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1 INTRODUCTION 

Embedded real-time software and systems (ERTS2) 
are widespread and can be found in many devices in 
our everyday life (Ebert, 2009), e.g., in cars 
(Schäuffele and Zurawka, 2005), TVs (Paulin et al., 
1997), aviation (Rushby, 2011), etc. Development 
and testing of embedded software is usually more 
challenging (Graaf et al., 2003; Broy, 2006) 
compared to regular software systems. Many ERTS2 

are also distributed systems in which collections of 
independent computers interoperate. It is crucial to 
systematically design, develop and test such 
distributed real-time and embedded (DRE) systems. 

The scale and complexity of DRE systems 
makes it infeasible to deploy them in disconnected, 
standalone configurations (Gokhale et al., 2008). 
Therefore, communication is the heart of all 
distributed systems. The latest modern DRE systems 
have numerous components in which interfaces and 
middleware communication layer play crucial roles. 
A communication middleware provides an 
environment that enables two applications to set up a 
conversation and exchange data (Krafzig et al., 
2004). Defects in those components could lead to 
minor issues or even life-threatening system failures. 
For example, message-communication-related faults 
such as wrong message sizes exchanged between the 
interfaces might be left uncovered during testing 
activities. Delays in integration can create huge costs 
and extra effort might be needed to verify all internal 
business logic and interfaces. Furthermore, late 
defect correction in live systems after deployment 
for these types of software systems costs much more 
compared to regular software systems due to the 
close hardware interactions. Thus, it is very crucial 
to verify communication interfaces between 
different hardware and software modules earlier to 
ensure proper interoperability. Moreover, it has been 

observed in several industrial contexts that when 
hardware, software modules and related 
communication interfaces evolve in those systems, 
synchronization of source code with other artifacts 
(e.g., documentation) becomes a major challenge.  

In a specific industrial context, ASELSAN Inc., 
one of Turkey's leading defense companies 
(ASELSAN, 2014), all the above challenges were 
regularly faced and thus, to address them, we design, 
implement and evaluate a toolset in the context of 
Radar & Electronic Warfare Systems (REWS) 
division. In this paper, we report our progress in this 
ongoing R&D project. The solution approach is 
based on the Model-Driven Engineering (MDE) 
which is in support of development, test and 
maintenance of communication middleware. The 
toolset has been developed using the Eclipse 
Modeling Framework (EMF) and is titled: Model-
ComM, standing for Model-driven Communication 
Middleware, which automatically generates code, 
document and test driver for communication 
interfaces of each component depending on the type 
of protocol and the architecture of the system. This 
tool is currently in use by many teams in the 
company, as we report in this paper.  

The approach and the case study reported in this 
paper is only one component of the PhD dissertation 
of the first author. The thesis' overall plan is to focus 
on a comprehensive investigation of industrial and 
empirical evidence of using MDE, which has a 
multidisciplinary research methodology. Firstly, the 
thesis plans to investigate recent modeling usage and 
its adoption with describing and understanding the 
industrial experience, which is based on survey and 
exploratory & improving case study strategies with 
interviews. Secondly, to show the positive impact of 
MDE by addressing the lack of empirical results in 
the industry (Frankel, 2002; Hutchinson et al., 
2014), this study uses an industrial evidence to 
ensure the cost effectiveness and benefit of MDE by 
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realizing technology transfer (Gorschek et al., 2006) 
via Model-ComM, which is based on Action 
Research (AR) (Santos and Travassos, 2009). 

The remainder of this paper is organized as 
follows. Section 2 discusses the motivations and 
problem statement. Section 3 presents the related 
work and need for the proposed approach. In Section 
4, the solution is presented. Section 5 examines the 
preliminary evaluation of the approach, in which the 
applicability and usefulness of the approach by 
applying it to prototype radar control software are 
shown. Finally, Section 6 presents conclusions and 
our ongoing/ future directions. 

2 MOTIVATIONS AND PROBLEM 
STATEMENT 

2.1 Context and Problem Domain  

The industrial context in which our project is carried 
out focuses on developing radar software. The 
REWS division has approximately about 40 active 
projects as of 2014 and the expectation is to double 
this number within five years. In addition to this, 
developing hybrid systems, which are "systems of 
systems", will become another major challenge by 
combining various radars and electronic warfare 
systems in a single product. All of these will result 
in a major increase in complexity of software for 
new products and will highlight for importance of 
more systematic software engineering practices.  

