
Privacy-preserving Hybrid Peer-to-Peer  
Recommendation System Architecture 

Locality-Sensitive Hashing in Structured Overlay Network 

Alexander Smirnov1,2 and Andrew Ponomarev1 
1St. Petersburg Institute for Informatics and Automation of the RAS, 14th line, 39, St. Petersburg, Russia 

2ITMO University, Kronverksky, 49, St. Petersburg, Russia 
 

Keywords: Distributed Collaborative Filtering, Recommendation Systems, Locality-Sensitive Hashing, Peer-to-Peer, 
Anonymization, Privacy. 

Abstract: Recommendation systems are widely used to mitigate the information overflow peculiar to current life. Most 
of the modern recommendation system approaches are centralized. Although the centralized 
recommendations have some significant advantages they also bear two primary disadvantages: the necessity 
for users to share their preferences and a single point of failure. In this paper, an architecture of a collaborative 
peer-to-peer recommendation system with limited preferences’ disclosure is proposed. Privacy in the 
proposed design is provided by the fact that exact user preferences are never shared together with the user 
identity. To achieve that, the proposed architecture employs a locality-sensitive hashing of user preferences 
and an anonymized distributed hash table approach to peer-to-peer design. 

1 INTRODUCTION 

Recommendation systems play an important role in 
modern e-commerce systems by helping users to 
make their ways through the abundant variety of 
goods and services offers. From an architectural point 
of view, most of the widely used recommendation 
systems have a centralized design. This design is 
beneficial mainly because it allows employing a 
broad spectrum of user preference models to predict 
the future user behaviour. It also puts all the relevant 
user information under control of the 
recommendation system provider allowing to 
perform various research activities on this 
information besides providing online 
recommendations to users. 

However, the centralized approach has several 
drawbacks. First, it introduces a quandary about 
privacy and, in a wider perspective, about rights on 
the preferences data collected about users. As a rule, 
a user is not aware of what information the system 
collects about his/her behaviour and cannot extract 
this information from the centralized system. On the 
other hand, if a recommendation system is abandoned 
by its maintainer, all the collected user profiles may 
be lost. Second, the centralization usually results in 

some kind of preferences partitioning. A user may 
communicate with several recommendation systems, 
sharing with each system some part of his/her 
preferences profile, therefore all user’s preferences 
become spread over several recommendation systems 
with no chance of being united. This is not desirable, 
because a complete preferences profile can 
potentially lead to recommendations that are more 
accurate. Third, any centralization usually leads to a 
single point of failure, however, in modern computer 
systems, this drawback is usually alleviated by 
multilevel duplication and replication. 

On the other hand, decentralization of 
recommendation systems brings two main 
advantages: 

- the recommendation functions can be distributed 
among all users, thus, removing the need for a costly 
central server and enhancing scalability; 

- a decentralized system may improve the users’ 
privacy, as there exists no central entity owning the 
users’ private information (however, this topic is 
subtle due to the inherent security issues of peer-to-
peer systems). 

There are several approaches to recommendation 
system decentralization. In this paper, a user-centric 
approach is examined. According to this approach the 
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user holds all his/her preferences on his/her own 
system. This entirely removes the quandary about 
rights – the user fully controls his/her preferences 
storage. This can also remove the preferences’ 
partitioning as all the user preferences become 
centralized in a device controlled by the user. When 
recommendations are needed, the users’ device sends 
recommendation requests to other devices. 

Albeit all enumerated issues of the centralized 
recommendation systems design are alleviated by the 
user-centric decentralized recommendation system 
design, it poses several new issues. The main problem 
that is addressed in this paper is how to make 
recommendations based on collaborative filtering 
approach respecting user privacy by not sharing 
complete profiles between members of distributed 
recommendations network. 

In this paper, the recommendation system 
architecture that follows the user-centric approach is 
proposed. It is based on a structured peer-to-peer 
(P2P) network, where each peer corresponds to one 
user and holds preferences thereof. 
Recommendations are made by means of anonymized 
communication between peers. The proposed 
architecture enforces privacy by providing limited 
preferences disclosure. It means that there is no way 
to reliably match ratings and a user’s network address 
having no global control over the entire P2P network. 
The proposed architecture is a hybrid P2P as it uses 
one special node for the data-driven coordination that, 
however, is not used directly in the recommendation 
process. 

The rest of the paper is structured as follows. 
Section 2 presents an overview of existing P2P 
recommendation systems and approaches. In section 
3, the locality-sensitive hashing approach to 
recommendations is discussed. Section 4 contains the 
description of the proposed recommendation 
system’s architecture. Section 5 contains an 
experimental evaluation of the proposed ideas. Main 
results are summarized in the conclusion. 

