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Abstract: Since reproducing the realism of the physical word is a major goal for computer graphics, color texture 
synthesis is important for rendering synthetic images and animations. Most of the existing synthesis 
techniques provide impressive results in many cases, but fail in difficult situations with large patterns, or 
with long range directional variations. Based on a previously developed two-stage structure/texture 
synthesis algorithm where the structure tensor is used to represent the structure layer, an extension to color 
texture synthesis is proposed. Two different methods are used for the computation of the color structure 
tensor field. An acceleration method for the proposed algorithm is also presented. Results show that the 
proposed approach successfully synthesizes the output texture in many situations where traditional 
algorithms fail to reproduce the exemplar’s patterns and dynamics. These promising results pave the way 
towards 3D color textures synthesis showing multi-scale patterns. 

1 INTRODUCTION 

Texture synthesis has been particularly dynamic 
with different applications in computer vision 
including image extrapolation, restoration, editing 
and compression. It has also been extended to video 
completion/merging and animations, and the 
description of the geometry of a surface (Bargteil et 
al., 2006, Yamauchi et al., 2003, Bertalmio et al., 
2000, Winkenbach et al., 1994). Most of graphics 
applications require color texture synthesis to 
represent real word textures observed under different 
lighting conditions. In rendering, textures can mimic 
the surface details of real objects, ranging from 
varying the surface’s color, perturbing the surface 
normal, to actually deforming the surface geometry. 
In pen and ink style illustrations, textures can 
delineate the tone, shade, and pattern of objects. 
With hand-drawn pictures, most scanned images are 
of inadequate size and can lead to visible seams or 
repetitions if they are directly used for texture 
mapping (Winkenbach et al., 1994). 
Several recent 2D texture synthesis algorithms 
(Portilla & Simoncelli, 2000, Wei & Levoy, 2000, 
2003, Paget & Longstaff, 1998, Kwatra et al., 2003, 
Kopf et al., 2007, Vanhoey et al., 2013, Efros & 
Freeman, 2001, Han et al., 2006) achieved success 
in modeling a large panel of textures, including 

stochastic and structured textures. For instance, a 
Markov Random Field texture modeling method is 
proposed in (Paget & Longstaff, 1998). It 
mathematically captures the visual characteristics of 
a texture into a unique statistical model that 
describes the interactions between pixel values. A 
synthesis algorithm based on copying patch regions 
from the sample to the output is proposed in (Kwatra 
et al., 2003). The method uses a graph cut technique 
to determine the patch region without choosing its 
size a-priori, in contrast to other existing methods. In 
(Portilla & Simoncelli, 2000) an over complete 
complex wavelet transform is used to parameterize 
the model by a set of statistics, in the frequency 
domain, corresponding to basic functions at adjacent 
locations, orientations and scales. The 2D texture 
synthesis method in (Wei & Levoy, 2000, 2003) 
models the texture as a realization of a local and 
stationary random process. The algorithm starts from 
an input texture and an output image initialized by a 
white random noise. The texture is synthesized in a 
scan-line order. The neighborhood of each output 
pixel is captured and the most similar neighborhood 
is searched for in the exemplar based on the 
Euclidian distance. Then the corresponding pixel is 
copied to the target position in the output texture.  

Many of the above 2D synthesis techniques were 
extended to the 3D environment, i.e. solid texture 
synthesis. Among such extensions, the non-
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parametric approach of (Kopf et al., 2007), which 
integrates histogram matching to help the global 
statistics of the synthesized solid converge towards 
those of the exemplar. Other parametric (Da Costa & 
Germain, 2010) and non-parametric (Urs, 2013) 
2D/3D extensions have also shown their efficiency 
in many cases including simulation of atomic 
structure of materials (Leyssale et al., 2009, 2012).  

Most of the existing synthesis algorithms are 
appropriate for color images by considering the three 
channels (Red, Green and Blue) of the color texture 
in the RGB model (Wei & Levoy, 2000, 2003, 
Kwatra et al., 2003).   

