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Abstract: In recent years, a considerable amount of attention has been devoted to research on complex networks and 
their properties. Collaborative environments, social networks and recommender systems are popular 
examples of complex networks that emerged recently and are object of interest in academy and industry. 
Many studies model complex networks as graphs and tackle the link prediction problem, one major open 
question in network evolution. It consists in predicting the likelihood of an association between two not 
interconnected nodes in a graph to appear. One of the approaches to such problem is based on binary 
classification supervised learning. Although the curse of dimensionality is a historical obstacle in machine 
learning, little effort has been applied to deal with it in the link prediction scenario. So, this paper evaluates 
the effects of dimensionality reduction as a preprocessing stage to the binary classifier construction in link 
prediction applications. Two dimensionality reduction strategies are experimented: Principal Component 
Analysis (PCA) and Forward Feature Selection (FFS). The results of experiments with three different 
datasets and four traditional machine learning algorithms show that dimensionality reduction with PCA and 
FFS can improve model precision in this kind of problem. 

1 INTRODUCTION 

For the last years, the constant advances in 
information technology have significantly 
contributed to increase the amount of interconnected 
data around the world. In this scenario, many large, 
complex and dynamic digital networks have 
emerged. For example, social networks, 
collaborative environments and recommender 
systems, just to name a few, are complex networks 
provided by Web 2.0 and e-Science. Both scientific 
and industrial communities have devoted a 
considerable amount of attention to the investigation 
of such networks and their properties (Liben-Nowell 
and Kleinberg, 2003). Many studies model networks 
as graphs, where a vertex (node) represents an item 
in the network (e. g. person, web page, product, 
movie, photo, etc) and an edge represents some sort 
of association between the corresponding items (e.g. 
a purchase connects the product and the client). 

Complex networks are very dynamic, since new 
vertices and edges can be added to the graph over 
the time. Understanding the reasons that make the 

networks evolve is a complex question that has not 
been properly answered yet. One major but 
comparatively easier problem in the study of 
network evolution is the link prediction task. It 
consists in predicting the likelihood of an association 
between two not interconnected nodes in the graph 
to appear (Lü and Zhou, 2011). We have noticed that 
link prediction has been applied for two different 
tasks: predicting “future” links (Liben-Nowell and 
Kleinberg, 2003), when the goal is to discover which 
links will appear in the future, and predicting 
“missing” links (Lü and Zhou, 2011), used for 
inferring links that already exist in the network, but 
are not represented yet. 

One of the approaches to the link prediction 
problem is based on supervised learning (Hasan et 
al, 2006; Li and Chen, 2009; Pujari and Kanawati, 
2012; Sa and Prudencio, 2011; Benchetarra et al., 
2010). Such approach converts original data to a 
binary classification problem. In this problem, each 
data point corresponds to a pair of vertices with a 
class label denoting their link status: positive if the 
association between the two vertices exists, 
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negative, otherwise. Additional features must be 
added to the dataset in order to describe its data 
points and represent some sort of proximity between 
the pair of vertices. A machine learning algorithm is 
applied to the enriched dataset in order to generate a 
classification model. 

Many features have been experimented in 
supervised learning for link prediction problems 
(Hasan and Zaki, 2011). Typically, these features are 
classified in three groups: (a) node and edge 
information (e.g. client’s age, job location, etc); (b) 
aggregated features (e.g. sum of e-mails, sum of 
contacts, etc); (c) topological measures extracted 
from the graph (e.g. common neighbors, jaccard’s 
coefficient, etc). Choosing which features to add to 
the dataset is crucial for the learning process. It is a 
typical optimization problem where there is a search 
for a reduced set of features that preserves, as much 
as possible, the original amount of information 
available in the dataset. 

Although many works have reported promising 
results with the binary classification approach for 
link prediction, choosing the set of features to train 
the classifiers is acknowledged to be a major 
challenge (Hasan and Zaki, 2011).  

The machine learning community has developed 
many methods to deal with the high-dimensional 
space problem (Yu and Liu, 2003; Caruana et al., 
2008). In general, these methods are based on two 
approaches (Kohavi and John, 1997): filter and 
wrapper. The filter approach consists in calculating 
some evaluation metric (such as correlation or 
information gain) from the dataset in order to select 
the features that lead to better evaluations. On the 
other hand, the wrapper approach is iterative and, for 
each iteration, selects a subset of features, reduces 
the original dataset (using the selected features) and 
uses it to construct and evaluate a predictive model. 
This process is repeated until a stopping criterion is 
satisfied. 

