
A SOA Repository with Advanced Analysis Capabilities 
Improving the Maintenance and Flexibility of Service-Oriented Applications 

Thomas Bauer1, Stephan Buchwald2, Julian Tiedeken3 and Manfred Reichert3 
1Neu-Ulm University of Applied Sciences, Dep. Information Mgmt, Neu-Ulm, Germany 
2T-systems International Gmbh, Systems Integration - Car2x Solutions, Ulm, Germany 

3University of Ulm, Dep. Database & Information Systems, Ulm, Germany 
 

Keywords: Service-Oriented Architecture (SOA), SOA Repository, as-Is Analyses, What-if Analyses. 

Abstract: In a service-oriented architecture (SOA), a change or shutdown of a particular service might have a 
significant impact on its consumers (e.g., IT systems). To effectively cope with such situations, the IT 
systems affected by a service change should be identified before actually applying the latter. For this 
purpose, a SOA repository with advanced analysis capabilities is needed. However, due to the numerous 
complex inter-dependencies between service providers and consumers, it is a challenging task to figure out 
which IT systems might be directly or indirectly affected by a service change and for which period of time 
this applies. The paper tackles this challenge and presents the design of an advanced SOA repository 
enriched with analysis capabilities. In particular, this repository enables automatic analyses to detect already 
existing problems (as-is analyses) as well as problems that might occur due to future service changes (what-
if analyses). Respective analyses will foster the development of robust service-oriented applications. 

1 INTRODUCTION 

Major goals of a service-oriented architecture (SOA) 
are to increase the reuse of services as well as the 
flexibility to adapt services to changing business 
needs (Josuttis, 2007). The principle of loosely 
coupled services (Erl, 2005), for example, enables a 
rapid migration of a service implementation to a new 
version or the replacement of a service by another 
one, without need for any adaptions on the side of 
the service consumer. Usually, in a SOA a proxy 
(i.e., Enterprise Service Bus, ESB) is introduced 
between the application that calls (i.e. consumes) the 
service and the service itself. Consequently, the 
service can be simply exchanged by adapting the 
proxy accordingly, but no additional adaptations of 
the consuming application become necessary.  

In a case study we conducted in the automotive 
industry ENPROSO1, we analyzed a multitude of 
techniques to increase the flexibility of a SOA 
(Buchwald et al., 2011; Buchwald, 2012). In this 

 
____________________________________ 

1 Enhanced Process Management by Service Orientation, 
performed at and funded by Daimler AG 

context we learned that other kinds of changes of 
operable services might be more complex than the 
aforementioned ones. Especially, this applies to the 
shutdown of a service (i.e., the service shall no 
longer be operable), which might affect the 
operability of the service consumers’ applications 
(i.e., IT systems). Note that it is crucial to detect 
such outdated services in order to avoid 
malfunctions regarding the IT systems of previous 
service consumers (i.e., to avoid the invocation of 
these services). Besides this, managing outdated 
services over a longer period of time also causes 
unnecessary costs on the side of the service provider.  
For these reasons, techniques are required that allow 
identifying unused services in a SOA environment 
(e.g., to switch them off). In literature (Erl, 2005; 
Josuttis, 2007), the method usually applied for this is 
to utilize information from a SOA repository (i.e., a 
service registry or directory). In the ENPROSO 
project, we developed a comprehensive meta-model 
for such a SOA repository (Buchwald, 2012). It 
offers, for example, detailed information on service 
versions, service installations, and service contracts. 
Based on this information, in turn, it becomes 
possible to detect the actually used service versions 
and installations, the period during which they shall 

238 Bauer T., Buchwald S., Tiedeken J. and Reichert M..
A SOA Repository with Advanced Analysis Capabilities - Improving the Maintenance and Flexibility of Service-Oriented Applications.
DOI: 10.5220/0005368302380248
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 238-248
ISBN: 978-989-758-098-7
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



be used, and the service installations that are 
expendable or may be switched off in future. In turn, 
this allows estimating the efforts required to adapt 
the applications consuming that service. 

The SOA repository we developed contains 
various kinds of object types as well as their 
relationships. Usually, users might be lost when 
being confronted with the large data volume of a 
SOA repository. Hence, advanced data analyses 
capabilities are needed in order to be able to detect 
potential problems that might occur in future (e.g., 
when a service will be finally shut down). Based on 
the data from a SOA repository, it should be 
possible to automatically detect problems that will 
occur in future. Such automatic analysis capabilities 
have not been sufficiently addressed in current SOA 
literature so far. Amongst others, this paper presents 
advanced techniques to identify services whose 
shutdown date will be earlier than the expiration 
date indicated in their usage contracts. In particular, 
such as-is-analyses allow identifying problems 
based on the current repository data. 

As an extension, a SOA repository should also 
enable what-if-analyses. A relevant use case for 
them is the selection of an appropriate date for a 
future service shutdown. In particular, in order to 
decide on this date, we need detailed information 
about the consequences of the service shutdown 
depending on the point in time it will be performed; 
i.e., for different points in time, the service 
consumers affected by this change as well as the 
related problems need to be automatically 
determined  (impact-analyses). This way, possible 
solutions of future problems (i.e., missing service 
installations) can be identified as well. Note that 
without proper tool support, such what-if-analyses 
would require high manual efforts by users. Hence, 
as a second contribution, this paper presents 
techniques for automated what-if-analyses in a SOA. 