As a DRE system, a radar system is an object 
detection system which uses electromagnetic waves 
to determine the range, altitude, direction or speed of 
objects such as aircrafts, ships and guided missiles 
(Stimson, 1998) by requiring several basic 
components, which are yet other embedded systems 
(Skolnik, 2001). A radar controller software receives 
inputs from a variety of sensors, such as 
temperature, rotation and radiation; and sends them 
to various display units. 

In a typical ASELSAN radar system, the 
electromagnetic sub-system operate by radiating 
energy into space and detecting the echoed signal 
reflected from an object with the help of hardware 
units such as the Receiver Transmitter Unit (RTU), 
Digital Signal Processing (DSP)-based Field 
Programmable Gate Array (FPGA) and antenna. 
During this process, DSP algorithms are applied to 
determine objects’ attributes and then the controller 
software sends the location of a potential target to 
the various displays like Control Display Unit 

(CDU), Transceiver Compatibility Unit (TCU) or 
Remote Display Unit (RDU). In this scenario, the 
radar controller software usually has a large number 
of both internal and external interfaces with different 
units via different communication protocols such as 
RS232, RS422, vxWork Message Queue (Vx 
MsgQ), TCP, UDP, Peripheral Component 
Interconnect Express (PCIe) to enable the system to 
have close communication with other embedded 
systems as shown in Figure 1. 

To highlight the need for our approach to help 
development of these systems, a possible message-
communication-related fault which could lead to 
system failures is discussed next. A possible 
scenario might occur in PCIe-based communication 
protocol with FPGA, which provide support for high 
sampling rate and low power consumption required 
by sophisticated radars  (Skolnik, 2001). However 
this kind of protocol should be carefully used since it 
is directly related with memory in embedded 
systems (Bittner, 2012). If during message parsing, 
any parameter is wrongly read, it can easily lead to 
abnormalities and even a system crash, (Barry and 
Crowley, 2012), which might cause even a life-
threatening situation when the radar is operating.  

 

Figure 1: Architecture of the DRE system under study. 

The above example clearly show that 
verification and validation of the message interface 
is important as well as fast implementation of these 
communication modules for the sake of proper 
interoperability. Therefore, it is obviously essential 
to guarantee that these interfaces should be 
compatible with each other and it is better to get all 
these data from one central source. Moreover, it has 
been observed that keeping source code and 
documentation synchronized becomes a major 
challenge. In other words, according to several 
sources, e.g., (Lindvall, 2003), software maintenance 
for DRE systems is challenging in general. 

In summary, the real-world problem domain that 
our ongoing project and this paper intend to address 
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is: the need for more systematic approaches in 
development, test and maintenance of 
communication middleware, as a subarea of DRE 
system, in the projects under study. 

2.2 Challenges and Needs  

We discuss in this section the industry challenges 
and needs, in further detail, that have triggered the 
need for this project. For confidentiality reasons, 
only non-classified information about the system 
and the project will be disclosed in this paper.  

In the radar controller software projects under 
investigation, various types of software architecture 
models have been used and various types of 
interfaces were being designed, developed and 
utilized by various sub-systems. During the 
development process of the interfaces, the teams 
have faced several major challenges which, after 
systematic and extensive meetings with the 
engineering teams, we grouped and summarized 
them under the following four challenge areas: 

- Challenge area 1: Inefficient usage of development 
effort: In development of the middleware, 
developers have regularly complained about 
unnecessary waste of time on manually writing 
communication interfaces, which include message 
parsing or assembling operations. They generally 
wanted to spend instead most of their time and effort 
on the actual system scenarios (“business logic”). It 
would have been nice to automate, as much as 
possible, the “mechanical” task of writing the code 
for communication interface modules by relieving 
the programmer from a very error-prone task. 

