
Automatic Matching of Software Component Requirements using
Semi-formal Specifications and a CBSE Ontology

Andreas S. Andreou1 and Efi Papatheocharous2
1Department of Computer Engineering & Informatics, Cyprus University of Technology, Lemesos, Cyprus

2SICS Swedish ICT, Swedish Institute of Computer Science, Kista, Sweden

Keywords: Components, Reuse, Semi-formal Specifications Matching, Ontology.

Abstract: One of the most significant tasks of component-based software development is concerned with finding
suitable components for integration. This paper introduces a novel development framework that promotes
reusability and focuses on assessing the suitability level of candidate components. A specifications profile is
first created using a semi-formal natural language that describes the desired functional and non-functional
properties of the component(s) sought. A parser automatically recognizes parts of the profile and translates
them into instance values of a dedicated CBSE ontology, the latter addressing issues of components’
reusability. Available components on the market are also stored as instances of the CBSE ontology.
Matching between required and offered component properties takes place automatically at the level of the
ontology items and a suitability ratio is calculated that suggests which components to consider for
integration.

1 INTRODUCTION

Component-based software engineering (CBSE) is
the scientific area involved with software
development and reuse of existing components.
According to Szyperski (2002), “A software
component is a unit of composition with
contractually specified interfaces and explicit
context dependencies only. A software component
can be deployed independently and is subject to
composition by third-parties”. This is particularly
interesting in the real world as by increasing the
possibility of reuse leads to more qualitative systems
and reduces their time-to-market. The alliances
formed between software creators, vendors and
owners, however, depend heavily on the methods
and techniques to support the development process.
The most significant advantages of reusing existing
software parts, either small units (functions, classes)
or fully-fledged systems (COTS) may be summed
up to the acceleration of the development process,
the increased dependability of the reused software
and the reduction of the associated process risk. Mili
et al. (2002) define software reuse as “the process
whereby an organization defines a set of systematic
operating procedures to specify, produce, classify,

retrieve and adapt software artefacts for the purpose
of using them in its development activities.”
Although the software components industry is
steadily growing with multiple brokers to serve
reusers (followed up tightly with open source
communities as well), there is still great need for
methodological approaches to improve and automate
the processes of searching, retrieving and analysing
candidate components for integration. To this end,
the present paper proposes a new component
reusability framework, which focuses on the
identification of components and their assessment in
terms of required features (functional or non-
functional) that demonstrates their suitability for
integration according to a prescribed (or desired)
profile. The main novel aspects of this approach
consist of: (i) an EBNF-based profiling of the
components, which describes desired properties of
the components sought, and (ii) an automatic search
and retrieval mechanism. The latter utilizes the
profiling scheme and without human intervention it
delivers the most suitable components in three
simple steps: parsing the ontology profiles of the
requested and available components, executing the
matching algorithm and recommending (retrieving)
the closest matches. To the best of our knowledge
existing approaches do not offer such automated

118 S. Andreou A. and Papatheocharous E..
Automatic Matching of Software Component Requirements using Semi-formal Specifications and a CBSE Ontology.
DOI: 10.5220/0005378301180128
In Proceedings of the 10th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2015), pages 118-128
ISBN: 978-989-758-100-7
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

management of components’ reuse processes.
The rest of the paper is organized as follows:

Section 2 provides a brief literature review on the
subject. The proposed approach for profiling and
matching components is described in section 3. The
section starts with an overview of the reusability
framework, continues with a presentation of the
semi-formal description of components
specifications and ends with the presentation of the
details of the matching process, including the
dedicated CBSE ontology and the matching
algorithm. Section 4 describes a preliminary
experimental investigation and reports some
interesting findings on the assessment of the
proposed approach. Finally, section 5 concludes the
paper and suggests further research steps.

2 LITERATURE OVERVIEW

The relevant component search and retrieval
literature is rich with studies about COTS, while
Quality of Service (QoS) is one of the most
frequently used mechanisms for component
matching. In addition, ontologies have offered
common ground to the CBSE process, either for
describing metrics or properties for assessing
components, or supporting their matching process.
A brief outline of some of those studies follows.

Zaremski and Wing (1997) were among the first
to use formal specifications to describe the behavior
of software components and to determine whether
two components match. Chung and Cooper (2004)
presented an approach that supports iterative
matching, ranking and selection of COTS
represented as sets of functional and non-functional
requirements. The work of Iribarne et al. (2002)
presented an extension of approaches dealing with
component search and service matching in which
components offer several interfaces. More
specifically, they addressed service gaps and
overlaps extending the traditional compatibility and
substitutability operators to deal with components
that support multiple interfaces. Yessad and
Boufaida (2011) proposed a Quality of Service
(QoS) ontology for describing software components
and used this ontology to semantically select
relevant components based on the QoS specified by
the developer. Pahl (2007) presented an approach
for component matching by encoding transitional
reasoning about safety and liveness properties into
description logic and a Web standards compliant
ontology framework. Yan et al. (2010) attempted to
address the lack of semantic description ability in