For the synthesis of structured anisotropic 
textures, most of existing approaches tend to 
produce more regular textures than the exemplar 
(Kopf et al., 2007, Wei & Levoy, 2000). They are 
hardly able to reproduce long range orientation 
variations, dealing badly with non-stationary 
textures presenting undulating, circular or laminar 
structures. In this case, the prior synthesis of a 
geometric layer may help in the synthesis of the 
texture layer (Peyré, 2009). A two-step synthesis 
approach consisting in first producing a structure 
layer from the analysis of the original exemplar, and 
then using this structure layer to constrain the 
synthesis of the texture itself, is presented in (Akl et 
al., 2014). In this method, the structure layer is 
represented by the structure tensor field which 
captures the dominant orientations and the degree of 
local anisotropy in the texture.  

Based on this latter algorithm, this paper presents 
an extension to color texture synthesis using two 
different approaches for the computation of the 
structure tensor on color images. The proposed 
method leads to a same or better quality results than 
those obtained using a standard approach, with a 
significant computational load reduction. 

The remainder of the paper is organized as 
follows. The computation of the color structure 
tensor field is presented in Section 2. The proposed 
two-stage color texture synthesis algorithm is then 
described in Section 3. Experimental results are 
discussed in Section 4, and finally conclusions are 
drawn in Section 5. 

2 THE COLOR STRUCTURE 
TENSOR FIELD 

The structure tensor T of a gray-scale image M is the 
covariance matrix of the first partial derivatives of 
M, and built from previously estimated gradient 

fields M = [Mx, My]with Mx = M*Gx and My = M*Gy 
where Gx and Gy are Gaussian derivative kernels, 
and (*) denotes convolution. 

At a point (x, y), the structure tensor T(x, y) is 
symmetric and can be written as: 
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the tensor components Txx, Txy, and Tyy are given by: 

     * *; ; * ,xx x x xy x y yy y yT S M M T S M M T S M M   (2)

where S is a weighting function used for gradient 
field smoothing.  

The structure tensor can be interpreted as an 
ellipse (Toujas et al., 2010) characterized by a shape 
(or coherence) indicator and an orientation factor. 
The former is given by:   

           1 2 1 2 ,/C T T T T T      (3)

where λ1(T) and λ2(T) are the tensor eigenvalues. 
The latter is computed from the eigenvector [ex, ey] 
associated with λ1(T) as:  

    ,/-1
y xtan eT e   (4)

The first stage of the texture synthesis algorithm 
in (Akl et al., 2014) consists of synthesizing the 
texture’s structure layer represented by the structure 
tensor field. Therefore, an important issue in the 
color synthesis extension is the computation of the 
color structure tensor. (Zenzo, 1986) proposes a 
tensor formulation for the gradient of a multi-
component image with the extraction of a single 
vector (direction and magnitude of maximum 
variation). (Weijer & Gevers, 2004) propose to add 
the three structure tensor components computed for 
each color channel in an RGB image. The same 
applies in (García et al., 2008) with an additional 
Gaussian smoothing.  

In this paper, two different approaches are used 
for the computation of a color image tensor-field. 
The first approach consists of extracting the 
luminance component (Y) from the color input 
texture, as defined in the ITU-R BT.601 
recommendation (ITU-R, 2011): 

0.299 0.587 0.114 ,Y R G B    (5)

where R, G, and B represent the Red, Green and 
Blue components of the input image, respectively. 
The structure tensor is then computed from the 
luminance component the same way it is computed 
from the gray-scale images. 

The second method, used in this paper, relies on 
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the additivity of tensors for different channels as 
(Weijer & Gevers, 2004):  

 , ;
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the color tensor components C
xxT , C

xyT  and 

C
yyT are expressed as: 

 
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
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where R
abT , G

abT  and B
abT  are the structure tensor 

components obtained on the three channels R, G, 
and B of the color texture respectively. 

3 THE PROPOSED TWO-STAGE 
COLOR TEXTURE SYNTHESIS 

The first stage of the proposed texture synthesis 
algorithm consists in synthesizing the texture’s 
structure layer represented by the color structure 
tensor field. Hence, the non-parametric Wei and 
Levoy (W&L) algorithm (Wei & Levoy, 2000), 
which usually operates on scalar data, is adapted to 
the specificities of tensor-valued images. 

