
A Generic Framework for Modifying and Extending Enterprise
Modeling Languages

Richard Braun and Werner Esswein
TU Dresden, Chair for Wirtschaftsinformatik, esp. System Development, 01062 Dresden, Germany

Keywords: Meta Modeling, Extensibility, Enterprise Modeling, Language Dialects, Ad Hoc Modification, BPMN.

Abstract: Conceptual modeling languages are of great importance within information systems management. During
the last decade, a small set of commonly used enterprise modeling languages established and gained broad
acceptance in both academia and practice (e.g., BPMN). Due to their dissemination, these languages often
need to be extended or adapted for domain-specific or technical requirements. Since most modeling languages
provide rather poor extension mechanisms, it is necessary to modify a language meta model directly. However,
there is lack of integrated methodical support for these modifications. Within this position paper, we therefore
proclaim a generic framework for modifying enterprise modeling languages on the meta model level. The
framework is divided into the main parts of a modeling language (abstract syntax, concrete syntax, semantics)
and respective operations (add, remove, specify and redefine).

1 INTRODUCTION AND
MOTIVATION

Enterprise Modeling Languages (EML) are of pri-
mary importance for conceptual and technical com-
plexity management within enterprises as they fa-
cilitate an integrated management of views, as-
pects and levels of abstraction (Frank, 1999; Frank,
2002; Braun and Winter, 2005). Examples for such
EMLs are BPMN (OMG, 2011a), ARIS (Scheer and
Nüttgens, 2000) or MEMO (Frank, 2002). Addi-
tionally, the more engineering-driven general-purpose
modeling language UML is frequently adapted in the
field of enterprise modeling (Silingas and Butleris,
2009). The stated languages can largely be seen as
de facto standards due to their prevalence and ac-
ceptance both in academia and professional practice
1. This level of dissemination implies several ben-
efits such as a common understanding of syntactical
rules and semantical interpretations. It can be also
assumed, that these languages are subject to quality
management and evolvement over time. However,
there are also some challenges: As it is well known
from other fields (e.g., ERP management), the emer-
gence of commonly used artifacts leads often to an
increasing demand for individual customization in or-

1Indeed, BPMN and UML are specified as official ISO
standards (OMG, 2011b; OMG, 2011a).

der to satisfy specific requirements coming from the
peculiarities of a project, business or industry (Braun
and Esswein, 2014; Pardillo, 2010). Therefore, it
seems to be extremely relevant to consider the issue
of extending or modifying EMLs for domain-specific
adaptations, model transformation support, interoper-
ability and language evolution (Braun, 2015b). Fur-
ther, language extensions and modifications are con-
tributions to the management of language pluralism.
Instead of springing up “yet another” domain-specific
modeling language (DSML), having limited practi-
cal relevance, we proclaim the usage of a rather lim-
ited set of common EMLs on the one hand, while fo-
cussing their enhancement, modification and extensi-
bility on the other hand (Atkinson et al., 2013; Braun,
2015b) 2.

Extensions or modifications of EMLs are usually
employed on the meta model level of a language,
which is referred as M2 level (OMG, 2014). Modi-
fications lead to particular meta model variants of a
considered modeling language (Esswein and Weller,
2007). It is often necessary to address the meta model
level, as the majority of EMLs either does not provide
any extension mechanism or existing mechanisms re-
veal some architectural deficits (Braun, 2015b; Braun,
2015a). Even built extensions of languages with

2Nevertheless, we do not want to deny the powerfulness
and accuracy of DSMLs at all. DSMLs are valuable for very
specific problems or projects.

277Braun R. and Esswein W..
A Generic Framework for Modifying and Extending Enterprise Modeling Languages.
DOI: 10.5220/0005351702770286
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 277-286
ISBN: 978-989-758-097-0
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



rather well-defined extension interfaces (e.g., BPMN)
are mainly not designed in accordance to them (Braun
and Esswein, 2014). While this issue might be un-
problematic within single projects, it hampers inter-
operability, change tracking and general comprehen-
sion of the entire modification process. Further, it is
necessary to regulate modeling language changes in
order to avoid blowing up or destruction of a language
(Häggmark and Ågerfalk, 2006).