component searching and retrieval by introducing a
conceptual ontology and a domain ontology. The
authors represented a component ontology library by
a conceptual and a component graph. During the
retrieval process, the retrieval pattern graph was
matched with the component graph using a
component retrieval algorithm based on graph
patterns. Kluge et al. (2008) suggested an approach
for matching functional business requirements to
standard application software packages via
ontologies. Seedorf and Schader (2011) introduced
an enterprise software component ontology to
establish a common understanding of enterprise
software components, i.e., their types and
relationships to entities in the business domain.
Alnusair and Zhao (2010) proposed a semantic-
based approach for retrieving relevant components
from a reuse repository utilizing an ontology model
comprising of three axes, source-code, component,
and domain-specific ontology. Their experiments
suggested that only pure semantic search that
exploits domain knowledge tends to improve
precision.

Althought it is evident that matching of
component specifications through the use of
ontologies is not new, the above studies show that it
is also promising and worth pursuing. The above
studies, however, do not cover adequately the
practical perspective of component reusability as
they: (i) either express component services in
abstract ontology forms and/or provide matching
algorithm descriptions sometimes with and other
times without the use of ontology information, (ii)
do not provide concrete yet simple descriptors of the
component properties, which may be reused by tools
or methods that could further aid the reuse process.
The present paper aspires to fill this gap by
introducing an integrated framework for
components’ reuse, which offers a layered approach
that guides the reuse process. The first layer of the
framework is the key component to the process as it
is responsible to profile component specifications
using an expressive and easily understood (by
reusers and component developers) semi-formal
natural language structure, able to capture properties
useful for components’ matching. This profile is
then transformed into a more formalized ontological
representation and a simple, yet efficient way, to use
this representation for automatically matching
components, based on the suitability level of
candidate components calculated by comparing
ontology tree instances.

Automatic�Matching�of�Software�Component�Requirements�using�Semi-formal�Specifications�and�a�CBSE�Ontology

119

3 AUTOMATIC MATCHING OF
COMPONENT
SPECIFICATIONS

3.1 Reusability Framework Overview

The proposed framework is depicted in Figure 1 and
consists of five layers (sub-systems), each
supporting a part of the component-based software
development process as follows: (i) The Description
layer is responsible for creating a profile which
includes relevant information that describe the
component(s) sought or offered. A stakeholder
(reuser or component developer/vendor) defines the
functional and non-functional requirements that
must be fulfilled or that are offered depending on the
role. The former essentially provides the anticipated
or desired properties in terms of functionality,
performance, availability, reliability, robustness etc.,
and the latter sketches the functional behaviour of
the ready-made software part. (ii) The Location
layer offers the means to search, locate and retrieve
the component(s) of interest that match the profile.
(iii) The Analysis layer provides the tools to evaluate
the level of suitability of the candidate component(s)
and yield matching results that will guide the
selection of components for reuse. (iv) The
Recommendation layer uses the information
received from the profiling activities and produces
suggestions to reusers as to which of the candidate
component(s) may be best integrated and why,
through a cost-benefit analysis. (vi) Finally, the
Build layer essentially comprises a set of integration
and customization tools for combining component(s)
and build larger systems.

One of the challenges this framework proposes
to addresses is related to narrowing down the
component requirements for searching and locating
appropriate components, considering a minimal set
of criteria and associating the various candidates
with a ratio value of suitability; the latter will enable
reaching to a plan (or recommendation) on how to
progress with a project, and how to integrate
components into one fully-functioning system.

This work concentrates only on the collaboration
of the Description and the Analysis layers, and
describes a new way for automatic matching
between desired and available components based on
structured natural language and ontologies. Next, the
steps of the process are provided: The first step
involves describing the desired functional and non-
functional properties of the component(s) sought in
a specifications profile using a semi-formal natural

language. In the second step, the profile is
automatically parsed and certain textual parts are
recognized, which are then translated into instance
values of a dedicated CBSE ontology. This ontology
is built so as to reflect various development issues
from the components reusability aspects. The third
and final step performs matching between required
and offered components’ properties, the latter being
stored also as instances of the CBSE ontology. This
matching takes place automatically at the level of
ontology items and a suitability ratio is calculated
that suggests which components to consider next for
possible integration.

Figure 1: The layered architecture of the proposed
reusability framework.