The algorithm starts by computing the input 
structure tensor field from the color exemplar. Then 
an output structure tensor field is initialized by 
choosing randomly tensors from the input structure 
tensor field. This field is modified in the synthesis 
process to look like the input tensor field. Therefore, 
the neighborhood of the output tensor (a vector of 
tensors) is first captured, then the most similar 
neighborhood is searched for in the input tensor 
field, and the corresponding tensor is copied to the 
output target position.  

The same process is repeated for each output 
tensor until all the tensors are determined (Akl et al., 
2014).  

Due to its versatility, the metric in (8) is used to 
measure the similarity between tensors 1

CT and 2
CT .  
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The choice of the tensor neighborhood shape and the 
scan type directly influences the resulting 
synthesized tensor image. We either use a causal 

neighborhood with a lexicographical scan type or a 
square non-causal neighborhood with a completely 
random walk (Wei & Levoy, 2000).  

Since the neighborhood size has to be adequately 
chosen in order to preserve texture structures, multi-
resolution image pyramids can be used to capture 
the structures more compactly in lower resolution 
pyramid levels (Wei & Levoy, 2000). This presents 
an alternative method to the use of large 
neighborhoods which makes the synthesis 
computationally expensive while the number of 
pyramid levels has as much influence as the 
neighborhood size. 

 

Figure 1: Illustration of the proposed two-stage color 
texture synthesis algorithm. 

The synthesized structure tensor field is used as 
a constraint for the synthesis. Fig. 1 presents the 
color texture synthesis method. The algorithm uses 
as inputs the exemplar, its structure tensor field and 
the synthesized structure tensor field. The algorithm 
finds, for every output pixel, the pixel with the most 
similar neighborhood in the input texture and copies 
it to the target output position. In other words, each 
neighborhood has two components: a pixel domain 
neighborhood in the color texture image, and a 
tensor domain neighborhood in the structure image 
(Akl et al., 2014). 
The neighborhood resemblance is measured by: 

     , 1 , ,in out in outR p SSCD N N p STD Q Q      (9)

where p is a weight factor (0 ≤ p ≤ 1), N is the pixel 
domain neighborhood component in the input (Nin) 
and output (Nout) textures, and Q represents the 
tensor domain component in the initial (Qin) and 
synthesized (Qout) tensor field. SSCD is the Sum 
Square Color Distance used for the pixel-domain 
neighborhood: 

Color Tensor Map 

     Structure-constrained Texture Synthesis 

Tensor Synthesis 
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where Nb is the number of pixels within each 
neighbourhood and ( ),C

iN n   1, 2 ,i   , ,C R G B  

represents the nth pixel within the neighborhood C
iN . 

STD is the Sum of Tensors Dissimilarity used for the 
tensor-domain component: 

      1 2 1 2

1

, , ,

Nb

n

STD Q Q Q n Q n


  (11)

where Nb is the number of tensors within each 
neighborhood and    1, 2,iQ n i  represents the nth 

tensor within the neighborhood iQ . 

In case of multi-scale synthesis, pyramids are 
obtained by smoothing the tensor field then down-
sampling with a 2:1 factor for each additional scale. 
The synthesis starts from the highest pyramid level 
and ends at the bottom of the pyramid. To assure 
that the added high-frequency details are consistent 
with the already synthesized low-frequency 
structures, the multi-resolution neighborhood of the 
current tensor at level i contains its same-level 
neighborhood as well as the neighborhood of the 
corresponding tensor position at the previously 
synthesized level (i+1). 