Dimensionality reduction techniques can also be 
classified in two groups: feature selection and 
feature extraction. The main difference between 
them is that the first group does not change original 
attributes and the second one transforms original 
features in new attributes. 

Despite its acknowledged importance for 
supervised learning tasks, few works have 
investigated the effects of dimensionality reduction 
in link prediction. Table 1 shows examples of 
dimension reduction techniques according to the 
classifications presented above.  

Feature Selection for Link Prediction – FESLP 
(Xu and Rockmore, 2012) and Cross-Temporal Link 

Prediction – CTLP (Oyama et al., 2011) have been 
specifically designed to be used in link prediction 
applications. FESLP selects features based on their 
correlation and information gain. CTLP assumes that 
features useful for link prediction change over time 
and, thus, searches for sets of features which best 
describes nodes and theirs variations as time passes 
by. Oyama et al., (2011) used CTLP in a dynamic, 
time evolving environment to determine the 
identities of real entities represented by data objects 
observed in different time periods. Xu and 
Rockmore (2012) ran their experiments with 
datasets generated from an email network of a large 
academic university.  

Forward Feature Selection – FFS (Freitas, 2002) 
and Principal Component Analysis – PCA (Jackson, 
1991) are methods traditionally used by the machine 
learning community.  

FFS is iterative. In each iteration, FFS searches 
for a feature that, combined to a set of selected 
features, builds a reduced dataset that leads to the 
best predictive model (according to some criterion, 
such as precision or recall, for example). Its loop 
will perform until no predictive model built in the 
current iteration shows improvement. Initially, the 
set of selected features is empty and FFS builds as 
many reduced datasets as the number of attributes in 
the original dataset (each reduced dataset contains 
exactly one attribute plus the class, target of the 
problem). 

PCA is a statistical technique that uses an 
orthogonal transformation to convert a dataset of 
possibly correlated features into a set of linearly 
uncorrelated attributes called principal components. 
The number of principal components is less than or 
equal to the number of original features. Such 
components are orthogonal because they are the 
eigenvectors of the covariance matrix, calculated 
with the attributes of the original dataset. 

To the best of our knowledge, both FFS and PCA 
have never been used to reduce dimension in link 
prediction applications.  

Table 1: Examples of Dimensionality Reduction Methods. 

Methods Approach Feature Treatment  
FESLP  Filter Selection 
CTLP Filter Selection 
PCA  Filter Extraction 
FFS  Wrapper Selection 

 

So, this paper evaluates the effects of PCA and 
FFS as dimensionality reduction preprocessing 
techniques to the binary classifier construction in 
link prediction applications. In constrast to FESLP 
and CTLP, we have run our experiments over three 
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open and popular datasets (DBLP, Amazon, Flickr). 
Traditional learning algorithms like SVM, Naïve 
Bayes, K-NN and CART (Hasan et al, 2006) were 
tested with both dimensionality reduction methods. 
The results show that dimensionality reduction with 
FFS and PCA can improve model precision in this 
kind of problem when compared to the use of the 
complete set of features (CS). 

This work was organized in four other sections. 
Section 2 presents details about the experimental 
setup. Configurations of the classification algorithms 
and information about the used datasets are also 
described in Section 2. Section 3 presents and 
analyses the results obtained. Conclusions and future 
work are posed in Section 4. 

2 EXPERIMENTAL SETUP 

2.1 Datasets 

We have selected three different datasets to perform 
our experiments: DBLP, Amazon and Flickr. All of 
them are available on the web for download (Ley, 
2009; Leskovec and Krevl, 2014). The first one 
contains data about co-authoring scientific 
publications and has been used in many works 
concerning future link prediction (Hasan et al, 2006; 
Oyama et al., 2011; Benchettara et al., 2010). The 
idea is to predict future interactions (links) that 
could occur between the authors (vertices). The 
second dataset is formed by product co-purchasing 
(with products as vertices and their relations of 
being sold together as links). The Flickr dataset 
contains pictures (vertices) and their associations 
(links). The link prediction task in DBLP is slightly 
different from the ones in Amazon and Flickr. While 
in DBLP dataset the goal is “future” link prediction, 
the task in both Amazon and Flickr datasets is to 
predict “missing” links among products (Amazon) 
and photos (Flickr). 