3.2 Components Profiling

Each component is profiled with information
revolving around three axes, functional, non-
functional and reusability properties, as follows:
(i) Functional Properties: One or more functional
aspects included in the component are described
here. More specifically, the services offered by the
component are outlined, accompanied with the
structure of the published interface (i.e., provides/
requires, detailing what services must be made
available for the component to execute and what
services are offered by the component during
execution). Component contracts are also reported
with the related Pre-conditions, Post-conditions,
Invariants and Exception handling descriptions (i.e.,
cases where pre/post-conditions or invariants might
be violated per method).
(ii) Non-functional Properties: Non-functional

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

120

constraints and quality properties are reported here.
Performance indicators, resources requirements
(e.g., memory and CPU) and other quality features
(i.e., quality attributes based on the ISO 9126
standard, like availability (MTBF) and reliability).
(iii) Reusability Properties: It involves general
information about the component which describes
its context and way of use, its flexibility and other
factors that are considered useful to reusers.
Properties here include: application domain(s) for
which the component is suitable, programming
language(s), operating system(s) that is able to
execute on, type of openness/extensibility (black,
glass, grey, white), market price, some developer
info (if available and reported for offered
components), list of protocols and standards
supported (e.g., JMS/Websphere, DDS/NDDS 4.0,
CORBA/ACE TAO, POSIX, SNMP and .NET), as
well as accompanying documentation (if any), like
design, administration and user manuals and test
cases documentation.

The component properties descriptions are
written in the Extended Backus-Naur Form (EBNF).
Expressing the component descriptions in the EBNF
allows us to formally prove key properties, such as
well-formedness and closure, and hence help
validate the semantics. The proposed grammar has
been developed with the Another Tool for Language
Recognition (ANTLR) parser generator
(http://www.antlr.org/). ANTLR is a parser and
translator generator tool that allows language
grammars’ definition in an EBNF-like syntax.

Table 1 presents the EBNF description of a
component. As previously mentioned, this
description is used as a template from both the
component vendor who provides information to
increase its number of successful reuses and the
interested reuser who tries to locate the most
appropriate component for integration. There are
some differences in the two cases, though, that are
denoted with comments (text in green which starts
and ends with the symbol ‘*’) and refer mostly to
information about contracts, developer details and
documentation, which are not among the key
information that reusers need to define when
searching for components; they rather constitute
peripheral information which is offered by the
component developer/vendor, in the case that such
information is (made) available.

While reading the profile from top to bottom, the
reuser/developer will find the definitions used for
the component items. The reuser/developer starts by
filling-in this information with giving a name and
selecting a list of (one or more) services the

component has to offer. Each service is defined by a
primary functionality type, a secondary informative
type and thirdly, an optional description. Primary
types include general functionality offered, like I/O,
security and networking, while the secondary type
explicitly express the kind of function it executes,
like authentication, video streaming, audio
processing etc. For example, a service could be
[Security, Login Authentication]. If a service is
sought for, then the reuser assigns a Requirement
value, either Constraint, which means it is
absolutely necessary and a candidate component is
rejected if it does not offer it, or Desired, which
simply adds points to the suitability value of a
candidate component. Interfacing information comes
next where each service is decomposed into the
various methods that implement its logic; a method
is analyzed to its constituent parts of Pre-conditions,
Post-conditions, Invariants and Exceptions (if any).
This piece of information can be provided by the
component developer/vendor. Non-functional
requirements or properties are defined next by the
reuser and developer/vendor respectively, the former
denoting what the search is for (and can be either
defined as mandatory or desired), and the latter
denoting what the component has to offer.

Finally, both the reuser and the component
developer/vendor fill-in general information useful
for reusability purposes (application domain,
programming language, OS etc.) with the reuser
again denoting the level to which a certain feature is
required (defined as mandatory or optional). It
should also be mentioned that certain features in the
sought profile may be assigned to specific values
along with a characterization as to whether this
feature should be minimised (i.e. the value denotes
an upper acceptable threshold) or maximised (i.e.
the value denotes a lower acceptable threshold) in
the suitable components offered. For example, if
performance should be confined under 15 seconds,
then next to the performance indicator the values
(15, minimise) should be entered.

3.3 Automatic Components Matching

3.3.1 CBSE Ontology

A dedicated CBSE ontology is developed to reflect
development issues based on the reusability of
components. The ontology essentially addresses the
same property axes and adheres to the same
semantic rules of the component profile so that an
automatic transformation of the latter to instances of

Automatic�Matching�of�Software�Component�Requirements�using�Semi-formal�Specifications�and�a�CBSE�Ontology

121

Table 1: Profile of a component in EBNF.