Generally, this deficiency could be tackled by de-
signing consistent and integrated extension mecha-
nisms within EMLs. With regard to the common
four level meta model architecture (OMG, 2014;
Strahringer, 1996), this proposal actually causes a
problem shift to the meta meta model level (M3 level),
as the M3 level should define appropriate concepts
and constraints for extending a modeling language
that is defined on the meta model level (level M2).
In particular, this aim exemplarily causes a revision
of large parts of the Meta Object Facility (MOF), as
MOF is the most common meta modeling language
(OMG, 2014). However, this is problematic facing
the dissemination of the current MOF version and the
rather crude architecture of some parts of the MOF
itself (Braun, 2015b).

Hence, it seems to be much more feasible and
viable to tackle the issue on level M2 by providing
a reference framework that supports the systematic
and comprehensible design of EML modifications.
More efficient design of modifications can also lead to
lower design costs at all. Therefore, this research-in-
progress article aims to outline a generic framework
for modifying meta models of EMLs. Consequently,
the remainder of this article is as follows. Section 2
provides some fundamentals from the field of concep-
tual modeling and introduces the E3 model of GREIF-
FENBERG (2004), which is adapted for the structure
of our framework. Section 3 presents the entire frame-
work and describes each part of the framework in de-
tail. The article ends with a short summary and an
outlook to further research.

2 FUNDAMENTALS

2.1 Conceptual Modeling

A conceptual model is defined as the result of a con-
struction process, “done by a modeler, who exam-
ines the elements of a system for a specific purpose”
(Schuette and Rotthowe, 1998). In contrast to design
models, which typically represent software systems
or parts of it, conceptual models represent and out-
line real world phenomena (Wand and Weber, 2002).

Thereby, graphical or diagrammatic conceptual mod-
els have been established as an appropriate medium
to foster communication between business stakehold-
ers within the information system discipline (Frank,
1999). Thus, EMLs are usually semi-formal modeling
languages. These languages combine aspects of for-
mal languages and natural languages. The syntax of
semi-formal modeling languages is defined formally
within a meta model, but the semantics come from
specific domain terminology that is typically stated
in a natural language (Pfeiffer and Gehlert, 2005,
p. 111). According to that, a conceptual modeling
language is the result of the application of a specific
terminology to a meta model based conceptual model-
ing grammar (Wand and Weber, 2002, p. 364). Mod-
eling languages should always be embedded into a
modeling method, which consists of the modeling lan-
guage itself (represented by a meta model) and a pro-
cedure delineating the process of model building and
model usage (Greiffenberg, 2004). Thereby, the meta
model is defined as a model representing a modeling
language (Strahringer, 1996). As stated at the begin-
ning of this article, meta models are typically located
at the M2 level of the common four layer architecture
of MOF (OMG, 2014).

As stated in Section 1, this article considers mod-
ifications of a language meta models due to domain-
specific alterations or other business-driven purposes.
Alterations of a language meta model can be caused
by the integration of new diagrams or perspectives
(e.g., (Stroppi et al., 2015)), the integration of new
domain-specific concepts (e.g. (Braun and Esswein,
2014)) or even user-specific reductions of a language
(based on (zur Muehlen and Recker, 2008)). Gener-
ally, it can be stated that requirements on conceptual
models are frequently changing and it is often neces-
sary to work on different language versions in paral-
lel (Ralyté et al., 2004). Therefore, we define a meta
model modification as any kind of meta model alter-
ation, which does not apply possibly existing exten-
sion mechanisms (Esswein and Weller, 2007; Braun,
2015b). The application of an altered modeling lan-
guage, having a notable set of new or changed ele-
ments, that is used by a group of model users leads
to a modeling language dialect 3. In addition to the
frequently used term extension, we want to empha-
size, that even meta model reductions and minor meta
model alterations are understood as meta model mod-
ifications, since this article is inspired by the works
from the field of meta model configuration manage-

3Besides, it is important to emphasize the need for a
more precise definition of language dialects. For instance,
in terms of both type and quantity of concepts which lead to
an distinction from the original language.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

278



ment (Esswein and Weller, 2007).

2.2 E3 Model as Frame of Reference

The smallest unit of modification can be referred as
configuration item (Esswein and Weller, 2007). Such
a configuration item can stand for all elements that are
specified within a meta model. In preparation of the
aimed framework, it is required to typecast these ele-
ments in a generic way and under consideration of all
language parts (abstract syntax, concrete syntax and
semantics). Examining the common MOF meta mod-
eling language reveals some shortcomings regarding
to the integrated covering of these aspects, as MOF
solely focusses abstract syntax and suffers from some
architectural problems (e.g., mixing up language and
tool definitions or self-definition by the UML infras-
tructure). Hence, an alternative meta modeling lan-
guages was selected: The E3 language of GREIFFEN-
BERG (2004). In contrast to similar approaches such
as MOF (OMG, 2014) or Gmodel (Bettin and Clark,
2010), E3 benefits from its integrated and cohere ar-
chitecture, which is presented in Figure 1.