Section 2 gives insights into our meta-model for 
SOA repositories, which provides the foundation of 
our approach. Section 3 then describes examples of 
analyses that can be based on current repository data 
(as-is-analyses). What-if-analyses and the related 
impact-analyses are presented in Section 4. Section 
5 discusses related work, whereas Section 6 
summarizes the paper and gives an outlook on future 
work. 

2 A META-MODEL FOR SOA 
REPOSITORIES 

To elaborate the demands of a SOA repository in a 

practical environment, we conducted respective 
requirement analyses in multiple business units of a 
large automotive company (Buchwald, 2012). First 
of all, this revealed the need of the aforementioned 
repository analysis techniques. In addition, it 
became evident that a SOA repository needs to be 
able to manage a multitude of object and 
relationship types. Fig. 1 depicts the meta-model we 
developed as foundation for enabling advanced 
analyses in a SOA repository.  

The meta-model comprises object types covering 
the business level (left part) as well as the technical 
level (right part). Thereby, a multitude of object 
types are considered at the two levels2, e.g., Business 
and Technical DataObjectVersions. Respective 
information may help users in searching for required 
services and browsing in the repository (cf. Bauer et. 
al., 2013). Overall, the provided meta-model covers 
a large part of the information typically required in 
the context of a SOA. Depending on the respective 
company and its SOA philosophy, however, 
additional object and relationship types may be 
added or non-relevant types be dropped. In the 
following, we focus on explaining those object and 
relationship types, which are required to understand 
the advanced analyses presented in Sections 3 and 4. 
For a detailed presentation of all meta-model entities 
we refer to a technical documentation (Buchwald, 
2012, (Tiedeken, 2010). 

The central object of any SOA is the Service. In 
order to be able to reflect its evolution over time, a 
service may bundle different service versions. In 
turn, the latter may have different input and output 
parameters or comprise different operations. In 
particular, the different versions of a service might 
not be compatible regarding their usage by service 
consumers. In general, one can distinguish business 
service versions (cf. BusinessServiceVersion, 
together with its relationship type 
isBusinessServiceVersion in our meta-model) and 
technical service versions (cf. 
TechnicalServiceVersion, together with its 
relationship isTechnicalServiceVersion).  

The implementation and rollout (i.e. deployment) 
of a technical service version results in a service 
installation (ServiceInstall) – this link is established 

 
____________________________________ 

2 Note that it is not necessary to acquire all data stored in the SOA 
repository manually; i.e., numerous objects may be imported 
automatically from already existing IT systems, e.g., business 
process modeling tools, software development environments, or 
tools supporting government processes. Taking this into 
account, the maintenance of a SOA repository can be 
accomplished with acceptable efforts from the user side. 

A�SOA�Repository�with�Advanced�Analysis�Capabilities�-�Improving�the�Maintenance�and�Flexibility�of�Service-Oriented
Applications

239



based on relationship hasInstallation. Since a service 
installation is offered by a concrete IT system, it will 
be connected to this System using the relationship 
providesServiceInstall. In turn, relationship 
hasProvider informally describes that the IT system 
offers this service. In general, a service may be 
offered by different IT systems and may possess 
multiple installations that belonging to the same or 
different technical service versions. 

Before a service may be actually used, a 
Contract must be made between the provider and the 
consumer of the service. In turn, this contract is 
assigned to the consumer using relationship 
hasContract. Furthermore, the information related to 
this contract is usually created step-by-step. First, it 
is determined which business service version shall 
be used (cf. relationship 
hasBusinServiceVersConsumer).  At  this  point,  no 

 
Figure 1: Meta-model of the SOA Repository expressed as Entity-Relationship Diagram (Abrial, 1974). 

 

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

240



corresponding technical service version needs to be 
provided. Later on, a technical service version may 
be added and assigned to the business service 
version using relationship 
hasTechnServiceVersConsumer. Additionally, 
contract data may be enriched with technical service 
level agreements (Erl, 2005; Josuttis, 2007). 

The entity and relationship types used in this 
paper have the following notation: e  E holds if 
entity e is stored in entity set E in the SOA 
repository. For relationship type b, which links 
entity types E and E', with e  E and e'  E' 
function b(e, e') returns true if a relationship 
between e and e' is stored in the SOA repository. 

3 AS-IS-ANALYSES 

We have already motivated the practical need of as-
is-analyses. In particular, the latter can be based on 
the data captured in the SOA repository. Since the 
begin and end dates of service usage contracts may 
be in the future, however, it is not only possible to 
identify already existing problems, but also to 
predict future ones. Hence, as-is-analyses allow 
identifying and solving potential problems in 
advance. This section presents representative use 
cases for as-is-analyses based on a SOA repository. 