- Challenge area 2: Unsynchronized interface 
artifacts across various software development 
lifecycle (SDLC) phases: Since the projects have 
various release cycles and are ongoing, it has 
happened many times that a new version for a 
particular artifact (e.g., interface) was released and 
this update was not broadcasted to all shareholders. 
Sometimes, the entire situation was becoming ad-
hoc and caused last-minute surprise and chaos, e.g., 
“It worked yesterday, but I don’t know why it 
doesn’t work today; did you change anything in the 
message interface?” Thus, only in runtime and 
testing, such issues were surfaced which implied 
major delays and rework. The synchronization-
related issue also occurred often in terms of 
documentation. Whenever  a typical message 
interface was changed, the corresponding Interface 
Control Document (ICD) was often not updated 
(Parnas, 2011). In that situation, since the document 

update was not synchronously done with the 
implementation, they were often different. 

- Challenge area 3. Insufficient unit testing of 
communication interfaces before integration: 
Because of the lack of simulator and test drivers, 
interfaces were insufficiently tested before system 
integration. There has been a need for a simulator, in 
which protocols and messages can be tested under 
various scenarios. Frequent stand-alone testing of a 
given interface is usually considered a quick smoke 
test (Kaner et al., 2001) from developers point of 
view and is often considered valuable for finding 
trivial defects, also for ensuring test-driven 
development (TDD). Also having such a simulator 
would allow developers to quickly test specific 
scenarios (Myers et al., 2012). 

 - Challenge area 4. Inefficient team communication 
and confusion of roles across different engineering 
roles, e.g., system engineers, developers: Any 
change request for the communication interface 
among modules might come from either system 
engineers or developers of inter-dependent modules. 
However, there have been issues in the past on how 
to properly take responsibility over ICD, which 
might cause troubling situations while propagating a 
change in interfaces to the all shareholders, e.g., 
quotes such as “Who is going to change ICD?”. 
System Engineer in one case said: “Did you not 
change ICD after new implementation? I thought 
you had already changed it, but no one changed it 
although three months have passed”.   

2.3 Selection of the Solution Approach 

Early in the project, after we identified the 
challenges and needs, based on AR, the first 
immediate step was to list the candidate solution 
approaches from the software engineering domain 
applicable to the problem and chose the solution 
approach that would best fit to the context.  

Due to the exponentially growing complexity of 
software (Ganssle, 2008), it is agreed that the one of 
the ways to manage this complexity is to use 
abstraction (Kramer, 2007). Nowadays, the state-of-
the-art in software abstraction is MDE, which can be 
seen as the systematic use of models as primary 
artifacts during the development process 
(Hutchinson et al., 2014). MDE has recently become 
a hot topic in both industry and academia; there are 
reports upon many years of successful experience in 
the development and application of MDE (Davies et 
al., 2014). It is agreed that advanced middleware 
technologies by itself will not deliver the capabilities 
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envisioned for next-generation DRE systems and 
MDE is needed not only to assist developers in 
understanding their designs but also to reduce the 
costs associated with trial and error by enriching 
interoperability (Schantz and Schmidt, 2008). To 
meet extra-functional requirements, embedded 
systems development is shifting from programming 
to MDE (Liggesmeyer and Trapp, 2009). We thus 
decided to use MDE as our solution approach. 

3 RELATED WORK AND NEED 
FOR THE PROPOSED 
APPROACH 

After identifying the solution approach as MDE, we 
conducted a literature review to see if approaches or 
tools applicable to our context have been proposed 
before.  

The area of MDE for ERTS2 is quite active. 
There are several books, e.g., (Douglass, 2000; 
Douglass, 2004; Nicolescu, 2009), and many 
research articles in this area, e.g., (Pao-Ann et al., 
2001). A popular variant of MDE is the Model 
Driven Architecture (MDA). The idea behind MDA 
is to be able to develop and manage the whole 
application life cycle by putting the focus to the 
model, in which the model itself is described in a 
meta-model (Moore et al., 2004). Moreover, there 
are also books, which include detailed examples 
from industry to illustrate real-world solutions by 
presenting Model-Based Testing (MBT) from 
various perspectives, which combine aspects of 
ERTS2, e.g. (Zander et al., 2011) and also many 
papers e.g. (Stefan and Bruce, 2011; Iyenghar et al., 
2011), which explore MBT in DRE systems. 

Besides the technical challenges, non-
technically, since a quick response to any change 
request is important for such a tool, it was necessary 
in the company under study to develop it in-house 
instead of adopting/buying or outsourcing. 
Therefore, a customized tool, which would generate 
both code and documentation from a central source, 
and would guarantee module’s interoperability, was 
necessary. In MDE, new tools for a specific problem 
is always needed (Davies et al., 2014). 