2 RELATED WORK 

Peer-to-peer recommendation systems design is 
already addressed in literature. 

In Draidi et al. (2011a) and Draidi et al. (2011b) 
P2Prec system is proposed. The idea of this system is 
to recommend high quality documents related to 
query topics and content hold by useful friends (or 
friends of friends) of the users, by exploring 
friendship networks. To disseminate information 
about relevant peers, it relies on gossip algorithms. 

For publishing and discovering services a distributed 
hash table is used. 

The authors of P2Prec employ two-level Latent 
Dirichlet Allocation to automatically model topics. At 
the global level performed by a bootstrap server a 
sample of documents is collected from peers and a set 
of topics is inferred. Then at the local level performed 
by each peer the local documents are analysed with 
respect to common topics. Each user maintains the 
friendship network. A user enlarges the friendship 
network by accretion of new friends relevant to 
queries and overlapping with this users’ friendship 
network. 

To establish friendship P2Prec use gossip 
protocols. Keyword queries are routed recursively 
through friends networks, based on user trust and 
usefulness. 

In a number of methods described in literature, an 
overlay network structure based on a similarity 
between nodes is built and recommendation 
algorithm is defined on this network (Draidi, Pacitti 
and Kemme, 2011; Pitsilis and Marshall, 2006). 
Recommendations are searched for among 
neighbours up to certain depth or certain similarity 
threshold. 

One of the algorithms of an aligning network 
structure to peer similarities is T-Man (Jelasity, 
Montresor and Babaoglu, 2009). T-Man relies on the 
ability of a peer to measure how it «likes» peers. 
Having defined this relation, T-Man algorithm aligns 
the structure of the overlay network to juxtapose 
peers that «like» each other. 

The similarity-based overlay network structure is 
extensively studied in Ormandi et al. (2010) where 
authors showed that overlay topologies defined by 
node similarity have highly unbalanced degree 
distributions to be taken into account when load-
balancing the P2P recommendation network. They 
also proposed algorithms with favourable 
convergence of speed and prediction accuracy taking 
load balancing into account, considering 
collaborative filtering system where similarity of 
users is measured as cosine similarity. 

In the proposed architecture, the exact ratings are 
not exposed together with a node identity, so there is 
no way to say how similar the two nodes are. Using 
the locality-sensitive hash values one can possibly say 
whether they are likely to be close enough or not. 

Another approach is to rely on random walk 
search for similar nodes in the ordinary P2P network 
using some form of the flooding technique (Tveit, 
2001). Similarly Bakker et al. (2009) show that it is 
enough to take a random sample of the network and 
use the closest elements of that sample to make 
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recommendations. 
In Kermarrec et al. (2010), the random walks 

approach to collaborative filtering recommendations 
is examined in the context of P2P systems. The 
authors argue that the effect of random walk in 
decentralized environment is different than the 
centralized one. They also propose a system where 
epidemic protocols (gossip protocols) are used to 
disseminate the user similarity information. They 
start from a random set of peers and then in series of 
random exchanges compare their local-view with the 
local view of the remote node, leaving only the most 
similar peers in the local view (clustering gossip 
protocol). This process converges to form some 
overlay based on the peers’ similarity. Then peers that 
are not farther than two hops from the given one are 
used to make recommendations. 

In epidemic protocols, peers have access to a 
Random Peer Sampling service (RPS) providing 
them with a continuously changing random subset of 
the network peers. Each peer maintains a view of the 
network, which is initialized at random through RPS 
when a peer joins the network. Gossip protocols are 
fully decentralized, can handle high churn rates, and 
require no specific protocol to recover from massive 
failures. 

There also published research papers where 
structured P2P networks are used. For example, in 
Hecht et al., (2012) and Han et al., (2004), distributed 
hash tables are used to store ratings. The proposed 
approach stands close to this way except the point that 
ratings are not stored in a distributed hash table, 
instead a fast lookup capability provided by this kind 
of P2P architecture is employed for searching similar 
peers. 

Most of the approaches involve sharing the rating 
data between nodes, while in the proposed 
architecture it is avoided. 

Privacy concerns are directly addressed in Pussep 
et al., (2009). The authors propose a file sharing 
network where users exchange their data only with 
their friends and the recommendation system on the 
top of it. They propose a privacy-conserving 
distributed collaborative filtering approach that is 
based on exchanges of anonymized items’ relevance 
ranks between peers. Their approach, however, 
allows only unary ratings (initially, the fact of owning 
a specific file). 