3.1 Incomplete Technical Services  

To identify a technical service version for which no 
installation exists constitutes our first scenario for 
applying an as-is-analysis. Note that this scenario is 
practically relevant since the version of the technical 
service cannot be used yet and hence it has to be 
handled by the SOA governance board (Erl, 2005). 
The latter may then decide that the technical service 
version must be implemented and installed (i.e., 
rolled out). Alternatively, it may decide that the 
technical service version is no longer required and 
hence shall be deleted from the SOA repository. In 
general, the data required for this as-is-analysis can 
be retrieved from any SOA repository that is based 
on the meta-model presented in Sect. 2. More 
precisely, corresponding technical service versions 
TSV can be determined as follows: 

TSV = {tsv  TechnicalServiceVersion  |  
	 ∄ si  ServiceInstall with hasInstallation(tsv, si)} 

Another undesired scenario occurs if the SOA 
repository contains technical service versions 
without associated business service versions. This 
scenario might occur, for example, if a third-party 

system contains pre-build services (or service 
interfaces) or if a migration of legacy systems to a 
SOA was not performed properly. In such cases, the 
missing business service versions should be added to 
the SOA repository afterwards. As a potential 
benefit of this additional information, the available 
technical service versions can be easier retrieved by 
domain experts (cf. Bauer et. al. 2013), which, in 
turn, increases service reusability. Based on the 
defined meta-model, the technical service versions 
without associated business service version can be 
determined as follows:  

TSV = {tsv  TechnicalServiceVersion |  
	 ∄ bsv  BusinessServiceVersion with 
 hasTechnServiceVersImplementation(bsv, tsv)} 

3.2 Unusable Service Versions 

Similar to the scenarios we considered in Section 
3.1, the presented meta-model can be used to 
determine both business and technical service 
versions in a SOA repository that must currently not 
be used. Reasons for the latter may be, for example, 
the absence of a certain service contract or the 
expiry of a service contract’s validity duration.  

Based on the described meta-model, for each 
Service we can identify the related 
BusinessServiceVersion by using relationship 
isBusinessServiceVersion (cf. Fig. 1). Regarding the 
scenario from Fig. 2, for instance, for ServiceX the 
business service versions BSV1, BSV2, and BSV3 
can be identified. While for BSV1 and BSV2 a 
corresponding technical service version exists, this 
does not apply to BSV3 (cf. Scenario 3c described 
below). More precisely, BSV1 is related with the 
technical service versions TSV1a and TSV1b, and 
BSV2 with the technical service versions TSV2a and 
TSV2b. Similarly, one can detect that TSV1b has no 
related service installation. Therefore, this technical 
service version must not be used at the present 
moment (cf. Scenarios 3a + 3b). 

Which problems might be caused by unusable 
versions of a business service or technical service? 
And which actions shall be performed to cope with 
these problems? Based on the presented meta-model, 
these and related issues can be resolved through 
automated repository analyses. However, user 
interactions will still be required to deal with the 
problems discovered. For example, selecting a 
proper action for problem resolution might 
constitute a task to be accomplished by a SOA 
governance board.  

We consider the following scenarios:  
Scenario 1  (No  valid  contract  exists   for  an 

A�SOA�Repository�with�Advanced�Analysis�Capabilities�-�Improving�the�Maintenance�and�Flexibility�of�Service-Oriented
Applications

241



 

Figure 2: Sample data of the SOA repository belonging to contracts, services, etc. 

unusable business service version): Consider Fig. 
2: Obviously, business service version BSV2 must 
not be used  by  any service consumer since it has no 
related service installation (indirectly assigned via 
TSV2a or TSV2b) at the moment. If there exists no 
valid contract for BSV2 (e.g., in case the expiry date 
of Con2 was already passed), this scenario does not 
result in problems on the side of the service 
consumers. In any case, if BSV2 cannot be used, this 
needs to be properly handled on the side of the 
service provider.  On one hand, it may decide that a 
service implementation shall be provided for either 
TSV2a or TSV2b. On the other, BSV2 may be 
declared as unsuitable; i.e., it shall be shut down and 
deleted from the repository, including the 
corresponding technical service versions TSV2a and 
TSV2b.  

Scenario 2 (No valid contract exists for an un-
usable technical service version): In Fig. 2, the 
technical service version TSV1b  must not be used 
since it has no related service installation. If there is 
no (currently) valid contract for TSV1b this will not 
constitute any problem for the service consumer. 
Regarding the service provider, the governance 
board may decide whether a service installation shall 
be created for TSV1b or this technical service 
version shall become obsolete (e.g., if it offers no or 
only negligible advantages compared to the 
technical service version TSV1a for which a 
corresponding service installation exists.  

Scenario 3 (There is a valid contract for an 
unusable business / technical service version): 
The more interesting case occurs if the usage periods 
of the contracts (cf. Fig. 2) have not expired yet. 
Then valid contracts exist for service versions that 
must not be used or whose use might cause severe 
problems on the side of the service consumer. 
Regarding this scenario, we distinguish between 
cases for which an alternative service version exists 
and cases for which this does not apply: 

Scenario 3a (Unusable technical service 
version with alternative usable technical service 

version): In Fig. 2, contract Con1 references TSV1b. 
In turn, this implies that there exists a consumer for 
TSV1b (or will exist in future). Since TSV1b does 
not have a related service installation, the contract 
cannot be fulfilled. However, there exists another 
usable technical service version TSV1a (with related 
service installation SI1a) assigned to the same 
business service version BSV1. In general, such 
technical service versions TSV may be detected 
automatically based on repository data with the 
following criteria: 
TSV = {tsv  TechnicalServiceVersion  |  
  con  Contract with 
  hasTechnServiceVersConsumer(con, tsv)  
 ∄ si  ServiceInstall with hasInstallation(tsv, si)  
  bsv  BusinessServiceVersion with 
  hasTechnServiceVersImplementation(bsv, tsv)  
  tsv'  TechnicalServiceVersion with  
  hasTechnServiceVersImplementation(bsv, tsv' )  
  si'  ServiceInstall with hasInstallation(tsv', si' ) 

