Lucio, L., Selim, G., Combemale, B., Dingel,
J., Vangheluwe, H., Le Traon, Y., and Cordy, J. R.
(2012). A tridimensional approach for studying the
formal verification of model transformations. In 5th
International Conference on Software Testing, Verifi-
cation and Validation (ICST), pages 921-928. IEEE
Computer Society.

Basso, F. P,, Pillat, R. M., Frantz, R. Z., and Roos-Frantz, F.
(2014). Assisted tasks to generate pre-prototypes for
web information systems. In 16th International Con-
ference on Enterprise Information Systems (ICEIS),
pages 14-25.

Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y.,
and Mottu, J.-M. (2010). Barriers to systematic model
transformation testing. Communications of the ACM,
53(6):139-143.

Beizer, B. (1990). Software Testing Techniques. Van Nos-
trand Reinhold Co., New York, NY, USA, 2nd edition.

Binder, R. V. (1999). Testing Object-Oriented Systems:
Models, Patterns and Tools. Addison Wesley, Read-
ing/MA - USA, 1st edition.

Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., and
Pretschner, A. (2005). Model-Based Testing of Re-
active Systems: Advanced Lectures, volume 3472.
Springer-Verlag.

Chavez, H. M., Shen, W., France, R. B., and Mechling,
B. A. (2013). An approach to testing java imple-
mentation against its uml class model. In 16th In-
ternational Conference on Model Driven Engineering
Languages and Systems (MODELS), pages 220-236
(LNCS 8107). Springer.

Czarnecki, K. and Helsen, S. (2006). Feature-based sur-
vey of model transformation approaches. IBM Sys-
tems Journal, 45(3):621-645.

Eriksson, A., Lindstrom, B., Andler, S. F., and Offutt, J.
(2012). Model transformation impact on test artifacts:
An empirical study. In Workshop on Model-Driven
Engineering, Verification and Validation (MoDeVVa),
pages 5-10. ACM.

Eriksson, A., Lindstrém, B., and Offutt, J. (2013). Trans-
formation rules for platform independent testing: An
empirical study. In 6th International Conference on
Software Testing, Verification and Validation (ICST),
pages 202-211. IEEE Computer Society.

Fabbri, S. C. P. F, Felizardo, K. R., Ferrari, F. C., Hernan-
des, E. C. M,, Octaviano, F. R., Nakagawa, E. Y., and

186

Maldonado, J. C. (2013). Externalising tacit knowl-
edge of the systematic review process. IET Software,
7(6):298-307.

Fleurey, F., Steel, J., and Baudry, B. (2004). Validation
in model-driven engineering: testing model transfor-
mations. In First International Workshop on Model,
Design and Validation, pages 29-40. IEEE Computer
Society.

Fraternali, P. and Tisi, M. (2010). Multi-level tests for
model driven web applications. In 10th International
Conference on Web Engineering (ICWE), pages 158—
172 (LNCS 6189. Springer-Verlag.

Garzotto, F. (2011). Enterprise frameworks for data in-
tensive web applications: An end-user development,
model based approach. Journal of Web Engineering,
10(2):87-108.

Guerra, E., Lara, J., Kolovos, D., Paige, R., and Santos,
0. (2013). Engineering model transformations with
transml. Software and Systems Modeling, 12(3):555—
577.

Harman, M. (2008). Open problems in testability transfor-
mation. In Workshops of the International Confer-
ence on Software Testing Verification and Validation
(ICSTW), pages 196-209. IEEE Computer Society.

Harrold, M. J. (2000). Testing: A roadmap. In Conference
on the Future of Software Engineering - in conjunc-
tion with ICSE, pages 61-72. ACM.

Hernandes, E. M., Zamboni, A., Fabbri, S., and Di Thom-
mazo, A. (2012). Using GQM and TAM to evaluate
StArt - a tool that supports systematic review. CLEI
Electronic Journal, 15(1).

Jalali, S. and Wohlin, C. (2012). Systematic literature stud-
ies: Database searches vs. backward snowballing. In
6th International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 29-38.
ACM.

Kalinov, A., Kossatchev, A., Petrenko, A., Posypkin, M.,
and Shishkov, V. (2003). Coverage-driven automated
compiler test suite generation. Electronic Notes in
Theoretical Computer Science, 82(3):500-514.

Kitchenham, B. (2004). Procedures for performing system-
atic reviews. Technical report, Departament of Com-
puter Science, Keele University.

Kitchenham, B. A., Dyba, T., and Jorgensen, M. (2004).
Evidence-based software engineering. In 26th Inter-
national Conference on Software Engineering (ICSE),
pages 273-281, Washington, DC, USA. IEEE Com-
puter Society.

Kleppe, A. G., Warmer, J., and Bast, W. (2003). MDA
Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Lamancha, B. P., Mateo, P. R., Polo, M., and Caivano, D.
(2011). Model-driven testing - transformations from
test models to test code. In 6th International Confer-
ence on Evaluation of Novel Approaches to Software
Engineering - (ENASE), pages 121-130. SciTePress.