DIGIT ⇐ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 ; INTEGER ⇐ DIGIT {DIGIT};
CHAR ⇐ A | B | C | ... |W | a | b | c | ... | W | ! | @ | # | … ; STRING ⇐ CHAR {CHAR} ;
Variable_type ⇐ CHAR | INTEGER | … ; Variable_name ⇐ STRING
Primary_Type ⇐ ‘ Input ’ | ‘ Output ’ | ‘ Security ’ | ‘ Multimedia ’ | ‘ Networking ’ | ‘ GUI ’ | … ;
Secondary_Type ⇐ ‘ Authentication ’ | ‘ Data processing ’ | ‘ Video ’ | ‘ Audio ’ | ‘ File access ’ | ‘ Printing ’ | … ;
Details_Description ⇐ CHAR { CHAR } ;
Min_Max_Type ⇐ ‘ Minimise ’ | ‘Maximise’ |
Required_Type ⇐ ‘ CONSTRAINT ’ | ‘ DESIRED ’ |
Service ⇐ ‘ S ’ INTEGER Primary_Type, Secondary_Type { Details_Description } Required_Type ;
Service_List ⇐ Service { Service }
Operator ⇐ ‘ exists ’ | ‘ implies ’ | ‘ equals ’ | ‘ greater than ’ | ‘ less than ’ |…
Condition ⇐	Variable_Name Operator { Value } { Variable }
Precondition ⇐ Condition { Condition }; (* IF THESE ARE PROVIDED BY DEVELOPER/VENDOR *)
Postcondition ⇐ Condition { Condition }; (* IF THESE ARE PROVIDED BY DEVELOPER/VENDOR *)
Invariants ⇐	Condition { Condition }; (* IF THESE ARE PROVIDED BY DEVELOPER/ DEVELOPER/VENDOR *)
Exceptions ⇐ Condition { Details_Description } { Exceptions }; (* IF THESE ARE PROVIDED BY
DEVELOPER/VENDOR *)
Method ⇐ ‘ M ’ INTEGER { Variable Variable_Type } { Precondition } { Postcondition } { Invariant } { Exception }
; (* IF THESE ARE PROVIDED BY COMPONENT DEVELOPER/VENDOR *)
Service_analysis ⇐ ‘ Service ’ INTEGER ‘ : ’ ‘ Method ’ INTEGER ‘ : ’ STRING Method { Method } ;
Performance_indicators ⇐ [‘ Response time ’ (INTEGER) Min_Max_Type Required_Type | ‘ Concurrent users ’

(INTEGER) Min_Max_Type Required_Type | ‘ Records accessed ’ (INTEGER) Min_Max_Type
Required_Type | …] { Performance_indicators } ;

Resource_requirements ⇐ [‘ memory utilization ’ (INTEGER) Min_Max_Type Required_Type | ‘ CPU reqs ’
(INTEGER) Min_Max_Type Required_Type | …] { Resource_requirements } ;

Quality_features ⇐ [‘ Availability ’ (INTEGER) Min_Max_Type Required_Type | ‘ Reliability ’
(INTEGER) Min_Max_Type Required_Type | …] { Quality_features }

Application_domain ⇐ ‘ Medical ’ Required_Type | ‘ Financial ’ Required_Type | ‘ Business ’ Required_Type | …
{Application_domain} ;

Programming_language ⇐ ‘ C ’ Required_Type | ‘ C++ ’ Required_Type | ‘ Java ’ Required_Type
| ‘ VB ’ Required_Type | … ; { Programming_language}

Operating_systems ⇐ ‘ Windows ’ Required_Type | ‘ Linux ’ Required_Type | ‘ Unix ’ Required_Type | ‘ IOS ’
Required_Type | ‘ Android’ Required_Type | … { Operating_systems } ;

Openness ⇐ ‘ black ’ Required_Type | ‘ glass ’ Required_Type | ‘ grey ’ Required_Type | ‘ white ’ Required_Type;
Price ⇐ INTEGER ;
Development_info ⇐	STRING; Developer ⇐ STRING; Version ⇐ STRING; (* IF THESE ARE PROVIDED BY
DEVELOPER/VENDOR *)

Protocols_Standards ⇐ [‘ JMS/Websphere ’ Required_Type | ‘ DDS/NDDS ’ Required_Type | ‘ CORBA/ACE TAO ’
Required_Type | ‘ POSIX ’ Required_Type | ‘ SNMP ’ Required_Type |… { Protocols_Standards
}];

Documentation ⇐ [‘ Manuals ’ Required_Type | ‘ Test cases ’ Required_Type | …] ; (* IF THESE ARE PROVIDED
BY DEVELOPER/VENDOR *)

SPECIFICATIONS PROFILE :

 ‘Specifications Profile ’ STRING ; ‘Descriptive title ’ STRING ;
 ‘Functional Properties :’ Service_List ;
 ‘Interfacing :’ Service_analysis { Service_analysis };
 ‘Non-functional Properties :’ Performance_indicators Resource_requirements Quality_features ;
 ‘Reusability Properties :’ Application_domain Programming_language Operating_systems Openness Price

Protocols_Standards Documentation ;

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

122

the ontology is feasible. Figure 2 depicts the largest
part of the ontology; some details have been
intentionally left out due to figure size and space
limitations. A component is fully described by
instances of the ontology items and can therefore be
used as the basis for the matching process that is
described next. This process works at the level of
the ontology tree rather than the textual descriptions
of the profile as comparison between required and
available components is easier and more profound,
both computationally and graphically (visually).