Model 
Level 

Object 
Level 

Property 
Level 

Type 
Level 

Instance 
Level 

Contraint Langauge (ECMA) 

Context 
Level 

View 
Level 

Presentation 
Level 

Model 
Type (MT) 

View Type 
(VT) 

Presen-
tation 

Type (PT) 

Object 
Type (OT) 

Presen-
tation 
Object 

Type (POT) 

Property 
Type (PrT) 

Presen-
tation 

Property 
Type (PPT) 

Figure 1: Architecture of the E3 meta modeling language
(Greiffenberg, 2004) that is adapted for the structure the
modification framework.

The E3 architecture is divided into a type layer
(meta meta model) and an instance level (meta
model), whereby each instantiated element relates to
exactly one type element. Horizontal levels of E3 pro-
vide concepts for the definition of hierarchical per-
spectives and diagrams to the entire model context for
reasons of user-oriented complexity reduction (Greif-
fenberg, 2004, p. 116). Thus, it is divided into the
Context Level, the View Level and the Presentation
Level, whereby a particular level is bound to the next
level on the left side. It means, that a Model Type

(MT) (e.g., UML) owns several View Types (VT) (e.g.,
static and dynamic views), which in turn refer to par-
ticular Presentation Types (PT). For instance, class
diagrams are presentations of the static view and se-
quence diagrams are presentations of the dynamic
view within UML. Hence, E3 supports separation of
concerns between context and presentation while en-
suring their integration. Vertically, E3 is divided into
the Model Level, the Object Level and the Property
Level (Greiffenberg, 2004, p. 113). The level of ab-
straction descends from the top to the bottom. Within
the model level, the most abstract containers are spec-
ified: Model Types, View Types and Presentations
Types. Below, specific elements in form of Object
Types (OT) and their corresponding Presentation Ob-
ject Types (POT) can be defined in order to express all
concepts and properties of a language.

Object Types represent intended concepts of a lan-
guage (e.g., UML classes). Presentation Object Types
(POT) represent (perhaps multiple) graphical repre-
sentations of theses elements (e.g., expanded and col-
lapsed UML classes). It is important to note, that
both concepts and relations are understood as Ob-
ject Types in E3 (Greiffenberg, 2004, p. 101). The
lowest horizontal layer describes properties of Object
Types (Property Types) and Presentation Types (Pre-
sentation Property Types). Property Types (PrT) de-
fine particular ranges that can be constituted as sim-
ple ranges (e.g., String, Integer, Boolean) or complex
ranges (references to other Object Types). Each Prop-
erty Type (PT) owns a specific cardinality (min, max)
and a structure type for managing its instances on a
technical level (Greiffenberg, 2004, p. 102). Presen-
tation Property Types (PPT) are used for the defini-
tion of specific attributes of graphical elements (e.g.,
connector points between elements).

In addition to the introduced structural elements,
E3 provides an integrated ECMAscript based con-
straint language for the specification of complex rules
and constraints both within abstract syntax (e.g., trig-
gers for object renaming or consistency checks) or
concrete syntax (e.g., context-aware graphical adap-
tions).

3 FRAMEWORK
ARCHITECTURE

This section provides the proposed framework for
conducting meta model modifications based on the
E3 architecture. The framework is vertically divided
into the three components of modeling languages.
Abstract Syntax covers all elements, rules and con-
straints of a language (Wand and Weber, 2002) and

A�Generic�Framework�for�Modifying�and�Extending�Enterprise�Modeling�Languages

279



 

 
A

bs
tr

ac
t S

yn
ta

x 
(C

on
te

xt
) 

C
on

cr
et

e 
Sy

nt
ax

 (P
er

sp
ec

tiv
es

, D
ia

gr
am

s)
 

Se
m

an
tic

s 

Add 

O
T 

A
dd

 n
ew

 c
on

ce
pt

 
VT

 A
dd

 n
ew

 (u
se

r-
sp

ec
ifi

c)
 v

ie
w

 fo
r c

om
pl

ex
ity

 re
du

ct
io

n 
• 

H
or

iz
on

ta
l: 