Due to the additional information provided by 
the structure map, reproducing the exemplar's 
patterns is feasible using a smaller texture 
neighborhood than the one used for the structure 
layer synthesis (Akl et al., 2014). However, the 
outperformance of the proposed algorithm still 
comes at the expense of additional computation of 
the synthesized structure layer, as will be shown in 
Section 4. Thus, an algorithm acceleration targeting 
the structure layer synthesis stage is of our interest.  
Practically, the additional computational burden 
mostly lies in the synthesis of the lowest pyramid 
level (highest resolution) during a multi-scale 
synthesis process. In addition, for most of the 
textures, the structure information in the lowest 
pyramid level is slightly different than the one 
existing in the higher level. Therefore, considering a 
structure tensor pyramid of L levels, we propose to 
synthesize the tensor fields at the high pyramid 
levels of lower resolution (the coarse levels) up to 
level L-1, and to construct the highest resolution 
level L (the lowest level) from the already 
synthesized level L-1 using a bilinear interpolation. 

This can be used as an interesting alternative to the 
algorithm in (Akl et al., 2014) which consists in 
synthesizing at each level of the Gaussian pyramid.  

4 RESULTS 

This section deals with evaluating the proposed 
algorithm using different input color textures from 
Brodatz database (Brodatz, 1966). Due to space 
limitations, only a subset of the results is presented. 

Fig. 2 presents synthesis results on four different 
color textures. For each result, the first row shows 
(from left to right) the input texture and the 
orientation of its structure tensor field computed 
using the additivity of tensor channels and on the 
luminance component, the synthesized texture using 
W&L’s algorithm and its orientation image. The 
second, third and fourth rows show the orientation of 
the synthesized structure tensor, the resulting texture 
and its orientation image, respectively, using the 
additivity of tensors channels for the structure tensor 
computation (first column), by computing the 
structure tensor on the luminance component 
(second column) and using the accelerated algorithm 
with the structure tensor computation on the 
luminance component (third column). The best 
possible parameters are used with W&L and with 
the proposed algorithm.  

Note that no software acceleration (Tree-
structured Vector Quantization for example) has 
been used to overcome any effect related to the sub-
optimality of such solutions (Wei & Levoy, 2000).  

Three iterations are used to obtain the 
synthesized structure tensor in result A, B and C, and 
four iterations in result D. For all the results, the 
textures obtained using the proposed approach are 
shown after two iterations. For tensor synthesis, two-
scale Gaussian pyramids are used in results A, B and 
D with a neighborhood size of 11×11, 13×13 and 
21×21, respectively. Three-scale Gaussian pyramids 
are used in result C with an 11×11 neighborhood 
size. A mono-scale texture synthesis and a causal 
neighborhood with a lexicographical scan are used 
for all the results. The texture neighborhood size is 
9×9 in results A and B, 11×11 and 21×21 in results C 
and D, respectively. The palette used for orientation 
images is shown in the upper center of Fig. 2. 

It can be observed that the textures obtained with 
the tensor-constrained synthesis, using both 
approaches for color structure tensor computation in 
results A and B, are similar to those obtained with 
W&L. On the contrary, both approaches outperform 
W&L in results C and D mainly in structure 
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conservation. With W&L, the synthesized image in 
result C is of acceptable quality, however it is more 
regular than the exemplar. In result D, the texture 
obtained with W&L presents some undesired 
artifacts and the alternation and periodicity of the 

exemplar’s patterns are not respected. On the 
contrary, our approach leads to smooth and artefact-
free textures very similar to the input sample giving 
the impression that they were produced by the same 
process. 

 

 
Figure 2: Synthesis results. For each result (A, B, C and D), the 1st row shows (from left to right) the input texture and the 
orientation of its structure tensor field computed using the additivity of tensor channels and on the luminance component, 
the synthesized texture using W&L’s algorithm and its orientation image. The 2nd, 3rd and 4th rows show the orientation of 
the synthesized structure tensor, the resulting texture and its orientation image, respectively, using the additivity of tensors 
channels for the structure tensor computation (1st column), by computing the structure tensor on the luminance component 
(2nd column) and using the accelerated algorithm with the structure tensor computation on the luminance component (3rd 
column). The palette used for orientation images is shown in the upper center. 

GRAPP�2015�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

186



In other words, due to the additional information 
provided by the structure layer, the proposed 
approach is able to successfully reproduce the 
variations of orientations in the exemplar even when 
W&L fails to sustain the structure. 