2.2 Feature Set 

For this work, a feature set with 15 attributes was 
selected. Most of them were selected due to their use 
and relevance in many applications of link 
prediction (Hasan and Zaki, 2011). However, some 
other features that were not so common in the link 
prediction task were chosen as well, in order to 
evaluate their relevance in the datasets used in the 
experiments. The features are described as follows: 
1. Shortest path length (Hasan and Zaki, 2011): 

this traditional feature corresponds to the 
smallest number of edges that forms a path 
between a pair of vertices; 

2. Second shortest path length (Hasan et al, 2006): 
the length of the shortest path different from the 
previous one; 

3. Common neighbours (Hasan and Zaki, 2011): 
the number of common neighbours between two 
given vertices; 

4. Sum of neighbours (Hasan et al., 2006): the total 
of neighbours of each vertex from a pair; 

5. Jaccard’s Coefficient (Hasan and Zaki, 2011): 
the ratio between the number of common 
neighbours and the number of total neighbours 
of each vertex;  

6. Sum of intermediate elements: taking into 
account the structure of a bipartite graph, the 
sum of intermediate elements refers to the total 
number of elements connected to both vertices 
that form a pair; 

7. Adamic/Adar similarity (Adamic and Adar, 
2003): it is the sum of the secondary common 
neighbors (neighbors of neighbors), with a 
smaller weight (relevance) than the primary 
neighbors (direct neighbors). 

8. Preferential attachment (Barabasi et al., 2002): 
product of the number of neighbours of both 
vertices that form a pair; 

9. Katz measure (Katz, 1953): sum of lengths of all 
paths existing between each pair of vertices, 
providing higher relevance to paths with smaller 
lengths. 

10. Leicht-Holme-Newman Index (Leicht et al., 
2006): ratio between the number of common 
neighbours of a pair of vertices and their 
preferential attachment; 

11. Clustering coefficient (Hasan and Zaki, 2011): 
this metric is related to the number of triangles 
that each vertex is part of; 

12. Closeness centrality (Freeman, 1978): the 
inverse value of the average distance of each 
vertex of the pair to all other vertices in the 
graph; 

13. Average clustering of the nodes (Saramäki et al., 
2007): the mean of the local clustering 
coefficient of the vertices; 

14. Average neighbour degree (Barrat et al., 2004): 
the average of the degree of the neighbours of 
the pair of vertices; 

15. Square clustering coefficient (Lind et al., 2005): 
this metric is related to the number of squares 
that each vertex is part of. 
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2.3 Method 

Figure 1 depicts the process performed for each 
group of experiments.  

Conceptually, our experimental process has three 
major stages: preprocessing, configuration, and 
evaluation. The first stage prepares the data for the 
next stages; the second one defines the settings of 
both dimensionality reduction strategy and 
classification algorithm, and the last stage trains and 
evaluates the learning model over the reduced 
datasets. 

All the stages were developed in Python and 
were based on Scikit-learn (Pedregosa et al, 2011), a 
well known machine learning library, and on 
NetworkX (Hagberg et al., 2008) a development 
environment frequently used to implement and 
process graph structures.  

2.3.1 Pre-processing 

This stage is performed only once for each dataset. It 
randomly selects samples from the original data in 
order to build a dataset for the classification task. 
The new dataset is the one used by the other stages. 
This stage has the following steps: 
 

a) Binary Class Transformation: this step is 
responsible for taking a sample from the original 
dataset modelled as a graph G and turning it into 
a dataset formed by the pairs of vertices and their 
classes. Each of the randomly selected pairs of 
vertices is classified as positive or negative. The 
classification process will depend on the kind of 
task performed: for the future link prediction, the 
original dataset is divided into two range of years 
(Hasan et al., 2006) – the training years (which 
represents the “present” period of time, and is 
represented by the graph Gt, originated from the 
graph G), and the test years (which represents the 
“future” period of time, and is represented by the 
graph Gt+1, also originated from the graph G). A 
selected pair of vertices cannot have a link 
between them in the training range, but may or 
may not have a link in the test range, being 
classified as positive or negative example, 
respectively. This process was used with the 
DBLP dataset. For the missing link prediction 
task, the sample is selected from the graph G, 
and the pairs of vertices are classified as positive 
or negative if they have a link between them or 
not. However, once the positive examples are 
selected, their links are removed from the graph 
Gt, which is a copy from the original graph G (in 
order to simulate their absence and consider 

them the “missing” links). This criterion was 
applied to Amazon and Flickr datasets. 