3.3.2 Matching Process

Some researchers focus on components retrieval
issues and propose different methods for description
processing, like simple string (e.g. Mili et al., 1994),
signature matching (e.g. Zaremsky and Wing, 1993)
and behavioural matching (e.g. Zaremsky and Wing,
1997). The proposed approach may be considered as
a hybrid method comprising of string and
behavioural matching but in a different manner than
the aforementioned studies. More specifically, the
cornerstone of the matching process is a dedicated
parser which identifies parts of the profile
(functional and non-functional behaviour, interfaces,
performance indicators, etc.) and translates them
into the CBSE ontology. The parser first checks
whether the profile is properly described in the
context and semantics of the structure (presented in
Table 1 using the ANTLR framework). Once
successful, the parser proceeds with recognizing the
parts of the profile and building the ontology tree of
instances following the algorithm presented in
Figure 3. The parser essentially builds ontology tree
instances which describe the requested and the

available components. The next step is the matching
of properties between ontology items. The tree
instance of the required component is projected on
top of all other candidates assessing the level of
requirements’ fulfilment in multiple stages. The first
stage requires that all constraints are satisfied. In this
case, the list of services sought must be at least a
subset of the services offered. The second stage,
executed once all constraints are satisfied, calculates
the level of suitability of each candidate component.
A demonstration example for this stage is given in
the experimental section.

A requested component Pr defines in its profile a
set of constraints K that must be satisfied including
number and type of services, performance and
quality factors, resource requirements,
protocols/standards and documentation. The
matching between the discrete items in the profile of
Pr and those of a candidate component Pc is
determined through the following rules:
 (A) Pc is a suitable candidate for Pr if and only if
every item k ∈ K is satisfied by the corresponding
item in Pc. We denote this by ௖ܲ 	≡ ܿܽ݊݀ ௥ܲ
 (B) Pc is an exact match of Pr if and only if every
item l defined in Pr is offered by Pc . We denote this
by ௖ܲ ≡ ௥ܲ.
It is clear that rule (B) subsumes rule (A). The level
of suitability is calculated for each suitable
candidate as the ratio of matched profile items
required (i.e. that are actually offered by the
candidate component) to the total items outlined in
Pr. More specifically, a dissimilarity value is
calculated which indicates, in case of multiple
suitable candidates, which one is closer to what has
been requested.

Figure 2: A CBSE ontology based on three axes, (i) Functionality, (ii) Non-functional aspects, (iii) Reusability properties.

Automatic�Matching�of�Software�Component�Requirements�using�Semi-formal�Specifications�and�a�CBSE�Ontology

123

Let Method(i)=set of methods implementing Service i

Trace ‘Specification Profile’ store STRING Name

Create Node Name

Start Parsing

 Trace ‘Service List’

 Read N Services

 Trace ‘Interfacing’

 For i=1 to N

 { Create Instance of Service i under node Name

 For each method j ∈ Method(i) do

 { Create Method j as node attached to Service i

 Determine Arguments A of Method j

 Create A as part of Interface node

 Determine Contracts for A and j’s logic

Create Preconditions, Post conditions, Invariants,
Exceptions for j } }

 Trace ‘Non‐functional Properties’

 Read NOT_NULL non‐functional properties

For all NOT_NULL non‐functional properties do
Create Instances Performance indicators,

Resource requirements, Quality features
 Trace ‘Reusability Properties’

 Read NOT_NULL reusability properties

For all NOT_NULL reusability properties do
Create Instances Application domain,

Programming language, Operating systems,
Openness, Price, Protocols and Standards,
Documentation

End Parsing

Figure 3: Algorithmic approach for the parsing process
and ontology transformation.

We distinguish two types of properties, one of
binary type (offered ‘yes’/‘no’) and one of numerical
type (e.g. price, response time). Matching properties
of the former type presumes that all constraints are
by default satisfied and its level is calculated simply
by following the equations described hereafter: The
binary dissimilarity is calculated as:

					ܴ௕௜௡ ൌ
ଵ

ெ
∑ ௜,௖,௥ߜ
ெ
௜ୀଵ (1)

where

௜,௖,௥ߜ ൌ

൜
0	, 	݊݅	݀݁ݎ݅ݑݍ݁ݎ	݅	ݕݐݎ݁݌݋ݎ݌	݂݅ ௥ܲ	݅ݏ	݀݁ݎ݂݂݁݋	ݕܾ	 ௖ܲ

								1	, 	݊݅	݀݁ݎ݅ݑݍ݁ݎ	݅	ݕݐݎ݁݌݋ݎ݌	݂݅ ௥ܲ	݅ݏ	ݐ݋݊	݀݁ݎ݂݂݁݋	ݕܾ	 ௖ܲ	
(2)

and M the number of binary properties defined in Pr.
The numerical type is associated with minimum

and maximum acceptable values. Therefore,
matching of numerical properties is essentially
another assessment of dissimilarity, which is
performed by measuring how far from the optimal
value (either maximum or minimum) lies the offered

property value. We distinguish two cases:
(i) The property is mandatory (constraint). The
candidates in this case satisfy the lower or upper
bound of the defined feature value. Therefore, the
distance between the values of the required and
offered components is calculated by:

௜,ெ஺௑ܥ݀ ൌ
௠௔௫ೡ೔ି௩೔

௠௔௫ೡ೔ି௠௜௡ೡ೔
 (3)

for feature value maximization, and

௜,ெூேܥ݀ ൌ
௩೔ି௠௜௡ೡ೔

௠௔௫ೡ೔ି௠௜௡ೡ೔
 (4)

for minimization, while the total numerical
dissimilarity for the constraints is calculated as:

ܴ௡௨௠,௖௢௡௦௧ ൌ
ଵ

்
∑ ௜,ሼெ஺௑,ெூேሽܥ݀
்
௜ୀଵ (5)

(ii) The property is, not mandatory, but desired. In
this case some of the values of the candidates satisfy
the bounds defined in the desired components and
some do not. Therefore, the distance between the
desired property values vd and the values offered by
the candidate components vi is calculated by:

௜,ெ஺௑ܦ݀ ൌ 1 ൅
௩೏ି௩೔

	௠௔௫ೡ೔,ೡ೏
 (6)

௜,ெூேܦ݀ ൌ 1 െ
௩೏ି௩೔

௠௔௫ೡ೔,ೡ೏
 (7)

for feature value maximization and minimization
respectively. The total numerical dissimilarity for
the desired features is then calculated as:

ܴ௡௨௠,ௗ௘௦ ൌ
ଵ

ெ
∑ ௜,ሼெ஺௑,ெூேሽܦ݀
ெ
௜ୀଵ . (8)

In the above equations, ݉ܽݔ௩೔,௩೏ is the maximum
value of the property between all candidates and the
desired component, while T and M are the numbers
of numerical properties that are mandatory and
desired respectively.
The total value for the numerical properties is:

 ܴ௡௨௠ ൌ
ோ೙ೠ೘,೎೚೙ೞ೟ାோ೙ೠ೘,೏೐ೞ

ଶ
 (9)

The total dissimilarity value for a suitable candidate
component is then calculated as:

 ܴ௧௢௧ ൌ
ோ್೔೙ାோ೙ೠ೘

ଶ
 (10)

It is clear from the above that the closer the
dissimilarity value to zero the better the suitability
level of a component. The recommendation task
ranks suitable components in ascending order of
dissimilarity and suggests the top n candidates.

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

124

4 EXPERIMENTAL
EVALUATION

A preliminary experimental process was conducted
aiming at addressing the following three key
questions regarding the proposed approach: (i) How
easy and straightforward is it to locate appropriate
components? (ii) How “complete” is the process?
(iii) How accurate are the results (i.e. recommended
components)? The word complete appears in quotes
in the second question as completeness is not a
property that may easily be quantified; nevertheless,
for the purposes of this evaluation, we assume that
completeness will denote the level to which the
proposed process supports the profiling (and
therefore the processing) of all possible sources of
information describing component properties.

The experiments were carried out by 25 subjects,
20 of which were graduate (master) students at the
Cyprus University of Technology and 5 were
software practitioners. The students held an
undergraduate degree in Computer Science and/or
Engineering that included courses in Software
Engineering (SE) and at the time of the
experimentation they followed an advanced SE
course with emphasis on CBSE and reusability. The
practitioners consisted of software developers, 3 of
which extensively make use of component reuse for
the last 5 years and 2 produce components for
internal reuse in their company for the last 3 years.
All subjects underwent a short period of training (2
hours) on the proposed approach focusing mostly on
the profiling scheme and the semi-formal structures
of the natural language used. A total of 100 synthetic
components were randomly generated with the help
of the practitioners who inspected the elements
produced and suggested corrections so as to
correspond to realistic cases resembling real-world
components. The components created were divided
into 7 major categories: Login (10), Calendar (10),
Address Book (10), Calculator (10), Task/Notes
Manager (10), Clock (10) and GUI Widgets
(Wallpapers (15), Window Style (15),
Background/Fonts Style (10)). The multiple
instances of the synthetic components for each
category differed on attributes such as programming
language, OS, openness, protocols/ standards and
documentation, as well as on the performance
indicators. The EBNF profile of each component
was then created, followed by its transformation into
an ontology instance of the component tree. Each
subject was then asked to perform 10 different
searches using a simple form (see Figure 4) where
basically they inputted the desired functionality

(primary, secondary), the values for certain
performance indicators and their level of
requirement (mandatory or desired). This
information was also transformed in EBNF and then
the ontology tree instance of the search item
(component) was also created. Each search tree
instance was then automatically matched against the
available component instances in the repository. As
this process is essentially an item-to-item matching
of the tree instances, the classic metrics of precision
and recall are not applicable here since the
components retrieved were only those that satisfied
all constraints for functionality and the rest of the
features. Therefore, the candidate components
returned were only the suitable ones which then
competed on the basis of satisfying the rest of the
properties sought for, calculating the level of
suitability, as defined in eq.(10).

Figure 4: Excerpt of the component search form.