In results B, C and D, the orientation images of 
the input tensor fields are almost similar using both 
approaches for color structure tensor computation, 
which leads to nearly similar synthesized tensor 
fields. This is not the case for texture A where each 
approach gives a visually different orientation 
image. However, synthetic textures obtained with 
the four different exemplars, using both approaches 
for color tensor computation, hardly differentiate 
from each other, leading to eye-friendly synthesized 
textures of satisfying quality.  

It is clearly seen that in all the results, the images 
obtained using the bilinear interpolation for the 
structure tensor synthesis stage are roughly similar 
to those generated by the unaccelerated approach. 
The interpolated structure tensor remains of good 
quality and the synthetic orientation images 
resembles the texture orientation images in terms of 
both structure and dynamics preservation.  

Table 1 presents the simulation time of the 
results in Fig. 2. The second row shows the running 
time of W&L’s algorithm. The third and fourth rows 
show the running time of our algorithm using the 
classical all-levels synthesis method and using the 
accelerated algorithm by bilinear interpolation, 
respectively. All the presented timings are in 
seconds and measured using an Intel Core i7-
2670QM CPU with a 2.20 GHz clock. 

Table 1: Running time (seconds) for the textures in Fig. 2. 

Texture: A B C D 
W&L 28 35 860 756 

Proposed Method 41 42 1398 1114 
Accelerated  
Algorithm 

20 21 577 424 

Unlike the unaccelerated two-stage synthesis 
method, the proposed accelerated algorithm using 
the structure tensor interpolation outperforms W&L 
in terms of time consumption. For example, W&L 
and the proposed classical approach took 860 
seconds and 1398 seconds to generate the output 
texture in result C respectively, while the accelerated 
algorithm requires 577 seconds. 

It is important to mention that even when the 
pixel-based synthesis algorithm of W&L is able to 
successfully synthesize the input texture, the 
accelerated version of the proposed two-stage 
synthesis is beneficial in simulation time reduction 

without any loss in the output texture quality, as it is 
the case in results A and B.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Synthesis results on irregular textures. For each 
result from top-left to bottom-right; the exemplar, the 
obtained texture using W&L, the synthesised textures with 
the proposed unaccelerated method and using the 
accelerated algorithm. 

Fig. 3 shows two synthesis results on irregular long 
range directional variations textures. Each result 
shows from top-left to bottom-right; the input 
texture, the synthesized texture using W&L’s 
algorithm, the obtained results with the proposed 
unaccelerated and accelerated algorithms.  

It can be observed that the textures obtained with 
the unaccelerated as well as the accelerated tensor-
constrained synthesis approaches, in the first result, 
are similar to those obtained with W&L. On the 
other hand, W&L fails to reproduce the exemplar’s 
variation of orientations, in the second result, while 
the textures obtained by the proposed tensor-
constrained synthesis are more realistic, better 
respecting the orientations of the sample structures.  

Let us recall that for all the results, the 
acceleration by Tree-structured Vector Quantization 
(TSVQ) is not used with W&L’s algorithm (Wei & 
Levoy, 2000) and could be used as well for the 
proposed structure/texture synthesis method. Thus, 
future adaptation of such acceleration algorithms to 
the tensors neighborhood, is of our interest. 

5 CONCLUSIONS 

This paper presented a non-parametric color texture 
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synthesis algorithm based on two-stage 
structure/texture processing. The structure layer, 
represented by the color structure tensor field, is 
synthesized in the first stage and used as a constraint 
for texture synthesis in the second stage. Two 
different methods for color structure tensor 
computation were developed. An acceleration 
technique for the proposed algorithm is also 
presented. The obtained results are highly 
encouraging, in terms of structure and dynamics 
preservation, and proved that the proposed method is 
advantageous for simulation time consumption and  
for accurately reproducing the exemplar’s variations 
of orientations even when traditional algorithms fail 
to reproduce the exemplar’s patterns. As for future 
work, we aim at reinforcing the use of the tensor 
constraint for the synthesis of anisotropic and non-
stationary textures and to develop a 2D/3D color 
texture synthesis algorithm. 
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