A
dd

iti
on

al
 V

T 
• 

V
er

tic
al

: R
ef

in
em

en
t o

f e
xi

st
in

g 
V

T 

• 
A

dd
iti

on
al

 s
em

an
tic

s 
in

 
th

e 
se

ns
e 

of
 m

or
e 

te
xt

ua
l i

nf
or

m
at

io
n 

ex
pl

ic
at

ed
 in

 a
 n

at
ur

al
 

la
ng

ua
ge

 
Pr

T 
A

dd
 p

ro
pe

rty
 to

 a
n 

ex
is

tin
g 

or
 n

ew
 O

T 
• 

O
w

ne
d 

pr
op

er
ty

 
• 

N
av

ig
ab

le
 p

ro
pe

rty
: 

o 
B

et
w

ee
n 

ne
w

 O
Ts

; b
et

w
ee

n 
ne

w
 a

nd
 e

xi
st

in
g 

O
Ts

 
o 

B
et

w
ee

n 
ex

is
tin

g 
O

Ts
 ✖

 
• 

R
an

ge
 ty

pe
 

• 
R

an
ge

 v
al

ue
s 

(e
nu

m
er

at
io

ns
) 

• 
M

ul
tip

lic
iti

es
 (m

in
; m

ax
; f

or
 u

ns
pe

ci
fie

d 
re

la
tio

ns
) 

PT
 A

dd
 a

 n
ew

 d
ia

gr
am

 o
f a

 V
T 

• 
H

or
iz

on
ta

l: 
A

dd
iti

on
al

 V
T 

• 
V

er
tic

al
: R

ef
in

em
en

t o
f P

T 
 

In
he

rit
an

ce
s 
• 

B
et

w
ee

n 
ne

w
 O

Ts
 

• 
B

et
w

ee
n 

ex
is

tin
g 

O
Ts

 ✖
 

• 
B

et
w

ee
n 

ne
w

 O
T 

(s
up

er
) a

nd
 e

xi
st

in
g 

O
T 

(s
ub

) 
• 

B
et

w
ee

n 
ex

is
tin

g 
O

T 
(s

up
er

) a
nd

 n
ew

 O
T 

(s
ub

) 

PO
T 

A
dd

iti
on

al
 re

pr
es

en
ta

tio
ns

 o
f O

Ts
 

C
on

st
ra

in
ts

 A
dd

 c
om

pl
ex

 ru
le

s 
PP

T 
A

dd
iti

on
al

 p
re

se
nt

at
io

n 
pr

op
er

tie
s 

of
 O

Ts
 

• 
N

ew
 g

ra
ph

ic
al

 c
on

ne
ct

io
n 

to
 P

O
T 

(d
ep

en
ds

 o
n 

O
T,

 P
T)

 
• 

R
ep

re
se

nt
at

io
n 

of
 P

rT
s 

w
ith

in
 e

xi
st

in
g 

O
Ts

 

Remove 

O
T 

R
em

ov
e 

co
nc

ep
t 

• 
R

em
ov

e 
su

pe
r O

T 
VT

 R
em

ov
e 

pe
rs

pe
ct

iv
e 

(r
ar

el
y)

 
• 

R
ed

uc
in

g 
te

xt
ua

l 
st

at
em

en
ts

 o
r 

ex
pl

an
at

io
ns

 in
 o

rd
er

 to
 

“d
ila

te
” s

em
an

tic
s 
✖ 

Pr
T 

R
em

ov
e 

pr
op

er
ty

 o
f O

T 
• 

O
w

ne
d 

pr
op

er
ty

; n
av

ig
ab

le
 p

ro
pe

rty
 

• 
R

an
ge

 ty
pe

 ✖
 

• 
R

an
ge

 v
al

ue
s 

(e
nu

m
er

at
io

ns
) ✖

 
• 

M
ul

tip
lic

ity
 li

m
its

 (m
in

; m
ax

) 

PT
 R

em
ov

e 
di

ag
ra

m
 (r

ar
el

y)
 

In
he

rit
an

ce
s 

R
em

ov
e 

in
he

rit
an

ce
s 

PO
T 

R
em

ov
e 

gr
ap

hi
ca

l r
ep

re
se

nt
at

io
n(

s)
 o

f O
Ts

 
C

on
st

ra
in

ts
 R

em
ov

e 
co

ns
tra

in
ts

 
PP

T 
R

em
ov

e 
pr

es
en

ta
tio

n 
pr

op
er

tie
s 

of
 O

Ts
 

• 
R

em
ov

e 
gr

ap
hi

ca
l c

on
ne

ct
io

n 
to

 P
O

T 
(r

ed
uc

in
g)