Closing the gap between software interfaces and 
related artifact generation is a challenging research 
problem. Our approach aims no interface errors, no 
unsynchronized software artifacts and guaranteeing 
of interface integrity after implementation, which is 
among the first effort to focus on MDE for error-
prone part of communication middleware.  

4 SOLUTION 

We have recently finished the development of our 
MDE-based tool called Model-ComM to support 
development, test and maintenance of 
communication middleware. 

Model-ComM is an Eclipse-based model-driven 
tool for auto generation of code, document and test 
driver for communication interfaces depending on 
the type of protocol and the architecture in the 
system. The inputs are specifications of the interface 
messages and their parameters. We discuss the tool’s 
usage overview and then its design and development 
aspects next. 

4.1 Usage Overview 

The tool offers the following features:  

- Code generation for communication interfaces: 
The modeler can generate Java, C++ source 
files and input (in SBS format) for the IBM 
Rational Rhapsody tool (widely used in the 
company), which is a MDE environment for 
ERTS2 (IBM, 2013). 

- Document generation for all messages. 
- Test driver generation for interfaces: The 

engineer can use such a driver to test all 
messages in a specific scenario by issuing test 
inputs and expected return values.  

Workflow and usage is shown in Figure 2.  

 

Figure 2: Workflow and usage of the tool. 

4.2 Design and Development Aspects 

Model-ComM has been developed using EMF, 
which is designed to ease the design and 
implementation of structured models (Moore et al., 
2004). EMF unifies Java, XML and UML. In Figure 
3, a meta-model for Model-ComM  is shown. 
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Figure 3: Meta-model of Model-ComM. 

By providing the linkage between the modeling 
and programming domains, EMF offers an 
infrastructure to use models effectively in code. The 
meta-model in Figure 3 provides model-to-model 
(M2M) transformation, in which one can define any 
"interface", "service", "message" and "parameter" 
between any "module" in any "project" for any 
communication protocol. As message parameter, one 
can use "already defined types" as well as "user 
defined" structure, list, etc.  

The generated test driver consists of three units: 
the generated communication middleware, which 
provides communication interfaces with the module 
tested; the test controller unit and its own UI. All 
these units are generated by the tool, which might 
make Model-ComM a meta-tool. When the test 
driver runs, it takes all information about the module 
tested from the XML file, which is generated by 
meta-model. Then, by using Java Reflection 
(McCluskey, 1998), the test driver finds all relations 
between the generated communication middleware 
and the test controller unit at run time, without 
knowing the classes or methods. By this way, to ease 
changeability and maintainability, the test controller 
unit and UI are made independent from customized 
middleware implementation.   

In term of the generated documentation, the 
HTML format is currently supported and it is 
planned to add Word and PDF support as well. The 
content is generated by the tool and to separate 
appearance from content, Cascaded Style Sheet 
(CSS) file format is used.  

4.3 GUI and Features 

Model-ComM is developed as an Eclipse Rich 
Client Platform (RCP) project andit looks like the 
standard Eclipse UI. It includes a menu toolbar and 
three different panes: Project Explorer, 

Interface/Model Definition and Properties, as shown 
in Figure 4. 

 

Figure 4: A screenshot of Model-ComM. 

In the "Interface/Model Definition" pane, one 
can hierarchically add all meta-model components 
and save it in XML. All attribute's properties can be 
editable via "Properties" pane. 

In the menu tool bar, there are "File", "Edit", 
"Generate" and "Editor" options. Before generating 
artifacts, the model can be validated to check 
whether there is a missing obligatory attribute like 
missing parameter name or type, etc. 

In "Generate", you have 3 submenus: Generate 
Code, Generate Document and Generate Test 
Driver. During generation stage, configuration 
details like the module, which is wanted to generate 
the code, programming language type, endian type, 
destination directory etc. should be selected.  

The engineer can use generated test driver to 
prepare independently runnable test blocks by 
sending messages with the input parameters, which 
can be given via its UI. It is possible to generate test 
scenarios, which can be saved and loaded later. 
Comparing the incoming messages with the 
expected results and presenting test results with a 
colorful pass/fail status are some other features. 