Table 2 shows part of the experimental process
when searching for a Task Manager component,
with functionality and features in the first column,
preferences for the required component in the right
most column and the five candidates in the columns
in between. The lower part of this table lists the
figures for the dissimilarity calculation described in
eqs.(1)-(10). The figures clearly suggest that
Component #2 is the candidate that best satisfies the
search preferences, followed by Components #1, #4
and #5, that having similar characteristics to each
other. This process was executed 10 times by each
subject for each component category and the results
were gathered and assessed qualitatively under the
three questions described in the beginning of the
present section related to ease of use, completeness
and accuracy. At the end, the participants in the
experimental study were asked to rate the approach
on a five-point Likert scale ranging from 1-Very
Low to 5-Very High for the focal point of each
question.

The findings of the preliminary experimental
results suggested the following: (i) The components

Automatic�Matching�of�Software�Component�Requirements�using�Semi-formal�Specifications�and�a�CBSE�Ontology

125

Table 2: Candidates’ evaluation when seeking for a Task Manager component (C denotes constraint and D desired).

Task Manager 1 2 3 4 5
SEARCH

FOR
Service Primary input input input input input Input (C)

Service Secondary
Data

processing
Data

processing
Data

processing
Data

processing
Data

processing

Data
processing

(C)
Response Time (sec) (min) 10 12 8 8 9 12 (C)

Concurrent Users (max) 50 100 40 80 100 20 (C)
Memory utilization (KB) (min) 2 3 4 1 2 4 (C)

Total task supported (max) 200 1800 700 1900 2000 1500 (D)
Download history time (sec)

(min)
6 8 22 4 20 18 (D)

Reliability (max) 90 95 92 93 90 90 (C)
Availability (max) 95 98 97 99 96 95 (C)

Application domain ANY ANY ANY ANY ANY ANY (C)
Programming language C/C++ C/C++ Java C/C++ .NET C/C++ (D)

Operating systems Windows Windows
Windows
Android

Windows
Linux

Windows Windows (C)

Openness white white black grey white White (D)

Documentation

Manual,
Test Cases,

Code,
Comments,
Design doc

Code,
Comments,
Design doc

Manual,
Test

Cases

Manual,
Test

Cases

Manual,
Test

Cases,
Code,

Comments

Code (D),
Comments

(D),
Design doc

(D)
Evaluation

Rbin 0 0 0,714286 0,571429 0,285714
Rnum 0,8244589 0,47316 0,811688 0,270996 0,59632
Rtot 0,4122294 0,23658 0,762987 0,421212 0,441017

retrieved by the proposed approach were found
suitable and among the top alternatives for all cases.
It was also observed that the components returned as
best candidates did not always possess the optimal
numerical values in the corresponding properties
sought, that is, the best values for the specific
features (i.e. lowest time performance); they rather
exhibited a good balance between numerical
properties and also presented good ratings for the
binary properties. This is clear in Table 2 where the
optimal numerical values offered by the suitable
components are marked in boldface and italic; it is
evident that #4 holds the majority of optimal
numerical values, yet it is not among the top 2. (ii)
All subjects agreed that the method was quite easy to
follow once trained, with a median rating of 4
(High). Especially with the use of the dedicated
supporting tool, as some of the subjects stated, after
their first few searches they felt quite comfortable
with the approach and faced no problems in using it.
(iii) Completeness was the feature that raised some
questioning. Initial values by students rated this
aspect with 4 (High), while practitioners gave the

value of 2 (Low). Practitioners claimed that the
approach should follow the same metrics and
properties met in Service Level Agreements (SLA)
which tend to become standard in the software
industry, like those suggested by Czajkowski et al.
(2002) and Mili et al. (2003). As this category of
users was extremely important, a round of
discussion was conducted through which the open
nature of the profile scheme for a component was
soon recognized as being able to cover any possible
features or properties a reuser may seek, as long as
the structured form followed for describing
components encompasses these items. Therefore,
practitioners agreed that the approach offers great
flexibility in this respect and rated again
completeness giving a median value of 4 (High).
(iv) The discussion mentioned in the previous point
gave birth to a suggestion for a possible extension to
the approach: A priority or weighting scheme should
be supported for the properties so that the reuser is
able to define those features considered as more
significant and therefore the assessment of candidate
components will take this significance into account

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

126

too, along with the rest similarity factors.

5 CONCLUSIONS

This paper addressed the issue of automatically
matching specifications between components. A
new component reusability framework was briefly
introduced with a focus on the activities for
matching required and offered properties. The
matching process starts with the production of a
special form of natural-language-based profile
written in EBNF. The profile describes functional
and non-functional aspects of components, as well
as general reusability properties. A dedicated parser
walks through the profile, recognizes certain
sections and elements, and then translates them into
instances of a special form of component-based
ontology developed to support the component
specification matching activities. A reuser uses the
profile to describe what he or she looks for in a
component using the EBNF notation, the latter being
highly descriptive, while it allows to formally prove
key properties and validate the semantics. Available
components need also to be described by their
developers/vendors under the same profiling details.
The transformation of the profiles to ontology trees
enables comparison at the level of instances which is
used to assess if hard constraints are violated (i.e.,
absolutely necessary properties required are not
offered by candidates) and if not, to calculate a
dissimilarity metric that dictates the level of
appropriateness of components for possible
integration. Preliminary experimental results
suggested that the proposed approach is accurate and
suitable for adoption in the everyday practice of
software reuse.