 
• 

R
em

ov
e 

re
pr

es
en

ta
tio

ns
 o

f P
T 

in
 O

Ts
 (r

ed
uc

in
g)

 

Alter 

Specify 

O
T 

S
pe

ci
fy

in
g 

(m
os

tly
 g

en
er

ic
) e

xi
st

in
g 

co
nc

ep
ts

 
• 

N
ew

 s
ub

 ty
pe

 
VT

 R
ef

in
em

en
t o

f a
 v

ie
w

 
• 

S
pe

ci
fic

at
io

n 
of

 u
nd

er
-

sp
ec

ifi
ed

 s
em

an
tic

s 
of

 
el

em
en

ts
 a

nd
 c

on
st

ru
ct

s 
• 

D
om

ai
n-

sp
ec

ifi
c 

re
fin

em
en

t o
f e

le
m

en
ts

 
or

 c
on

st
ru

ct
s 

 

Pr
T 

D
om

ai
n-

sp
ec

ifi
c 

co
nc

re
tiz

at
io

n 
of

 P
rT

s 
or

 th
ei

r v
al

ue
s 

• 
Li

m
ita

tio
n 

of
 m

ul
tip

lic
ity

 v
al

ue
s 

(m
in

; m
ax

) o
r r

an
ge

s 
• 

O
ve

rw
rit

in
g 

of
 e

nu
m

er
at

io
n 

va
lu

e 

PT
 R

ef
in

em
en

t o
f a

 d
ia

gr
am

 (r
es

tri
ct

 n
um

be
r o

f c
on

ta
in

ed
 O

Ts
) 

C
on

st
ra

in
ts

 S
pe

ci
fy

in
g 

co
ns

tra
in

ts
 (e

.g
., 

do
m

ai
n-

sp
ec

ifi
c)

 
PO

T 
C

ha
ng

in
g 

th
e 

gr
ap

hi
ca

l r
ep

re
se

nt
at

io
n 

of
 e

le
m

en
ts

 

Redefine 

A
ll 

R
en

am
in

g 
th

e 
la

be
l o

f a
 c

on
ce

pt
 o

r i
ts

 p
ro

pe
rti

es
 

A
ll 

R
en

am
in

g 
th

e 
la

be
l o

f a
 v

ie
w

 o
r p

re
se

nt
at

io
n 

• 
(R

ed
ef

in
in

g 
th

e 
se

m
an

tic
s 

of
 a

 m
od

el
in

g 
la

ng
ua

ge
 b

y 
ov

er
w

rit
in

g 
pa

rts
 o

f t
he

 la
ng

ua
ge

) ✖
 

Figure 2: Proposed modification framework (thick underlinings and cross symbols emphasize crucial modifications; cf. Sec-
tion 3.2).

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

280



refers to the previously introduced Context Level of
E3. Concrete Syntax stands for the graphical repre-
sentation of language concepts and their relationships
and refers both to the View Level and the Presenta-
tion Level of E3. TheSemantics column covers the
meaning of modeling language constructs in applica-
tion domains (Pfeiffer and Gehlert, 2005). Semantics
are usually expressed separately by natural language
statements, domain dictionaries or glossaries.

Vertically, the framework is divided into those op-
erations, which can be applied to an element within
the meta model: Add, Remove and Alter. Model el-
ement alterations are further divided into Specifying
and Renaming. Alteration by specification refers to
the concretization of generic or under-specified model
elements (Braun, 2015b). Alteration by redefining
refers either to simple element renaming or to the re-
definition of their semantics. Figure 2 represents the
modification framework by assigning particular E3 el-
ements to segments of the framework matrix.

3.1 Framework Segments

Below, each segment of the framework is presented
in detail by explaining its implications on meta model
elements and possible reasons for adaptation of spe-
cific alteration techniques. Relevant contributions of
other authors are explicitly stated in order to enable
a seamless integration with existing techniques. We
also consider impacts of meta model changes on al-
ready instantiated models on level M1 in order to
keep them consistent. Therefore, recommendations
for model management are given and points for man-
ual processing are explicated. Additionally, several
examples are given by using the popular business pro-
cess modeling language BPMN (OMG, 2011a).