5 PRELIMINARY EVALUATION 
IN THE INDUSTRIAL 
CONTEXT 

Due to confidentiality reasons, we are unable to 
report the application of our tool on a real sub-
system of the case-study projects. Instead, to 
demonstrate the applicability and usefulness of our 
approach, we report next its evaluation on a realistic 
prototype radar control software.  
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5.1 Usage of the Approach on a 
Prototype Radar Control Software 

By using meta-model in Figure 3, a running example 
object diagram for a radar control software is shown 
in Figure 5. 

 

Figure 5: Object Diagram. 

For brevity, instead of expressing all details, the 
path of bold lines is discussed. ARadarProject can 
have several modules and RadarController is one of 
them. This module can have several interfaces and 
CDUInterface, which has TCP connection with 
CDU (as mentioned in Figure 1) is one of these 
interfaces. Among various services, Command has 
antennaSpeed message, which has one parameter 
named "speed". This parameter's type is integer and 
belongs to TypesPackage. After getting this "speed" 
parameter, RadarController can send it to Antenna 
module by using its AntennaInterface, which has 
RS232 connection (as mentioned in Figure 1). 

In order to satisfy M2M transformation by EMF, 
which uses this object diagram at the background 
and generates code, document and test driver, it is 
sufficient to model the scenario as given in Figure 
6(a) and Figure 6(b). 

 
(a): "Interface/model definition" pane 

 
(b): "Properties" pane for "speed" parameter 

Figure 6: Using Model-CDT for the prototype. 

By using "Generate Code" submenu and selecting 
necessary configuration, Java, C++ or IBM 
Rhapsody implementation is generated.  

Furthermore, by using "Generate Document" 
submenu, an HTML-based ICD document, which 
takes properties of all objects is generated. Figure 
7(a) shows all messages within all modules by 
expressing hierarchical ordering via modules, 
interfaces and services at the left pane in generated 
document, whereas Figure 7(b) shows the message 
details when clicking on antennaSpeed message.  

On the other hand, "Generate Test Driver" 
submenu generates test driver. After running it, the 
first screen is module selection to test. After 
selecting it, all messages on that module can be 
tested either manually by adding existing messages 
from the upper menu or loading an existing test 
scenario, which was already saved. Then, by running 
all tests, the test driver UI shows pass/fail status in 
colorful format as shown in Figure 7(c). 

 
(a): Left Pane, which shows all messages 

 
(b): Message details for "antennaSpeed" message 

 
(c): Test driver output  

Figure 7: Generated Artifacts. 

5.2 Impacts, Challenges and Lessons 
Learned 

As discussed, MDE framework was developed to 
support of embedded software development and 
maintenance in the context of ASELSAN.  

The usage of Model-ComM is grouped into two 
categories. The first group includes the projects, 
which have been using Model-ComM from the 
beginning. The other group includes the projects, 
which had already an existing communication 
middleware technologies, decided to adopt tool. The 
first group includes three projects and 10 modules; 
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whereas the second group includes one project, 
whose four modules use the tool and two modules 
do not. Due to confidentiality reasons, we are unable 
to report the real names of these projects and 
modules. As a convention, module names begin with 
project names initial letter to be more 
understandable. ProjectX, which is in the first group, 
has three modules; whereas, ProjectY, which is in 
the second group, has four modules that use the tool. 

Besides presenting quantitative data in that 
section, informal question & answer session results 
are also presented with verbatim quotes of ProjectX 
and ProjectY shareholders, which include project 
managers, developers, system engineers and also 
testers. All these quotes have been translated from 
Turkish, as precise as possible, by the authors. 

Impacts for the challenge area 1: In Table 1, 
lines of code (LOC) statistics of the auto-generated 
code for communication interfaces are given for 
ProjectX and ProjectY. Depending on the interface 
number and messages, LOC generated by Model-
ComM varies between ~3500 and ~9500. It is clear 
that this saves inefficient usage of development 
effort compared to before tool usage. A verbatim 
quote from ProjectX manager: “As a pioneer, we 
started to use Model-ComM. In our implementation 
effort so far, we have gained ~15% effort savings 
with code generation".  

Table 1: LOC statistics of the auto-generated code for the 
communication interfaces. 