To still fulfill the contract, it is possible to switch 
from the unusable service version TSV1b to the 
usable service version TSV1a; e.g., in case TSV1b 
has no real advantages compared to TSV1a. In this 
case, contract Con1 must be modified as well as the 
application on the consumer’s side (if already 
existing). Alternatively, it may be decided that a 
service installation must be provided for TSV1b. 
Furthermore, TSV1a and TSV1b might only show 
small differences (e.g., different but similar data 
structures as input or output parameters). In this 
case, a service installation for TSV1b can be realized 
by calling TSB1a via a proxy (ESB), which 
eliminates the differences between the consumer and 
the service with an appropriate transformation of the 
data structures. Note that such a solution uses the 
flexibility offered by a SOA (Buchwald et al., 2011). 

Scenario 3b (Unusable technical service 
version without alternative usable technical 
service version): In Fig. 2, Con2 references the 
unusable technical service version TSV2a. The sole 
technical service version TSV2b, which is also 

BusinessServiceVersion

TSV2b

ServiceX SI1a

Contract

isBusiness‐
ServiceVersion

TechnicalServiceVersion ServiceInstallService

hasTechnService‐
VersImplementation

hasInstallation

Con1

hasBusinService‐
VersConsumer

hasTechnService‐
VersConsumer

Con3

Con2

BSV1 TSV1a

BSV2 TSV2a

BSV3

TSV1b

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

242



related with BSV2, cannot serve as alternative since 
it does not have a service installation.  

In general, such technical service versions TSV 
can be detected as follows: 

TSV = {tsv  TechnicalServiceVersion  |  
  con  Contract with 
  hasTechnServiceVersConsumer(con, tsv)  
 ∄ si  ServiceInstall with hasInstallation(tsv, si)  
  bsv  BusinessServiceVersion with 
  hasTechnServiceVersImplementation(bsv, tsv)  
 ∄ tsv'  TechnicalServiceVersion with ( 
  hasTechnServiceVersImplementation(bsv, tsv' ) 
    si'  ServiceInstall with  
  hasInstallation(tsv', si' )  ) 

Again, for this scenario a service installation could 
be added for TSV2a. The choices to avoid this, 
however, are limited compared to Scenario 3a, since 
there exists no alternatively usable technical service 
version belonging to the same business service 
version. Hence, switching to another business 
service version remains the only solution in this 
context (i.e., BSV1 in Fig. 2 since BSV3 has no 
related service installation). Switching to BSV1 
could be realized, for example, by modifying Con2 
as well as the application of the service consumer (if 
required). Typically, for modifying the latter, much 
more efforts will be required compared to 
Scenario 3a. In this context, note that business 
service versions usually show greater differences 
among each other compared to differences of the 
versions of a technical service. 

Scenario 3c (Business service version without 
technical service version): Consider Fig. 2. For 
contract Con3, there only exists a business service 
version, but no corresponding technical service 
version. Such a scenario may occur, for example, if 
the realization of the technical service version is not 
finally decided or its specification is not completed 
yet. In general, the respective business service 
version cannot be used before realizing a 
corresponding technical service version. 
Alternatively, as discussed in the context of Scenario 
3b, one may switch to another already usable 
business service version (i.e., BSV1). Due to lack of 
space, we omit the formal criterion for detecting 
Scenario 3c. 

4 WHAT-IF-ANALYSES  

The analyses described in Sect. 3 have been solely 
based on data currently stored in the SOA 
repository. This section complements these as-is-

analyses with selected examples of what-if-analyses 
(also denoted as impact-analyses). In particular, the 
latter analyze the impact of changes that may happen 
in future. For example, it can be determined which 
service consumers will be affected by a service 
shutdown that takes place at a future point in time. 
Based on respective information, in turn, the most 
appropriate time for a service shutdown can be 
determined. In general, what-if-analyses allow 
simulating and evaluating a variety of scenarios. The 
resulting information then serves as basis for 
decision making (e.g., by a governance board).  

4.1 Indirect Dependencies 

The importance of impact-analyses results from the 
fact that, for example, the shutdown of a service 
installation not only affects its direct consumers. In 
fact, these consumers may be IT systems (cf. System 
in Fig. 1) that themselves offer services to other 
consumers. Consequently, if such an IT system 
needs to be adapted (e.g., due to a migration to an 
alternative usable service), the services it offers may 
have to be changed as well. Even worse, in case 
there is no alternatively usable service, the 
concerned services must no longer be provided. In 
both cases, the consumers of the IT system are 
affected as well; i.e., the change (service shutdown) 
may have to be propagated over multiple levels to 
directly or indirectly dependent IT systems (ripple-
effect). 