3.1.1 Add Abstract Syntax

Adding new features to a modeling language con-
stitutes as adding concepts and properties to a meta
model in order to enhance its expressiveness (Atkin-
son et al., 2013). Basically, adding a new OT to a meta
model means contextual enrichment of a language
with a delimitable concept that is not represented so
far. Typically, this is used for dilating the scope of a
language horizontally (while specifying merely refers
to a vertical kind of detailing). In contrast to the im-
plementation of additional OTs, adding new proper-
ties is quite diverse as there are plenty ways for imple-
mentation. First, owned PrTs can be added to OTs in
order to realize a more detailed specification of exist-
ing OTs (e.g., by attaching domain-specific informa-
tion). Also, simple ranges of existing properties can
be extended by new range types or by declaring extra

BPMN

Artifact

«enumeration»
BPMN

Process Types
none
management
private
public
operation

contributes

1..10

1..*
«extension»

BPMN
Business Goal

priority: Integer

BPMN
Activity

completionQuantity: Integer
isForCompensation: Boolean
startQuantity: Integer
maximalDuration: Integer

Navigable PrT

Relation
OT

Owned PrT

New range values

Figure 3: Basal example depicting additional owned and
navigable Property Types (PT), a new Object Type (OT) as
well as extended range values within an enumeration.

range values (e.g., further enumeration values). Sec-
ond, navigable properties (references) can be added
between newly created or original OTs.

However, it has to be emphasized that relations
between original OTs are crucial as they overwrite
the intended core attributes of the language itself.
Third, multiplicities on unspecified associations can
be added in order to introduce stricter limitations be-
tween instances of these elements.

Further, it is imaginable to introduce new inher-
itances between OTs in order to reduce model com-
plexity and improve the level of hierarchical reuse.
Again, this is unproblematic between newly added
OTs. However, it becomes more complicated when
considering possible inheritances between original
OTs or introducing a new super OT to an existing
(sub) OT. The first case refers to the implementation
of hierarchical structures within parts of the original
language, while the latter covers the issue of OT spe-
cialization. Finally, it is also possible to add new
complex rules within the program code of the used
constraint language. This can be done due to the im-
plementation of rigid, perhaps business-specific rules.
Consequences. Generally, adding meta model ele-
ments is mostly unproblematic, since a previously in-
stantiated model still corresponds to a subset of the
extended meta model. Thus, appending new OTs
does not require any follow-up action. Adding PTs
requires more attention if they are mandatory. In
this case, property values have to be assigned to
model instances in order to ensure validity. Addi-
tional property range types or range values do not re-
quire alterations as they only extend the scope of valid
ranges. In contrast, adding new multiplicities repre-

A�Generic�Framework�for�Modifying�and�Extending�Enterprise�Modeling�Languages

281



sents stronger constraints of models. Lowering min-
ima values and raising maxima values are unproblem-
atic, since the former multiplicity limits are always in-
cluded. In contrast, increasing minima values and re-
ducing maxima values require modifications. Increas-
ing minima values causes the identification of affected
model elements. If necessary, default elements have
to be added in order to match the rule. In the case of
reducing maxima, surplus relations to other elements
have to be reduced manually in order to match the
new max value (Esswein and Weller, 2007).

Similar to that, introducing new inheritances usu-
ally lead to model alterations. Hierarchical structures
between added OTs or existing super OTs and newly
added sub OTs are unproblematic and do not require
follow-up actions. Inheritances, which create any sit-
uation where an original OT received a new super
OT, require revisions by assigning all properties of
the super OT to the respective sub OT. Afterwards,
each added property has to be dealt like a generally
added property. Accordingly, it is perhaps necessary
to define and add default property values to model in-
stances.

3.1.2 Remove Abstract Syntax

Removing features of a meta model is a fairly hard
intervention as it erases original meta model con-
structs and reduces the expressiveness of the lan-
guage. While meta model extensions are considered
in numerous publications, meta model reduction has
not gained comparable exposure, although it is con-
ceived as very important (Fondement et al., 2013,
p. 139). Motivated by the complexity of the UML
meta model, BAE ET AL. (2008) introduce the con-
cept of meta model slicing that intends to cut out se-
lected classes, properties and their transitively depen-
dent elements in order to keep only user-relevant meta
model parts (Bae et al., 2008). Similar to that, SEN ET
AL. (2009) proclaim meta model pruning in the sense
of removing all unnecessary classes and properties by
applying a graph-based removal algorithm (Sen et al.,
2009, p. 33).

FONDEMENT ET AL. (2013) introduce the meta
model unmerging approach as contradiction of merg-
ing; the union-like copy technique from MOF (OMG,

BPMN
Human Performer

BPMN
Performer

BPMN
Potential Owner

BPMN
Resource Role

Removal requires new inheritance

Figure 4: Removal of an object type requires the integration
of a new inheritance (OMG, 2011a, p. 154).