Distributed recommendation systems are also 
analysed in quite different context, seeking for 
efficient parallel implementations of centralized 
recommendation techniques. This research direction 
is entirely beyond the scope of this paper. 

3 LOCALITY-SENSITIVE 
HASHING FOR 
RECOMMENDATIONS 

Locality-sensitive hashing (LSH) is a method widely 
used for a probabilistic solution of k-NN (k Nearest 
Neighbours) problem. The idea of this method is to 
hash multidimensional objects in such a way that 
similar objects (w.r.t. some distance measure defined 
on them) are likely to have the same hash value. 

3.1 The Idea of LSH 

The problem of finding the nearest neighbours is 
closely related to the recommendation systems 
research area. The reason is rather straightforward 
and is based on an assumption that users that had 
similar preferences in the past are likely to have 
similar preferences now (and in the future). 
Therefore, if user preferences are represented as a 
numerical vector and some measure is introduced in 
that vector space that corresponds to preference 
similarity, then the problem of finding similar users 
translates into the nearest neighbours search. In this 
section, a formal description of collaborative filtering 
recommendation method based on the locality-
sensitive hashing is provided. 

Let d1 < d2 be two distances according to some 
distance measure d. А family F of functions is said to 
be (d1, d2, p1, p2)-sensitive if for every f in F 
(Rajaraman and Ulman, 2012): 

• If d(a, b) ≤ d1, then probability that f(a) = f(b) is 
at least p1. 

• If d(a, b) ≥ d2 then probability that f(a) = f(b) is 
at most p2. 

An important concept in the locality-sensitive 
hashing theory is an amplification. Given a (d1, d2, p1, 
p2)-sensitive family F, a new family F’ can be 
constructed by either AND-construction or OR-
construction. 

AND-construction of F’ is defined as follows. 
Each member of F’ consists of r members of F for 
some fixed r. If f is in F’ and f is constructed from the 
set {f1, f2, …, fr} of members of F, f(x) = f(y) if, and 
only if fi(x) = fi(y) for all i {1, ..., r}. As members of 
F’ are independently chosen from F, F’ is an (d1, d2, 
p1

r, p2
r)-sensitive family (Rajaraman and Ulman, 

2012). 
OR-construction of F’ is defined as follows. Each 

member of F’ consists of b members of F for some 
fixed b. If f is in F’, and f is constructed from the set 
{f1, f2, …, fb} of members of F, f(x) = f(y) if and only 
there exists i {1, ..., b}, such that fi(x) = fi(y). 
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Similarly, F’ is an (d1, d2, 1 – (1 – p1)b, 1 – (1 – p2)b) 
-sensitive family. 

Generally, it is desirable that p1 is as large as 
possible and p2 is as small as possible. If p1 is less than 
1, then there exists some possibility that similar 
objects will have different hash values. On the other 
hand, if p2 is greater than 0, some possibility exists 
that distant objects will have similar hash values. 
Therefore, family F is chosen in such a way that p1 is 
large (close to 1) and p2 is small (close to 0). There is 
a finite set of well-studied locality-sensitive function 
families and the desired levels of p1 and p2 cannot 
always be achieved with one “pure” family, and here 
the amplification comes into play. 

If family FAr is obtained as AND-construction of 
r functions from family F, and G is then obtained as 
OR-construction of b functions from family FAr, then 
G is a (d1, d2, 1 – (1 – p1

r)b, 1 – (1 – p2
r)b)-sensitive 

family. Informally, AND-construction mostly lowers 
the initially low p2 probability and subsequent OR-
construction raises the initially high p1 probability. 

The idea of the nearest neighbours search based 
on LSH is described in many papers like Rajaraman 
and Ulman, (2012) and Slanley and Casey (2008). 
First, a hash family F (to be discussed in greater detail 
later) is chosen and b ordinary hash tables are 
arranged. Each hash table corresponds to some hash 
function fAr

i, i = 1,…,b, where fAr
i is an AND-

construction of r random functions from F. Every 
object x is stored into each of the b hash tables. Key 
is the fAr

i(x) and value is either some identity of x or x 
itself. It is natural that several objects can fall into one 
hash table bucket. 

When searching for the nearest neighbours of an 
object y, at first, fAr

i(y), i=1,..,b is calculated and then 
all values from the corresponding hash maps are 
retrieved resulting in a set of the nearest neighbour 
candidates. Precise distance to each of the candidates 
is then assessed and the false positives are removed. 