Based on the presented meta-model (cf. Sect. 2), 
such indirect dependencies can be detected 
automatically. Consider the example from Fig. 3 and 
assume that a shutdown of service installation SI1 is 
planned for the near future. Assume further that SI1 
is the only installation of the technical service 
version TSV1. Then, the shutdown will affect 
contracts Con1a, Con1b and Con1c. As a result, IT 
systems Sys1a, Sys1b and Sys1c will no longer work 
properly and must therefore be adapted. In turn, this 
might lead to changes of services Serv2 and Serv3 
that are offered by Sys1b and the corresponding 
technical service versions TSV2 und TSV3. In 
summary, the original change needs to be 
propagated along multiple artifacts; i.e., the 
dependent contracts Con2, Con3a and Con3b must 
be adapted as well as the IT systems filling the role 
of a consumer with respect to  these contracts. In 
turn, these IT systems themselves offer services and 
hence must be adapted as well (and so forth). 

In general, when turning off or modifying a 
service installation si, the affected IT systems can be 

A�SOA�Repository�with�Advanced�Analysis�Capabilities�-�Improving�the�Maintenance�and�Flexibility�of�Service-Oriented
Applications

243



automatically calculated as follows:3  
AffectedSys(si) = {sys  System |  
  tsv  TechnicalServiceVersion with 
 hasInstallation (tsv, si) for which applies:  
    con  Contract with 
   hasTechnServiceVersConsumer(con, tsv) and 
   hasContract (sys, con) } 
All other IT systems indirectly (i.e., transitively) 
affected by the change can then be identified as 
follows: For each system sys  AffectedSys(si), the 
offered service installations AffectedServiceInstall 
are determined based on relationship 
providesServiceInstall. In turn, for each service 
installation si'  AffectedServiceInstall, 
AffectedSys(si') is calculated on the next level based 
on the above criteria. This procedure is continued 
until all affected IT systems are determined. 

Note that when solely considering the 
relationships between IT systems (i.e. System) and 
service installations (i.e. ServiceInstall), we might 
identify dependencies that actually do not exist; i.e., 
from the fact that the program code of an IT system 
calls a particular service, we must not conclude that 
all offered services are actually available. In the 
above example (cf. Fig. 3), system Sys1b and, 
therefore, the offered services Serv2 und Serv3 are 
connected with service installation SI1 that shall be 
shut down. In this context, we need to distinguish 
two cases:  
 Case 1: Assume that the implementation of TSV2 

and Serv2, respectively, is based on TSV1 and 
hence on SI1. If the adaptation of Sys1b results in 
a changed interface service Serv2 it offers, this 
affects contract Con2 as well as the IT system 
playing the role as its consumer. 

 Case 2: Assume that the implementation of TSV3 
and Serv3, respectively, does not use any foreign 
services, or at least not the service installation 
SI1 (to be shut down). Then, technical service 
version TSV3 may remain unchanged and no 
modifications of contracts Con3a and Con3b are 
needed. Since the consuming IT systems are not 
affected by the described service shutdown, the 
change needs not be propagated on this path.  

Usually, the information stored in contemporary 
SOA repositories is not detailed enough to be able to 

 
____________________________________ 

3 Without loss of generality, we assume that for a technical 
service version there exists only one service installation. Using 
the SOA repository data (i.e., relationship hasInstallation), it 
can be easily analyzed whether a service installation is actually 
available or a switch to an alternative service installation is 
possible; i.e. the ripple-effect ends at this point. 

distinguish Cases 1 and 2. Hence, corresponding 
analyses might reveal more problems than actually 
exist. Opposed to this, the presented meta-model (cf. 
Fig. 1) allows distinguishing the two cases: Using 
relationship usesTechnicalServiceVersion, for 
example, it becomes possible to (exactly) detect the 
steps (TechnicalActivity) of a business process that 
invoke the technical service version to be changed or 
removed. With relation 
belongsToTechnicalProcessVersion the 
corresponding TechnicalProcessVersion (i.e., the 
executable business process) can be identified. If the 
latter is offered as a service, relationship 
offeredAsTechnicalServiceVersion refers to the 
corresponding TechnicalServiceVersion. Finally, if 
an IT system has a contract referring to the latter, it 
will actually be affected by the change; i.e. Case 1 
applies and the analysis delivers the correct result. 
Compared to a SOA repository that solely contains 
information about the services consumed and 
offered by an IT system, higher quality in planning 
as well as decision support becomes possible.  

Note that the information required by the SOA 
repository can be automatically gathered during the 
modeling of the business processes and services as 
well as the specification and implementation of the 
technical workflows and services (Buchwald et. al., 
2012; Buchwald, 2012). Hence, only little additional 
effort becomes necessary for capturing repository 
data. For function-oriented SOA applications 
requiring no explicit process support, in particular, 
the described approach may be transferred to the 
modeling of services (e.g., based on UML), service 
implementations, and service consumers. 

4.2 Impact of Future Changes 

In general, the impact of a future change may 
depend on the exact time it will be applied. Hence, 
the time perspective needs to be considered in what-
if-analyses. In particular, when simulating the 
impact of a change for multiple future points in time, 
different scenarios can be analyzed. In the following, 
we illustrate such time-aware what-if-analyses.  