Ldmmel, Ralf (2001). Grammar testing. In Hussmann,
H., editor, Fundamental Approaches to Software En-

gineering, volume 2029 of Lecture Notes in Computer
Science, pages 201-216. Springer Berlin Heidelberg.

Lucredio, D., de Almeida, E., and Fortes, R. (2012). An in-
vestigation on the impact of MDE on software reuse.
In Sixth Brazilian Symposium on Software Compo-
nents Architectures and Reuse (SBCARS), pages 101-
110. IEEE Computer Society.

Mayo, F. J. D., Escalona, M. J., Mejias, M., Ross, M.,
and Staples, G. (2014). Towards a homogeneous
characterization of the model-driven web develop-
ment methodologies. Journal of Web Engineering,
13(1&2):129-159.

Naslavsky, L., Ziv, H., and Richardson, D. J. (2008). Us-
ing model transformation to support model-based test
coverage measurement. In 3rd International Work-
shop on Automation of Software Test (AST), pages 1-

6. ACM.
Object Management Group (2003). MDA guide ver-
sion 1.0.1. online - http://www.omg.org/cgi-

bin/doc?0mg/03-06-01.pdf — accessed on 26/02/2015.

Object Management Group (2012). MOF model to text
transformation language - MOFM2T 1.0. online.
http://www.omg.org/spec/MOFM2T/1.0/ — accessed
on 26/02/2015.

Oldevik, J. (2011). MOFScript User Guide. online.
http://eclipse.org/gmt/mofscript/doc/MOFScript-
User-Guide-0.9.pdf.

Osherove, R. (2009). The Art of Unit Testing: With Exam-
ples in .Net. Manning Publications Co., Greenwich,
CT, USA, 1st edition.

Panfilenko, D. V., Hrom, K., Elvesater, B., and Landre,
E. (2013). Model transformation recommendations
for service-oriented architectures. In 15th Interna-
tional Conference on Enterprise Information Systems
(ICEIS), pages 248-256.

Pastor, O. and Espafia, S. (2012). Full model-driven prac-
tice: From requirements to code generation. In
Advanced Information Systems Engineering, volume
7328 of Lecture Notes in Computer Science, pages
701-702. Springer Berlin Heidelberg.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M.
(2008). Systematic mapping studies in software engi-
neering. In 12th International Conference on Evalua-
tion and Assessment in Software Engineering (EASE),
pages 68-77, Swinton, UK, UK. British Computer So-
ciety.

Polack, D., Paige, R., Rose, L., and Polack, F. (2008). Unit
testing model management operations. In Workshops
of the International Conference on Software Testing
Verification and Validation (ICSTW), pages 97-104.
IEEE Computer Society.

Rose, L., Matragkas, N., Kolovos, D., and Paige, R. (2012).
A feature model for model-to-text transformation lan-
guages. In ICSE Workshop on Modeling in Software
Engineering (MISE), pages 57-63. IEEE Computer
Society.

Selim, G. M. K., Cordy, J. R., and Dingel, J. (2012). Model
transformation testing: The state of the art. In First
Workshop on the Analysis of Model Transformations
(AMT), pages 21-26, New York, NY, USA. ACM.

Testing M2T Transformations - A Systematic Literature Review

Sendall, S. and Kozaczynski, W. (2003). Model transfor-
mation: the heart and soul of model-driven software
development. Software, IEEE, 20(5):42-45.

Sirer, E. and Bershad, B. (1999). Testing Java virtual ma-
chines - An Experience Report on Automatically Test-
ing Java Virtual Machines. In International Confer-
ence on Software Testing And Review.

Soltani, M. and Benslimane, S. M. (2012). From a high
level business process model to service model arti-
facts - A model-driven approach. In 14th Interna-
tional Conference on Enterprise Information Systems
(ICEIS), pages 265-268. SciTePress.

Tiso, A., Reggio, G., and Leotta, M. (2012). Early ex-
periences on model transformation testing. In First
Workshop on the Analysis of Model Transformations
(AMT), pages 15-20, New York, NY, USA. ACM.

Tiso, A., Reggio, G.;-and Leotta, M. (2013). A method
for testing model to text transformations. In Second
Workshop on the Analysis of Model Transformations
(AMT), volume 1077. CEUR-WS.org.

Vallecillo, A., Gogolla, M., Burguefio, L., Wimmer, M.,
and Hamann, L. (2012). Formal specification and test-
ing of model transformations. In Formal Methods for
Model-Driven Engineering, volume 7320, pages 399—
437.-Springer.

Wimmer, M. and Burguefio, L. (2013). Testing M2T/T2M
transformations. In Model-Driven Engineering Lan-
guages and Systems, volume 8107, pages 203-219.
Springer Berlin Heidelberg.

187