Particular choice of the hash function family 
depends on data representation and distance function 
d. For Hamming distance a bit sampling locality 
sensitive hash was proposed in Indyk and Motwani 
(1998), for cosine distance a random projections 
method was proposed in Charikar (2002), a well-
performing hash function for Euclidean distance is 
proposed in Datar et al. (2004). 

In the proposed architecture the random 
projections method is used, i.e. function f from F 
corresponds to one random hyperplane and checks 
whether a point being hashed is above or under this 
hyperplane. 

 
 

3.2 Recommendations Generation 

User-based collaborative filtering system is the 
recommendation system that infers recommendations 
from the similarity of users measured by the degree 
known user ratings coincide. 

More formally, let ruj be the rating assigned to the 
item j by the user u, which corresponds to how user u 
liked item j, or what was the subjective utility of j for 
u. Let U be the set of all users, I – the set of all items, 
Iu – the set of items rated by user u, and Iuv – the set 
of items rated by both user u and user v. Usually, a 
user has ratings for relatively small number of items, 
|Iu| << |I|. Neighbourhood methods of user-based 
collaborative filtering employ some similarity 
measure between users which is calculated based on 
common ratings (sim(u, v) = fs({ruj, rvj | j  Iuv})) and 
estimate unknown rating r*uj based on known ratings 
rvj and estimated similarities sim(u, v). 

In the recommendation systems research several 
user similarity measures were introduced: Pearson 
and Spearman correlation coefficients, Jaccard 
similarity, Hamming distance, cosine similarity 
(Amatriain et al., 2011). In this paper, the cosine 
similarity is employed as the similarity measure 
between users. Therefore: 


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The similarity measure choice is caused mostly by the 
fact that there exists a known way to approximate this 
measure by a set of locality-sensitive hash functions 
(Charikar, 2002), which is not the case for other wide-
spread similarity measures (e.g., Pearson correlation 
coefficient). It is also supported by the evidence that 
the cosine similarity works well in many 
recommendation system settings (Amatriain et al., 
2011).  

User ratings are normalized in such a way that 
ruj = 1 corresponds to a strong positive attitude of user 
u to item j, and ruj = -1 corresponds to a strong 
negative attitude respectively. 

The prediction of an unknown rating r*uj requires 
the search of users v that are similar to u, or the 
nearest neighbours of u according to cosine similarity 
measure. 

Recommendation system using LSH follows the 
nearest neighbour approach. At the known set of hash 
values for some user u, the system checks the 
respective hash tables and retrieves all users whose 
interests are likely (due to hash function properties) 
to be similar to u’s. Then an exact similarity may be 
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assessed and high rated items of similar users are 
provided to u. 

In the proposed system, the exact user similarity 
is not computed, as it would lead to user profile 
exposure, which is avoided. Instead, approximate 
similarity measure s’(u,v) is introduced as the number 
of locality-sensitive hash functions whose values are 
equal for users u and v. The recommendation 
algorithm, at first, retrieves all approximate 
neighbours Qu of user u from hash tables and 
computes s’(u,v) (where v  Qu). Then, each of the 
neighbours v  Qu is asked for the recommended 
items Rv. The proposed algorithm and the system as a 
whole do not predict ratings, instead it ranks all items 
that were recommended by approximate neighbours 
with respect to some attractiveness estimate uia~  of 

item i for user u defined by the following expression: 






uQv

R
viui Pvusa ),('~ . (2)

Here R
viP  is an indicator function that checks if item 

i is in the list of items recommended by user v: 
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In other words, the attractiveness estimate uia~   [0; 

Qu] is the sum of approximate similarities between 
user u and neighbours that “recommended” item i to 
user u. 

To sum it up, in the proposed system architecture, 
a profile of user u is a set of pairs (i, rui), where i are 
item identifiers. To compute the hash function, a 
profile is transformed to a vector of length |I| in such 
a way that for each known rating rui the respective (ith) 
vector component is set to normalized rating value, 
and for each unknown rating it is set to 0. Each of b 
locality-sensitive hash functions is represented by r 
vectors, whose dimensionality equals to a number of 
the known items (|I|). Finding a hash of a profile 
vector corresponds to computing inner products of the 
profile vector and hash functions vectors, resulting in 
1 if the inner product is positive and 0 if the inner 
product is negative or equals to zero.  After 
application of all these hash functions b r-
dimensional binary vectors are obtained and stored 
into hash table. When looking for recommendations, 
b lookups are performed, then each found 
approximate neighbour is queried for recommended 
items and the list of recommended items is sorted 
according to uia~  value. 