Assume that the sole service installation SI0 of 
the technical service version TSV0 shall be shut 
down (e.g., to reduce maintenance and operating 
costs). Assume further that the operator of SI0 plans 
for a shutdown date in about 6 months from now. 
Hence, it shall be analyzed whether this date is 
advantageous from the perspective of the operator. 
As a first step, a graphical overview of all related 
contracts as well as their validity periods is created 
(cf. Fig. 4). Such a chart can be generated 
automatically   based   on the data stored in the SOA  

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

244



 

Figure 3: Sample data of the SOA Repository with Ripple-effect. 

repository. The chart indicates that there are 
currently 4 contracts for TSV0 and 4 IT systems 
depend on SI0. In 6, 10, 17, and 24 months (from 
now on), respectively, these contracts will reach 
their end date. Accordingly, these are candidate 
dates for a potential shutdown of TSV0; i.e., when 
reaching any of them, less IT systems will 
beaffected by the shutdown than before. 

 

Figure 4: Graphical overview of the contracts for TSV0 
and SI0 over time. 

However, such an analysis does not take indirect 
dependencies (ripple-effect) into account, and hence 
may not return the complete set of IT systems 
actually affected by the service shutdown.  

The impact graph depicted in Fig. 5a, in turn, 
shows these indirect dependencies. In particular, it 
visualizes each indirection level as a separate circle. 
Furthermore, all contracts valid at a future point in 
time are taken into account as well. Regarding the 
scenario from Fig. 5a, for example, all contracts that 
will still be valid in 6 months (from now on) are 
considered. Note that the depicted charts can be 
automatically generated based on the available SOA 
repository data.  

When creating the chart from Fig. 5a, the 
dependencies depicted in Fig. 5b have been retrieved 
from the SOA repository: In addition to systems 
Sys1, Sys2 and Sys4, whose dependency on SI0 can 
be directly derived from contracts Con1, Con2 and 
Con4, there exists an indirect dependency of Sys5 on 
SI0. More precisely, IT system Sys4 offers service 
installation SI4 (cf. Fig. 5b), which is the sole 
implementation of the technical service version 
TSV4. Furthermore, the latter is consumed by Sys5 
(according to contract Con5). Consequently, the 
shutdown of SI0 in 6 months might affect the four IT 
systems Sys1, Sys2, Sys2 and Sys4. Note that this 

information can be used as a basis for discussing the 
intended shutdown with all persons responsible for 
the respective IT systems. Thus, the consequences of 
the service shutdown can be predicted and the 
required adaptations of the concerned IT systems be 
performed in advance. For example, the effort 
caused by these adaptations might be higher than the 
actual operating costs of SI0. Then, extending the 
operation period of SI0 should be taken into account 
by decision makers.  

The next candidate date for the shutdown of SI0 
will be in 10 months from today. Note that at this 
date, contract Con4 will end and Sys4 will no longer 
be affected by the service shutdown (cf. Fig. 4). The 
same applies to IT system Sys5 since its dependency 
on SI0 only indirectly exists via Sys4. This 10-month 
scenario is reflected by the impact graph depicted in 
Fig. 6, i.e., only two instead of four IT systems are 
affected by the shutdown of SI0. 

Fig. 6b further shows that in 10 months there will 
be another service installation SI0' corresponding to 
the new technical service version TSV0'. In 
particular, the latter belongs to the same business 
service version BSV0 as TSV0. Probably, there will 
be a high similarity between the two technical 
service versions. Hence, it might be an option to 
migrate the remaining contracts Con1 and Con2 to 
TSV0' and SI0' respectively. Due to the similarity of 
the two service installations SI0 and SI0', the 
technical realization of this change might require 
only little effort. Maybe it can even be realized 
without need to change the IT systems itself (e.g., by 
adapting the proxy (ESB) used for the service call 
(cf. (Buchwald et. al., 2011); (Buchwald, 2012)).  

The date ‘10 months from today’ might already 
be the optimal date for the shutdown of SI0. In order 
to verify this, further shutdown candidate dates (i.e., 
in 17 months and 24 months, respectively; cf. Fig. 4) 
should be analyzed in the same way.  

In general, the presented what-if-analyses allow 
assisting SOA governance boards in making the 
right decisions, e.g., on whether a service shutdown 
shall be realized rather soon (resulting in lower 
operating costs) or, whether it makes sense from a 
business  perspective   to   wait   until  a  certain date 

hasInstallation

Contract

Sys1b

SI1

Service TechnicalServiceVersion ServiceInstallSystem

has‐
Techn‐

ServiceVers‐
Consumer      

Con1a TSV1

Con1b

Con1c

Technical‐
Service‐
Version

Sys1c

Sys1a
has‐

Contract

Serv3

Serv2

TSV3

TSV2

has‐
Provider

isTechnical‐
ServiceVersion

Contract

Con3a

Con3b

Con2

hasTechn‐
ServiceVersConsumer

…

…

…

Con1

System  Contract

Sys1
Con2Sys2

Con3Sys3
Con4Sys4

Time

today 6 months 10 months 17 months 24 months

A�SOA�Repository�with�Advanced�Analysis�Capabilities�-�Improving�the�Maintenance�and�Flexibility�of�Service-Oriented
Applications

245



 

Figure 5: a) Impact graph and b) Dependencies from SI0 in 6 months. 

 

Figure 6: a) Impact graph and b) Dependencies from SI0 in 10 months. 

(resulting in lower migration  costs). For further 
scenarios utilizing what-if-analyses we refer 
interested readers to (Tiedeken, 2010). 