ProjectX ModuleX1 ModuleX2 ModuleX3 

LOC ~7520 ~5500 ~4680 

ProjectY ModuleY1 ModuleY2 ModuleY3 ModuleY4 

LOC ~9450 ~6370 ~5240 ~3520 

Impacts for Challenge area 2: ProjectX shareholders' 
common idea is that with the help of automated 
ICD, they can focus on more “business logic” 
without worrying about synchronization of code and 
documentation. Moreover, ProjectX developer says 
that “Since there is only one–hand generated code 
for all inter-dependent modules based on single 
model, there is no last-minute surprise during 
integration and we do not worry about whether 
inter-dependent module’s developer changed or not 
the message interface implementation”. 

ProjectY manager states: “The bonus is that we 
have now a reliable and one-minute-ready HTML-
based ICD; and we do not worry about the 
unsynchronized artifacts”. ProjectY developer, who 
has more interfaces than the other inter-dependent 
modules states “I benefited more than the others not 
just because of code generation but also 
documentation. Because, whenever I change the 
code, the document is also updated and I do not 
worry about any change is not reflected in ICD.”  

Impacts for the challenge area 3: Auto-generated 
code also significantly affected the effort to write 
simulators. Table 2 gives LOC statistics to simulate 
ModuleX1’s inter-dependent modules: ModuleX2 
and ModuleX3. This also saves the necessary time 
for implementation of simulator. The best thing is 
that, the implementation details in simulator are 
generic since the generated test driver is based on 
the model; not on any specific message.  

Table 2: LOC statistics to implement ModuleX2’s and 
ModuleX3’s simulator to test ModuleX1 in ProjectX. 

ProjectX ModuleX2Sim  ModuleX3Sim 
LOC ~5650 ~4750 

Table 3: RQs planned in our ongoing and future efforts. 

RQ # Sub-RQ # RQ 

1 What are quantitative benefits of the model-driven engineering approach and its associated tool-support in the case study 
context?  

1.1 Does using the approach reduce development, test and maintenance efforts compared to the ad-hoc baseline? 

1.2 Does using the approach reduce defects across the SDLC compared to the ad-hoc baseline? 

1.3 Is the approach cost effective (with respect to cost-benefit analysis and value-based software engineering (Biffl 
et al., 2005))?  

2 What are qualitative benefits of the model-driven engineering approach and its associated tool-support?  

2.1 What types of challenges have been resolved using the approach and its tool-support? 

3 How usable is the approach and how convenient is to integrate it into the SDLC lifecycle and processes in the industrial 
context under study? 

4 What are the further development areas of the approach and its tool-support? 

5 What are the generalizability and external validity aspects of the approach? 

5.1 To what extent the approach and the tools can be used in other contexts and companies? 

5.2 How are out findings compare with the related work in the area of exploiting model-driven engineering in 
support of software development and maintenance? 
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A verbatim quote from ProjectX manager: 
"Moreover, to test our message interfaces; we no 
longer need to wait for [completion of] their 
simulators". ProjectX tester continues "With the help 
of Model-ComM test driver, I do not need to 
manually implement simulators; I can use my time 
more efficiently. Before the tool, we implemented 
simulators according to ICD and whenever anything 
is changed in ICD, we had to change our simulator."  

Impacts for Challenge area 4: The challenge of 
taking responsibility over the ICD has started to be 
resolved with auto-generation. ProjectX manager, 
who had some conflicts with other shareholders on 
that issue states that "it is also very helpful for non-
users of Model-ComM since they know that Model-
ComM user’s implementation is exactly what 
generated HTML says. By this way, we got rid of the 
document responsibility problem among 
shareholders; we took this while generating code.”  

6 CONCLUSIONS AND 
ONGOING/FUTURE 
DIRECTIONS 

In the upcoming phases of our R&D project, we plan 
to conduct more rigorous empirical case studies to 
ensure the cost effectiveness and benefit of our 
approach to the context and problem domain. 

To this end, by following Goal, Question, Metric 
(GQM) approach (Basili, 1994), we have already 
planned a set of upcoming RQs to be studied and 
addressed as shown in Table 3. The goal will be to 
assess the benefits of the MDE approach and its 
associated tool-support in improvement of 
development and maintenance tasks in the 
embedded software projects under study from the 
point of view of researchers, software engineers and 
managers working in the company. 
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