The values of b and r аre the parameters of 
recommendation system. In the section 5, impact of 

these parameters on the recommendations quality is 
assessed. 

4 SYSTEM ARCHITECTURE 

The proposed hybrid architecture enables the 
personalized recommendations exchange with the 
limited user preferences disclosure. In this section, 
target use cases are discussed, as well as components 
of the proposed system and scenarios that implement 
the target use cases. 

4.1 Use Cases 

Recommendation systems may provide for somewhat 
different end-user features. Specifically, in this paper 
the following recommendation use cases are 
considered: a) attractiveness estimation of a given 
item (or set of items); b) recommendations query. 

Attractiveness estimation of a given item (or a set 
of items) is involved when a user encounters some 
item and wants to check if it is potentially interesting 
or useful for him/her. In this case, the user passes this 
item (item identity) to recommendation system and 
the recommendation system should return an 
expected attitude of this user to this item. Certainly, 
the user is not required to perform this request 
intentionally by hand; some other program or GUI 
element acting on behalf of the user can mediate this 
action. Attractiveness estimation request may contain 
several items. Though estimation for multiple items 
can always be implemented as a series of single item 
estimations, it is interpreted here as a use case 
extension, because in some circumstances the 
estimation for multiple items is potentially more 
efficient than multiple separate single item requests. 

Recommendations query is launched in quite 
another situation. Here, the user just wants to see 
some recommendations – maybe recommendations 
of new, previously unseen and actual items. 

4.2 Components 

In the proposed architecture, the recommendation 
system is split into two parts: Peer-to-Peer (P2P) 
recommendations network and the Master node 
(Figure 1). The Master node breaks the conceptual 
purity of the P2P design, making it a hybrid P2P 
system, but it does not play a significant role in the 
primary use cases of the system, namely the 
assessment of a given item and recommendation 
query. Both enumerated earlier use cases are 
implemented by the P2P network solely and the 
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Master node is responsible for synchronizing 
supplementary information between peers. 

 

Figure 1: Connections between nodes in the proposed 
architecture. 

In Figure 1, two types of connection between nodes 
are shown: connections between similar peers used to 
get recommendations are shown by solid lines, and 
occasional connections of peers to the Master node 
for retrieving the supplementary information are 
depicted by dashed lines. 

1) Peer-to-Peer recommendations network: In the 
proposed architecture, each user corresponds to 
exactly one node (or peer – these terms are used here 
interchangeably). That node holds all the information 
about one user’s preferences, ratings, browsing 
history etc, but does not share this information with 
the other nodes, instead it shares only the locality-
sensitive hash values of this information in order to 
find similar users to query for recommendations. 

P2P network is based on the Distributed Hash 
Table (DHT) (Korzun and Gurtov, 2013) model 
widely employed in various P2P networks. The 
general idea of DHT is rather straightforward. It holds 
a collection of key/value pairs scattered over a 
distributed set of nodes, supporting key/value pair 
migration in case of node disconnection. DHT usually 
refers to a class of systems rather than to some 
specific system or algorithm. 

Original DHT has some severe security 
vulnerabilities. To overcome these vulnerabilities a 
variety of secure and anonymous DHT lookup 
implementations were designed. The proposed 
architecture relies on one of these anonymized 
implementations, namely Octopus (Wang and 
Borisov, 2012). The idea behind the most of secured 
DHT implementations is that all the DHT lookups are 
made through other nodes accessible by anonymous 
paths through anonymization relays. Each node in the 
anonymization path knows only the neighbour nodes 
and does not know whether some request originated 
in the neighbour node, or was passed over from some 
other node. 

DHT in the proposed system is used as a set of 
hash tables needed for nearest neighbour search, as 
described in section 3. Each key/value pair stored in 
DHT holds information about one locality-sensitive 
hash value and the list of nodes corresponding to that 
hash value. As it was discussed in the respective 
section, several (b) hash tables are needed to perform 
the nearest neighbour search. Each of the b tables uses 
its own locality-sensitive hash function. It is proposed 
to store all of these b hash tables in one DHT. In order 
to achieve this key of the DHT pair should include a 
global unique identifier of the locality-sensitive hash 
function and the value of that function. 

Each node of the P2P network has its unique 
identifier assigned to the node when it first connects 
to the network. In most DHT implementations the 
node identifier is a 160-bit value that is produced by 
applying SHA-1 to the network address of the node. 