5 DISCUSSION  

Except our previous work (Buchwald et. al., 2010; 
Buchwald, 2012; Tiedeken, 2010), we are not aware 
of more advanced approaches dealing with the 
design of a SOA repository as described in this 
paper. The same applies to the presented as-is-
analyses and what-if-analyses based on SOA 
repository data. When taking a broader view on the 
general topic, however, few related approaches can 
be identified. 

(Xiao et. al., 2007) address changes of business 
processes in the context of a SOA. In addition, the 
propagation of changes to dependent artifacts (i.e., 
ripple-effect) is considered. When a change of a 
business process must be performed, for example, it 
is first determined which concomitant changes of 
dependent business processes become necessary. In 
turn, this analysis is based on a classification of 
process change types (e.g., inserting an activity) as 
well as their effects. Furthermore, cascading service 
invocations are analyzed in order to be able to 
identify the services indirectly affected by the 
original change as well. The approach suggested by 
(Xiao et. al., 2007), however, does not include the 
calculation of such dependent objects (e.g., based on 

SOA repository data as in our approach). Instead, it 
focuses on the estimation of the costs created by the 
necessary adaptations of program source code. 

(Wang et. al., 2010) presents a classification of 
both process and service changes. The ripple-effect 
is considered as well. When a specific process 
change shall be applied, for dependent services, it is 
determined which kind of service changes are 
concomitantly required. In turn, the latter might 
necessitate changes of the business processes 
consuming these services. Altogether, the focus of 
this approach is on evolving business processes in a 
SOA and the analysis of respective process and 
service structures. Data offered by a SOA repository 
is not taken into account for these analyses. 

There exist several standards as well as 
commercial products for realizing SOA repositories. 
In the following, we presented selected ones. In 
addition to the functions they offer, we discuss to 
what extend they may serve as basis for realizing the 
presented meta-model as well as the described 
analyses. 

UDDI (OASIS, 2002) is a directory service 
standardized by OASIS, which especially allows for 
look-ups of service endpoints. However, its 
underlying meta-model is very limited and does not 
allow for any extensions (i.e., new object or 
relationship types cannot be defined). However, 
user-defined categories can be created (tModel) and 
may then be used to assign services to categories. 
Except few predefined queries, no analyses are 
provided.  

a) Contract

Sys2SI0

Service‐
Install

Technical‐
Service‐
Version

Service‐
Install

System

hasTechn‐
ServiceVers‐

Consumer      

has
Installation

Con1

TSV0 Con2

Con4

Technical‐
Service‐
Version

Sys4

Sys1
hasContract

SI4 TSV4

provides‐
ServiceInstall

Contract

Con5

hasTechn‐
ServiceVers‐‐
Consumer

Sys5

has‐
Contract

hasInstallation

System

SI0

Sys2 Sys1

Sys4

Sys5 b)



SI4

b) Contract

Sys2SI0
Service

Technical‐
Service‐
Version

Service‐
Install

System

hasTechnService‐
VersConsumer

Con1

TSV0 Con2
Business‐
Service‐
Version

Sys1
hasContract

hasInstallation
SI0' TSV0'

Serv0

isTechnical‐
ServiceVersionhasTechnService‐

VersImplementation BSV0

a)

SI0

Sys2 Sys1

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

246



ebXML defines standards for exchanging 
business data. It includes the ebRIM (Registry 
Information Model) as defined in (OASIS, 2005). 
The corresponding meta-model, however, only 
allows for the storage of the technical perspective. 
The business perspective of service objects and 
contracts, in turn, is not covered by this standard. 
The same limitations exist in respect to analyses 
capabilities.  

USDL (Oberle et. al., 2012) is an emerging 
standard published by W3C. Its goal is to 
comprehensively describe services including the 
business perspective; i.e., in addition to technical 
meta-data of the services, operative as well as 
economic data are covered (e.g. availability and 
pricing). As-is- and what-if-analyses are not 
considered.  

IBM offers the commercial SOA repository 
WSRR, which includes a “Basic Governance 
Profile” (Sachdeva, 2007). In particular, the latter 
allows storing both technical and business objects. 
The business perspective, however, is very limited 
compared to our SOA repository approach. More 
precisely, a (business) description may be defined 
for services, but not a business specification of their 
operations (including parameters). However, WSRR 
is extendible regarding its object and relationship 
types. Consequently, WSRR could be used as a basis 
for realizing our meta-model. Regarding the 
presented analyses, however, WSRR offers only 
limited support (e.g., visualizing dependencies). 
However, user-defined analyses may be added as 
extensions. 

CentraSite Active SOA (Rogers, 2006), a 
product offered by Software AG, looks similar in 
respect to the object types, extensions and analyses it 
offers. However, the latter only allow for 
interactively visualizing repository objects and their 
dependencies. 

Oracle Enterprise Repository (Oracle, 2008) as 
well as HP SOA Systinet (Hewlett-Packard, 2010) 
are based on UDDI. Both allow storing additional 
object types compared to the ones defined by the 
UDDI standard. This allows managing business 
objects as well as contracts. In addition, the 
visualization of dependency charts as well as some 
limited analyses are supported.  