2014). Therefore, eleven unmerging use cases (UC)
are proclaimed (Fondement et al., 2013, p. 143).
As the unmerging approach provides an integrated
framework for nearly all relevant reduction cases, we
partly adapt their patterns to our framework: Removal
of OTs refers to UC3 (classes); removal of super OTs
refers to UC7 (hierarchies); removal of owned prop-
erties refers to UC5; removal of navigable properties
refers to UC6; removal of multiplicity limits refers
to UC11 and removing constraints refers to UC10
(Fondement et al., 2013). Additionally, we propose
removing range types and range values. Thus, it
might be possible to release some constraints or re-
move unused range values.
Consequences. If an OT is removed from the meta
model, its instances need to be deleted, too. Besides,
references to the respective OT need to be removed
(both on type and element level). Those references
can be occurred as properties or constraints. If an
OT was a super OT within a hierarchy, it is neces-
sary, to re-organize the meta model hierarchy in order
to ensure hierarchical relations of sub OTs to all their
super OTs in order to bridge the created gap (Fonde-
ment et al., 2013, p. 143). On model level, instances
of sub OTs of the removed OTs need to be updated
recursively in terms of removing inherited properties.
If any kind of a PrT is removed from the meta model,
its corresponding properties on model level are also
removed. Removing a specific range type is indeed
allowed, but leads to unspecified properties. We thus
recommend the specification of a default range type.
If range values (enumerations) are removed, it is also
suggest to define a default enumeration value in order
to avoid null values. Removing multiplicity values
(min, max) or constraints requires no follow-up ac-
tions, since the model is than less constrained at all
and still valid.

3.1.3 Specify Abstract Syntax

Specifying the abstract syntax encompasses specific
configuration of intentionally generic elements or
those elements, which are perceived as overly generic
in the modeling context (Braun and Esswein, 2014,
p. 47). Such specialization is mostly implemented
by introducing new sub OTs owning domain-specific
PrTs. On the level of PrTs, it might be appropriate
to specify multiplicity values or to limit ranges (e.g.,
Integer instead of Float). Further, specific range val-
ues can be overwritten if the previous notation is too
broad 4. In contrast to modification by addition, spec-

4Actually, each alteration is a combination of adding or
even removing from a logical point of view. For reasons of
a purposive representation, we refrain from that separation.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

282



«extension»
BPMN

Evidence-based Expression

BPMN
Complex Gateway

«extension»
BPMN

Evidence Gateway

activation Condition
0..1

0..1

«extension»
BPMN

Medical Decision Logic
logicalExpression: String

0..1

activationCondition
0..1

0..1

BPMN
Expression

Specification of Complex Gateways

Figure 5: Specifying elements by inheritances (adapted
from the BPMN4CP extension (Braun et al., 2014, p. 15)).

ifying has a much stronger relation to the scope of the
meta model and its limitations.
Consequences. Specification of OTs by introducing
new sub OTs does not necessarily require follow-up
actions, since the model is still valid. However, a re-
definition of those elements that are instantiated from
the specified generic OT might be rational. Redef-
initions of multiplicity values have to be treated as
described in Section 3.1.1. If enumeration values are
overwritten, a matching list is proposed in order to
comprehend respective updates.

3.1.4 Redefine Abstract Syntax

Redefining abstract syntax covers the case of renam-
ing an element (Esswein and Weller, 2007). Such re-
definitions are mostly conducted for a better model
understanding in a specific user environment or avoid-
ing natural language based misunderstandings and
ambiguities. Therefore, renaming is tightly coupled
to semantics as it refers to real-world concepts. There
are no direct implications on model level.

«extension»
BPMN

Department

BPMN

Pool

Figure 6: Rename the Pool concept in order to express or-
ganizational units on type level.

3.1.5 Add Concrete Syntax

Modification of the concrete syntax is rarely consid-
ered in literature so far. With regard to the above men-
tioned E3 meta framework, the concrete syntax can
be described by View Types (VTs, filtering perspec-
tives), Presentation Types (PTs, diagrams), Presen-
tation Object Types (POTs, graphical constructs) and
corresponding Presentation Property Types (PPTs).