Before a node advertises itself in DHT it creates 
an anonymized path and uses the endpoint 
specification of this path as an address it shares with 
other nodes. These anonymized paths are created 
each time when the node connects network, resulting 
in different public identifiers of the same node.  

 

Figure 2: Peer-to-Peer layers. 

As user preferences expressed in ratings are not 
changing very fast, it is reasonable for each node to 
locate other nodes with the similar profiles through 
DHT and store links to them. Therefore, a new 
overlay network of similar users is formed over the 
P2P network. It is important to differentiate between 
the three employed connection layers (Figure 2). The 
first layer is the underlying network, that provides a 
physical connection between P2P nodes. The second 
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layer is DHT connection layer that provides DHT key 
search, key redistribution etc. This layer is formed by 
links to adjacent nodes in structured P2P, the so-
called “fingers”. The third layer is formed by 
connections between similar nodes, where the 
similarity is interpreted like an equality of locality-
sensitive hashes.  

It is important to note, that links to neighbour 
nodes in the third layer are not exactly identifiers of 
nodes in P2P network, they are entrances to 
anonymized paths to these nodes. 

2) The Master node: The distributed nature of the 
proposed system causes one hindrance. LSH-based 
nearest neighbour search implies that when searching 
for the neighbours of object x, all the locality-
sensitive hash functions that were used to hash other 
objects and fill hash tables are applied to x. In the 
proposed architecture, an object being hashed is a 
vector of normalized ratings assigned by the user to 
different items of interest and hashing functions 
family is represented by random hyperplane 
projections. To define a hyperplane the 
dimensionality of the space has to be known. In some 
cases, for instance, when the rating storage is 
centralized, when ratings are immutable or all 
possible items are known in advance, knowing 
dimensionality is not a problem. However, in case of 
distributed rating storage when each node holds only 
ratings of one user, overall item space dimensionality 
can be found out only though communication 
between nodes. Dimensionality means the number of 
dimensions as well as their order. It is easy to see that 
if one user encounters items in the following order: 
(Item1:1, Item2:-0.5, Item3:1), and another user 
encounters and rates the same items in another order: 
(Item1:1, Item3:1, Item2:-0.5), then their hashes with 
hyperplane (0, 1, 0) would be different although the 
ratings match perfectly. 

Hence, it is needed to synchronize item space 
characteristics and random projection hyperplanes 
across all nodes. The problem of maintaining a global 
shared state in the P2P network is rather nettlesome, 
and there are numerous papers dedicated to this 
problem, e.g. (Hu, Bhuyan and Feng, 2012; Oster et 
al., 2006; Chen et al., 2005). In the proposed system 
this problem is addressed in a way similar to the one 
presented in (Mastroianni, Pirro and Talia, 2008) and 
sacrificing the P2P-purity of the system. It is the 
Master node that, first, collects all new items 
discovered and rated by peers, maintains their 
ordering and generates new locality-sensitive hash 
functions. So, each peer must connect to the Master 
node in two situations: first, to notify about some 
previously unknown item (which should become a 

new dimension), second, to get a new set of locality-
sensitive hash functions. It must be noted, that there 
is no necessity in generation of new hash functions 
after an assessment of each new item. Using outdated 
hash functions with lower dimensions is still possible, 
but it gradually decreases the quality of 
recommendations. So, each user node collects the 
new rated items (which were not assigned identifiers 
yet) and then sends a batch of these items to the 
Master node. The Master node, in turn, accumulates 
new items, and when their number is great enough 
assigns them an ordering and issues a new set of 
locality sensitive hash functions. It is also important 
that the new set is not an entire replacement of the 
previous, but contains only several new hash 
functions. 

4.3 Scenarios 

This subsection describes how five main scenarios of 
the recommendation system are implemented by 
means of the proposed architecture. These scenarios 
are: attractiveness estimation for a given item, 
recommendations query, rating an item, refreshing 
hash functions, and the search for similar peers. 

1) Attractiveness estimation of a given item: 
attractiveness estimation on a node is possible only 
after the integration of this node into the P2P network 
and locating the nodes of the users with similar 
ratings (hereinafter these nodes are referred to as 
neighbour nodes). Let the neighbour nodes for the 
given one be stored in the Neighbours list. Then 
attractiveness estimation for the item is performed by 
sending requests to each node from the Neighbours 
list passing the item identifier over. Each neighbour 
node answers with a binary value meaning if it can 
recommend this item to others or not. Attractiveness 
estimation for the set of items is done mostly in the 
same way, except that the requester node passes the 
list of item identifiers instead one identifier and the 
answer contains a list of pairs (itemId, 
recommend_flag) for all items that the neighbour 
node is able to recommend. 