This work described a new idea with ample room
for extensions and enhancements. Therefore, future
work will include several research steps, some of
which are outlined here: First of all, a more thorough
experimentation will be carried out to validate the
applicability and efficacy of the proposed
framework. To this end, a series of experiments will
be conducted utilizing open source components.
Second, the retrieval parts will be enhanced by
optimization techniques (e.g., evolutionary
algorithms) for automating the process of locating
candidate components. Third, the suggestions made
during the experimentation phase will be
incorporated in the approach, such as the
prioritisation of the properties, which will guide the
assessment of suitable components. Fourth, several
aspects of the proposed approach will be

parameterized so as to enable use customization and
adaptation (e.g., weighting scheme of the matching
algorithm). Last but not least, the dedicated software
tool that supports the whole framework will be
extended with capabilities for EBNF editing and
ANTLR parsing during the construction of
component profiles, as well as, graphical
representation and visual inspection/comparison of
ontology tree instances.

ACKNOWLEDGEMENTS

The work is partially supported by a research grant
for the ORION project (reference number
20140218) from The Knowledge Foundation in
Sweden.

REFERENCES

Alnusair, A., Zhao, T., 2010. Component search and
reuse: An ontology-based approach. In Proceedings of
the IEEE International Conference on Information
Reuse and Integration (Las Vegas, USA, August 4-6,
2010). IRI2010, 258-261.

Czajkowski, K., Foster, I., Kesselman, C., Sander, V.,
Tuecke, S., 2002. SNAP: A protocol for negotiating
service level agreements and coordinating resource
management in distributed systems. In Job scheduling
strategies for parallel processing, 153-183, Springer
Berlin Heidelberg.

Chung, L., Cooper, K., 2004. Matching, ranking, and
selecting components: a COTS-aware requirements
engineering and software architecting approach. In
Proceedings of the International Workshop on Models
and Processes for the Evaluation of COTS
Components at 26th International Conference on
Software Engineering, (Edinburgh, Scotland, UK, May
23-28, 2004). ICSE, 41-44.

Iribarne, L., Troya, J.M., Vallecillo, A., 2002. Selecting
software components with multiple interfaces. In
Proceedings of the 28th Euromicro Conference
(Dortmund, Germany, September 4-6, 2002).
EUROMICRO’02, 26-32. IEEE Computer
Society Press.

Kluge, R., Hering, T., Belter, R., Franczyk, B., 2008. An
approach for matching functional business
requirements to standard application software
packages via ontology. In Proceedings of the 32nd
Annual IEEE International Computer Software and
Applications Conference (Turku, Finland, July 28 -
August 1, 2008). COMPSAC '08, 1017-1022. DOI=
10.1109/COMPSAC.2008.147.

Mili, H., Mili, A., Yacoub, S., Addy, E., 2002. Reuse
based software engineering: techniques, organization,
and measurement. Wiley-Blackwell.

Automatic�Matching�of�Software�Component�Requirements�using�Semi-formal�Specifications�and�a�CBSE�Ontology

127

Pahl, C., 2007. An ontology for software component
matching. Int. J. Softw. Tools Technol. Trans. 9, 2,
169-178.

Seedorf, S., Schader, M., 2011. Towards an enterprise
software component ontology. In Proceedings of the
17th Americas Conference on Information Systems
(Detroit, Michigan, August 4-7, 2011) AMCIS.

Szyperski, C., 2002. Component Software: beyond object-
oriented programming, 2nd ed., Addison Wesley.

Yan, W., Rousselot, F., Zanni-Merk, C., 2010. Component
retrieval based on ontology and graph patterns
matching. Journal of Information & Computational
Science, 7, 4, 893-900.

Yessad, L., Boufaida, Z., 2011. A QoS ontology-based
component selection. International Journal on Soft
Computing (IJSC), Vol.2, No.3, August 2011, 16-30.
DOI : 10.5121/ijsc.2011.2302.

Zaremski, A.M., Wing, J.M., 1997. Specifications
matching of software components. ACM T Softw Eng
Meth, 6, 4, October 1997, 333–369.

Zaremski, A. M., Wing, J.M., 1993. Signature matching:
A key to reuse (Vol. 18, No. 5, pp. 182-190). ACM.

Mili, H., Ah-Ki, E., Godin, R., Mcheick, H., 2003. An
experiment in software component retrieval.
Information and Software Technology, 45(10), 633-
649.

Mili, H., Radai, R., Weigang, W., ... Elzer, P., 1994.
Practitioner and SoftClass: a comparative study of two
software reuse research projects. Journal of Systems
and Software, 25(2), 147-170.

Keller, A., Ludwig, H., 2003. The WSLA framework:
Specifying and monitoring service level agreements
for web services. Journal of Network and Systems
Management, 11(1), 57-81.

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

128