The ARIS repository (IDS, 2008) enables the 
storage of SOA artifacts as well. Since it maintains 
the database of a business process modeling tool, 
there exist significant differences compared to the 
products mentioned above. In particular, ARIS 
repository focuses on the business instead of the 
technical perspective. For example, it is not possible 

to use the ARIS repository during a service call (i.e., 
at run-time) for a service endpoint look-up. As an 
advantage, large numbers of object and relationship 
types (cf. ARIS models), which belong to the 
business perspective, may be stored. Furthermore, 
ARIS supports repository analyses with restricted 
functionality. Similar to other products, they may be 
extended by additionally implemented analyses (see 
Buchwald (2012) for some examples of extensions). 

Altogether, no standard or product is equipped 
with a meta-model that completely covers the object 
and relationship types presented in this paper. 
Instead existing approaches focus either on the 
technical or the business perspective solely. 
Regarding as-is-analyses, existing products only 
provide a very limited functionality, whereas what-
if-analyses are not covered by them at all. Since the 
meta-model and the analyses algorithms of existing 
commercial products may be extended, however, it 
is possible to use these products as basis for 
implementing of concepts and techniques presented 
in this paper. 

6 SUMMARY AND OUTLOOK  

We presented a comprehensive meta-model for a 
SOA repository enabling various analyses. As-is-
analyses check whether any problem occurs when 
considering the current repository data (e.g., contract 
of a service with missing service installation). In 
turn, what-if-analyses allow simulating the 
consequences of future changes. In this context, the 
propagation of problems (ripple-effect) is considered 
as well. Overall, our approach significantly enhances 
existing SOA repository standards and products.  

In principle, the extensibility features provided 
by certain SOA tools, allow realizing the presented 
concepts. Ourselves, we have validated our meta-
model as well as the related analyses by 
implementing a powerful proof-of-concept prototype 
based on a relational database system (Tiedeken, 
2010). 

So far, we have neither implemented the entire 
meta-model nor the analysis algorithms based on 
any commercial SOA repository. If such an 
implementation was available, our approach would 
be validated in a real-world case study. Finally, SOA 
repository data as well as related analyses should be 
integrated into SOA governance processes. 

 
 
 

A�SOA�Repository�with�Advanced�Analysis�Capabilities�-�Improving�the�Maintenance�and�Flexibility�of�Service-Oriented
Applications

247



REFERENCES  

Abrial, J.R., 1974. Data Semantics. In Proc. IFIP Working 
Conf. Data Base Management, pp. 1-60. 

Bauer, T., Buchwald, S., Reichert, M., 2013. Improving 
the Quality and Cost-Effectiveness of Process-
Oriented, Service-Driven Applications: Techniques for 
Enriching Business Process Models. In Ramanathan, 
R., Raja, K., (eds). Service-Driven Approaches to 
Architecture and Enterprise Integration. Information 
Science Reference, Hershey, 104-134.  

Buchwald, S., 2012. Increasing Consistency and Flexibili-
ty of Process-oriented Applications by Service-orien-
tation. PhD thesis. University of Ulm (in German). 

Buchwald, S., Bauer, T., Reichert, M., 2011. Flexible 
Process Applications in Service-oriented Architectures 
- An Overview. EMISA Forum, 31(3) (in German). 

Buchwald, S., Bauer, T., Reichert, M., 2012. Bridging the 
Gap Between Business Process Models and Service 
Composition Specifications. In Lee, J., Ma, S.-P., Liu, 
A., (eds). Service Life Cycle Tools and Technologies: 
Methods, Trends, and Advances. IGI Global, Hershey.  

Buchwald, S., Tiedeken, J., Bauer, T., Reichert, M., 2010. 
Requirements of a Meta-model for SOA Repositories. 
In Proc. 2nd Central-European Workshop on Services 
and their Composition, 17-24 (in German).   

Erl, T., 2005. Service-Oriented Architecture – Concepts, 
Technology, and Design. Prentice Hall.  

Hewlett-Packard Development Company, 2010. HP SOA 
Systinet Software Data Sheet. 

IDS Scheer, 2008. ARIS SOA Architect: Business Pro-
cesses as the Basis for Service-Oriented Architectures.   

Josuttis, N., 2007. SOA in Practice - The Art of 
Distributed System Design. O’Reilly. 

OASIS, 2002. Universal Description, Discovery, and 
Integration (UDDI). Version 3.0. 

OASIS, 2005. ebXML Registry Information Model. 
Version 3.0. 

Oberle, D., Barros, A., Kylau, U., Heinzl, S., 2013. A 
unified description language for human to automated 
services. Information Systems, 38 (1), 155–181. 

Oracle, 2008. Oracle Enterprise Repository and Oracle 
Service Registry for the SOA-Lifecycle. Oracle Data 
Sheet. 

Rogers, S., 2006. CentraSite: An Integrated SOA Registry 
and Repository. White Paper, Software AG. 

Sachdeva, N., 2007. Customize the WebSphere Service 
Registry and Repository Governance Profile. IBM 
developerWorks. 

Tiedeken, J., 2010: Concept and Realization of a Logically 
Central SOA Repository. Master’s thesis. University 
of Ulm (in German). 

Wang, Y., Yang, J., Zhao, W., 2010. Change Impact 
Analysis for Service based Business Processes. In 
Proc. Int. Conf. on Service-Oriented Computing and 
Applications, IEEE. 

Xiao, H., Quo, J., Zou, Y, 2007. Supporting Change 
Impact Analysis for Service Oriented Business 
Applications. In Proc. Int. ICSE Workshop on Systems 
Development in SOA Environments, IEEE. 

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

248