Informally, attractiveness estimation scenario can 
be interpreted as asking an advice from co-minded 
people. In centralized systems it is performed in some 
conceptual way, in the proposed hybrid P2P system it 
is performed literally sending requests to the 
respective nodes. When answering attractiveness 
estimation request, a node can base the response on 
the rating that is stored for the given item, or infer the 
rating from some other information. This is an 
extension point of the proposed system architecture. 
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These requests are sent and answered through 
anonymization relays, so the node does not expose 
both its identity and an exact rating for any item. 

2) Recommendations query: In this case, node that 
needs recommendations just sends corresponding 
requests to each of the neighbour nodes. Each 
neighbour node answers with a list of (item, rating) 
pairs. Unlike the previous scenario, here the 
neighbour node needs to send not just identifiers of 
the recommended items, but their entity, something 
that the receiver side can use directly. 

The way neighbour node forms the 
recommendations list is also an extension point. In the 
simplest case, it should return some random sample 
of the high-rated items, it may also return only new 
high-rated items. 

Anonymization relays make sure that the 
recommendations provider does not expose both 
ratings and its identity. 

3) Rating an item: The main issue of rating items 
is the generation of new locality-sensitive hash 
functions that must follow it. To address this issue 
each node has two lists: Known and New. The Known 
list holds all the items the Master node is aware of. 
This list is received from the Master node during the 
bootstrap process of periodical synchronization 
process. The order of items in this list is also 
important as it corresponds to the order of dimensions 
of locality-sensitive hash functions. The New list, on 
the other hand, holds the items that are discovered by 
this node and are not yet approved by the Master 
node. When the user rates an item, the rating is saved 
and then, if the item is neither in Known, nor in New 
lists it is added to the New list. 

When New list exceeds some predefined size or 
once in a predefined period (whatever happens first), 
the node sends its New list to the Master node and 
retrieves the global shared state from the Master node. 
Global shared state from the Master node includes up-
to-date version of the Known list. Each node 
augments its Known list according to the one received 
from the Master node and removes from New list 
items that are present in Known list. 

4) Refreshing hash functions (supplementary 
scenario): Each node periodically queries the Master 
node for the global shared state. As it was described 
earlier, there are b functions, and each hash function 
is a vector of r m-dimensional random vectors 
(representing random hyperplanes). To reduce the 
amount of information exchange and load of the 
Master node, each hash function posted by the Master 
node is represented by three integers: function unique 
identifier (funcId), random seed and current number 
of items m (i.e. item space dimensionality). When a 

node gets this information it generates random 
hyperplanes constituting each of the b locality-
sensitive hash function as a sequence of r*m (m 
dimensions for each of r hyperplanes) random 
numbers from the specified seed using Mersenne 
twister (Matsumoto and Nishimura, 1998). 

5) The search for similar peers (supplementary 
scenario): The search for similar, or neighbour, peers 
is initiated when a node is registered in the P2P 
network. Then this search is performed regularly. 
Before searching for neighbours a node have to 
refresh item list and hash functions from the Master 
node. Then each function from an up-to-date set of 
hash functions is applied to this node ratings vector. 
The results are merged into pairs (funcId, value) and 
these pairs are used as keys to look up in DHT. DHT 
look up returns a list of node identifiers similar to this 
one according to the respective locality-sensitive 
function. These lists are then merged and stored as the 
Neighbours list. 

5 EXPERIMENTAL STUDY 

Experimental study of the proposed approach was 
performed with the MovieLens 100k dataset shared 
by GroupLens research lab. This dataset fits well with 
e-commerce scenarios (specifically, media streaming 
services), as it contains 100,000 real-life ratings 
assigned by 943 users to 1682 movies. 

The purpose of the experimental study was 
twofold. First, to gain some insights into the internal 
quantitative characteristics of the proposed approach 
and to estimate time and spatial complexity of the 
DHT-based LSH recommendation system. Second, to 
evaluate the quality of recommendations with respect 
to some well-known baselines. 

Ratings are normalized by centring over the user’s 
mean rating and scaling to [-1; 1] range. 

5.1 Time, Space and Network Load 

It was already noted that b (the number of hash 
functions) and r (the number of hyperplanes in each 
hash function) are parameters of the LSH-based 
recommender. Values of these parameters have 
significant impact both system performance and 
accuracy. 