 

b) Feature Set Construction: after building the 
sample, the features of each selected pair of 
vertices are calculated. As we have used only 
topological features for this work, the features 
are calculated based on the graph structure Gt 
(which can represent different versions of the 
original graph G, depending on the task 
performed). We normalized the features values 
using the standard score (Hasan et al., 2006). 
After normalized, the calculated features are 
attached to the tuple corresponding to its pair of 
vertices in the dataset for classification. 

  

Figure 1: The sequence of stages and their steps performed 
for each experiment. 

c) Dataset Partition into K-Folds: this step divides 
the dataset for the classification task into K 
different folds, adding the index of the fold of 
each pair of nodes to its corresponding tuple. The 
purpose of keeping the folds previously defined 
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was to consider the same dataset partition for the 
k-fold cross-validation process to be executed 
with every classification algorithm.  

2.3.2 Configuration 

The data analyst uses this stage to select both the 
dimensionality reduction strategy and the 
classification algorithm (and its parameters to be 
employed in the evaluation stage). This stage has the 
following steps: 
a) Dimensionality Reduction Strategy Definition: in 

this step, the dimensionality reduction strategy 
that will be used for future evaluation is chosen. 
There are two available strategies: FFS and PCA. 
The former has no parameter. For the latter, the 
maximum number of principal components that 
will be generated from the dataset must be 
defined by the user. 

b) Classification Algorithm Definition: this step is 
responsible for defining the classification 
algorithm and its configuration to be used in the 
supervised learning process. The tested 
algorithms and their configurations are listed in 
section 2.4. 

2.3.3 Evaluation 

The supervised learning process and dimensionality 
reduction strategy evaluation effectively happen in 
this stage. As depicted in the figure 1, the evaluation 
stage is iterative, executing its steps in a loop. If the 
PCA technique is chosen as dimensionality 
reduction strategy, this loop will perform until the 
maximum number of principal components are 
evaluated. Otherwise, the FFS will be used, and as it 
is an incremental strategy, its loop will perform until 
there is no improvement of precision of the built 
predictive models. The results of this stage are the 
precision of the most accurate predictive model and 
the number of principal components or features 
(depending on the strategy) used to build this model. 
This stage has the following steps: 
a) Reduced Dataset Selection: this step applies the 

dimensionality reduction strategy in the pre-
processed dataset, creating the reduced datasets. 
If the FFS strategy is selected, at its first 
iteration, a reduced dataset with each attribute of 
the original feature set will be generated. 
However, if the PCA technique is selected, there 
will be as many reduced datasets as the 
previously defined maximum number of 
principal components.  

b) Model Learning: In order to obtain a predictive 

model, this step applies the classification 
algorithm to the reduced dataset produced by the 
previous step. The predefined configuration of 
the algorithm is always used during the process. 
As we are using the k-fold cross validation, we 
build k different predictive models for each 
reduced dataset. We have parallelized this 
process, building these predictive models 
simultaneously. 

c) Model Evaluation: the predictive model is 
evaluated in this step. All the k predictive models 
are evaluated using the traditional k-fold cross 
validation. We have used the precision of the 
classification model to evaluate the reduced 
dataset. As mentioned before, the validation was 
parallelized, so the evaluation of each predictive 
model happens simultaneously, and the final 
precision is the average precision of these 
predictive models. 

2.4 Classification Algorithms 

Although there are many classification algorithms 
for supervised learning, we had to choose some of 
them to perform our experiments. Summarized in 
Table 1, our choices followed the ones reported in 
(Hasan et al., 2006). 

We performed some preliminary experiments 
with each dataset, in order to set the parameter 
values depicted in Table 2. For example, we ranged 
k of k-NN from 3 to 9 in order to choose the one 
(k=5) with the best classification results in the 
evaluated datasets. Once set, such configurations 
were used in all experiments. 

Table 2: Classification algorithms used in this work. 

Algorithm Comment 

SVM 
‘RBF’ Kernel; penalty = 100; kernel coeff. 

= 0.1 
K-NN K=5 

Naïve Bayes (NB) Gaussian Distribution 
CART Random State = 10 

3 RESULTS AND DISCUSSIONS 

We performed three groups of experiments. Each 
group considered one of the three datasets. For the 
future link prediction task in the DBLP dataset, we 
have used a period of time from 1990 to 2000 as the 
training years, and from 2001 to 2005 as test years. 
As we have used the Amazon and Flickr datasets for 
the missing link prediction task, we did not have to 
define a period of time for them. We preprocessed 
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each dataset only once, at the beginning of the 
experiments of its group. Then, we have applied 
PCA, FFS and CS strategies with each classification 
algorithm in each dataset using the 10-fold cross 
validation process. The CS (Complete Set) 
“strategy” was considered our baseline. It always 
used the complete set of attributes (15 features). In 
fact, no dimensionality reduction was performed 
with it. With PCA, we have used 14 as the 
maximum number of principal components for each 
dataset. The FFS strategy demanded no parameter.  

We have built a total of 5280 predictive models. 
Table 3 summarizes our results. Each triple (dataset, 
dimensionality reduction strategy, classification 
algorithm) defines a cell that contains two numbers. 
The first one is the average precision (%) of the 
classification models produced by the subset of 
experiments that applied the corresponding 
dimensionality reduction strategy to the respective 
classification algorithm and dataset during the 10-
fold cross validation process. The second one 
(presented between brackets) indicates the number 
of features (or principal components) of the most 
precise classification model produced in such subset 
of experiments.  

The FFS strategy outperformed CS in eight of 
twelve cases (66.6%). Only in the subset of 
experiments with the Amazon dataset and SVM 
algorithm, FFS presented the same average precision 
of CS, but with a smaller feature subset. The PCA 
outperformed CS in half of the cases (50%), having 
the same average precision in three of them. 

FFS overcame PCA in nine of twelve cases 
(75%), while PCA only overcame FS in two of all 
cases (16.6%). 

It is worth to mention the improvement of the 
Gaussian Naïve Bayes (NB) algorithm when 
evaluated with a reduced dimension space. Not 
surprisingly, for all datasets, this algorithm 
performed much better with less correlated attributes 
or principal components than with the complete 
original feature set.  

4 CONCLUSIONS 

Link prediction is an important task in the scenario 
of complex networks and supervised learning is an 
approach to deal with it. High dimensionality is one 
major problem in machine learning applications. 
And so it is in the supervised learning link prediction 
task. In spite of the importance of this problem, just 
a few works related to dimensionality reduction in 
link prediction have been developed. However, none 

of them have used classical techniques from the 
machine learning literature, such as principal 
components analysis (PCA) and forward feature 
selection (FFS). 

Table 3: Summary of results obtained with the three 
groups of experiments. 

D
at

as
et

 

A
lg

or
it

h
m

 Dimensionality Reduction Strategy 

CS (%) FFS (%) PCA (%) 

D
B

L
P

 

CART 73.7 [15] 79.9 [02] 73.6 [10] 

SVM 81.3 [15] 81.2 [07] 81.3 [11] 

K-NN 80.0 [15] 79.2 [04] 80.1 [10] 

NB 64.2 [15] 80.5 [05] 78.0 [01] 

          

A
m

az
on

 CART 96.4 [15] 97.3 [03] 95.8 [04] 

SVM 97.5 [15] 97.5 [07] 97.5 [11] 

K-NN 97.2 [15] 97.5 [04] 97.3 [09] 

NB 91.8 [15] 97.0 [03] 92.9 [03] 

          

F
li

ck
r 

CART 89.5 [15] 89.2 [02] 77.3 [07] 

SVM 82.6 [15] 83.7 [03] 82.6 [10] 

K-NN 79.2 [15] 86.4 [06] 79.8 [08] 

NB 65.5 [15] 79.3 [01] 71.0 [04] 

 

In this paper, we have explored the effects of 
dimensionality reduction in the link prediction task, 
by applying the traditional techniques of PCA and 
FFS. The main contributions of our experiments 
include: (a) results that showed that traditional 
dimensionality reduction techniques can lead to 
more precise and compact models in link prediction; 
(b) the use of open datasets (which makes it easier 
for other researchers to reproduce the experiments) 
that cover “future” (DBLP) as well as “missing” 
(Amazon and Flickr) link prediction applications; (c) 
insertion of some topological measures (the last 
three ones described in subsection 2.2) not usually 
employed in link prediction state of art to describe 
the datasets. 

As future work, we consider the use and 
evaluation of other classical feature selection 
techniques in link prediction, including optimization 
meta-heuristics, such as genetic algorithms. It would 
be also interesting to use other datasets that include 
not only the topological information, but information 
from the graph nodes as well, in order to consider a 
wider range of features. Experiments with other 
classification algorithms for those link prediction 
tasks and the use of other evaluation measures such 
as recall, F-measure and AUC are also desirable.  
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