As each node puts itself into DHT b times, the size 
of the DHT is n*b it means that on the average only b 
records of the DHT are located on each node. In most 
cases, this burden is negligible. More important is the 
fact that the search for the neighbour nodes takes b 
lookups which is O(b log(n)) of internode 
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communications. Even more important is the number 
of neighbours, as this number corresponds to the 
number of network queries performed to obtain 
recommendations, and it is desirable to keep the 
number of these queries as small as possible. 

 
Figure 3: Average number of neighbours depending on the 
number of hash functions (b) and their dimensionality (r). 

Figure 3 shows the dependency between b and r 
parameters of recommender and the average number 
of neighbours found through hash table look up. It can 
be seen that the number of neighbours increases with 
the growth of b, and the speed of growth significantly 
depends on the dimensionality of hash functions. It is 
expected behaviour, as small dimensionality of hash 
functions and large number of “alternative” hash 
functions make neighbour search procedure 
indiscriminative. In this experiment, we assume that 
the reasonable number of hash functions is under 100 
and the reasonable number of neighbours is under 50. 
The numbers are different as neighbours search is 
one-time action and queries to neighbours happen 
more often. 

The number of neighbours selection is also 
supported by the experiment, presented in Figure 4. 
For fixed dimensionality (r) different values of b were 
tried and the average number of neighbours and the 
respective recall were evaluated. It can be seen, that 
when the number of neighbours is less than 
approximately 50, the quality of recommendations is 
growing fast, whereas for bigger values of the number 
of neighbours it reaches a plateau. 

Having this in mind, three configurations were 
selected to examine recommendations quality: (r=12, 
b=100), (r=10, b=35), (r=8, b=10). These 
configurations were selected because each of them 
gives on the average approximately 50 neighbours for 
a user in the explored dataset (see Figure 3). 

5.2 Recommendations Quality 

As the proposed recommendation system does not 
predict item ratings, the conventional root mean 
square error metric for measuring recommendations 
quality is irrelevant. Instead, recall is used as a quality 
metric better tailored to top-n recommendation 
systems. The authors follow the approach described 
in Cremonesi et al. (2010). Ratings dataset is split into 
two subsets: training set and testing set in 80/20 
proportion. Training set is used to fill the hash table. 
Then, for each high rating (4 or 5) from the testing set 
a check is performed whether this item is in top n 
recommended items for that user. The outcome of this 
check may be either 1 (if it is in the top n) or 0 (if it is 
not). These outcomes are summed for all high ratings 
of the testing set to produce Np value. Recall is 
calculated according to formula: 

H

p

N

N
nR @ , (4)

where NH is the number of high ratings. In other 
words, this value can be interpreted as a probability 
that a randomly taken high rated item is in fact 
recommended by the algorithm. 

 

Figure 4: R@50 depending on the number of nearest 
neighbours for LSH with r=10 and b varying from 5 to 55. 

Recall of the proposed recommendation method was 
compared with two baseline non-personalized 
recommenders. First, a random recommender 
(RandRec) which recommends just n random items to 
any user, second, popular items recommender 
(PopRec) which recommends the items that have the 
most number of ratings. Figure 5 shows the recall of 
each of the recommenders at different values of n. 

All the tested variants of  LSH  recommendation 
method give similar results. It may be explained by 
the fact that in all of the tested variants there are 
nearly the same number of neighbour nodes (about 
50, see Figure 3). It can also be seen that the proposed 
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Figure 5: Comparison of R@n for different 
recommendation methods. 

recommendation algorithm significantly outperforms 
the non-personalized recommendation algorithms in 
terms of recall. 

6 CONCLUSIONS 

In this paper, the architecture of a user-centric hybrid 
peer-to-peer recommendation system, based on 
locality-sensitive hashing is proposed. In the 
proposed architecture, privacy is enforced by the fact, 
that user ratings are shared only in an anonymized 
way and complete profiles are not shared at all (only 
their hash values). 

The proposed approach was evaluated on a widely 
used dataset from an e-commerce scenario (movie 
ratings) and it was shown that the estimated recall of 
the proposed recommendation system is sufficiently 
higher than that of the trivial baselines. 

However, some limitations of this approach can 
also be enumerated. First, due to DHT limitations it is 
not applicable to the P2P networks with high churn, 
second, it most likely does not fit highly dynamical 
domains, such as news recommendation, because of 
the need of sharing information about all objects all 
over the P2P network. 

In the future, the authors are planning to consider 
alternative solutions of sharing the global set of 
locality-sensitive hash functions among peers. 
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