Adding a new VT is either used for adding bet-
ter complexity reduction mechanisms within a large
set of OTs or for better user-specific segmentation of

the context (similar to separation of concern (Atkin-
son et al., 2013, p. 47)). Such a filtering can be imple-
mented horizontally or vertically. The horizontal type
covers the definition of further VTs on the set of all
OTs within a model type. The vertical type refers to
an existing VT and refines them. Additional PTs (dia-
grams) are implemented in a similar way. Horizontal
PT addition refers to new PTs within a VT; in parallel
to other diagrams. Vertical PT addition addresses the
refinement of existing diagrams, what is tightly cou-
pled to VT additions. For instance, STROPPI ET AL.
(2015) provide additional resource perspectives and
diagrams within the BPMN.

Adding new POTs is a quite simple operation that
is often provided by modeling tools or even stated
in meta model specifications (e.g., (OMG, 2011a)).
Thus, it is possible to add alternative graphical repre-
sentations for OTs in order to support model under-
standing (e.g., (Stark and Esswein, 2012)). Adding
PPTs to a meta model is caused by two purposes.
First, is might be necessary to represent PrTs of exist-
ing OTs graphically (e.g., property-dependent icons
within the graphic). Second, for the graphical rep-
resentation of relations between original and added
POTs.
Consequences. Adding new VTs, PTs, POTs or PPTs
does not require dedicated follow-up actions as it only
provides more alternatives for model representation.

3.1.6 Remove Concrete Syntax

Removing VTs or PTs is a rather uncommon opera-
tion as it presumes a strong segmentation within the
meta model, which can be found in the context of
enterprise architecture modeling language (Lankhorst
et al., 2009). In contrast, removing POTs or partic-
ular PPTs is more relevant for several reasons (zur
Muehlen and Recker, 2008). First, it is an appro-
priate means for improving model understandability
by reducing the occasionally vast set of graphical ele-
ments. Second, it might be promising to reduce some
relations between model elements in order to enhance
model readability. Removing a POT requires the
deletion of PPTs, which originally has implemented
graphical references to these POTs. Thus, all ref-
erences to these POTs have to be identified and re-
moved.
Consequences. Similar to abstract syntax, removing
concrete syntax requires various follow-up actions on
model level. Removing a VT is mostly unproblem-
atic as it just works as an abstraction filter that is than
missing. We propose to assign all PTs of the VT
to the next existing VT in the E3 hierarchy. If the
VT is located on the topmost layer, containing PTs
are directly assigned to the respective MT. The same

A�Generic�Framework�for�Modifying�and�Extending�Enterprise�Modeling�Languages

283



procedure should be applied to PTs and containing
POTs. Removing POTs is manifested by both erasing
all graphics of that POT and erasing all affected PPTs
(e.g., removing all ingoing and outgoing edges). If
PPTs are removed, all affected graphics have to be
updated and reloaded in the new presentation style.
Finally, it has to be stated, that all these graphical al-
terations cause a revision of model positions due to
particular re-arrangements (Becker et al., 2007; Ess-
wein and Weller, 2007).

3.1.7 Specify Concrete Syntax

Specifying VTs addresses the case of limiting the
number of containing PTs in order to focus on spe-
cific diagrams without removing particular PTs. For
example, this could be useful in order the empha-
size, that the structural view on UML is limited to
class and package diagrams. Specifying PTs stands
for the limitation of containing POTs in order to fo-
cus particular elements. Next to these more uncom-
mon operations, specification of POTs is often used
in order to adapt given graphics to specific user en-
vironments. A simple example for that is the usage
of emphasizing colors or icons that are typical for a
specific application, domain or context. In short, typ-
ical monochrome rectangles and circles are adapted
visually in order to bridge the cognitive gap between
a model and its readers.

Document
(Patient File)Therapy Task C

Support Task

Diagnosis Task

Figure 7: Graphical specifications of Activities, Artifacts
and Gateways within BPMN (Braun et al., 2014).

Consequences. Generally, specifications of the con-
crete syntax can be automatically adapted to its in-
stances (e.g., by updating graphics and diagrams).
However, it is often necessary to reposition both mod-
els and diagrams due to changing element sizes and
dimensions.

3.1.8 Redefine Concrete Syntax

Redefining the concrete syntax is understood as re-
naming a view or presentation within a meta model in
order to increase user consciousness of their meaning.
There are no direct implications on model level.

3.1.9 Add Semantics

Additional semantics is understood as providing more
contextual information (and thus mostly restrictions)
regarding the meaning of particular concepts and con-
structs by explicating further information in a natural
language. Hence, the relation of particular concepts to
real-world entities or concepts is sharpened and speci-
fied. We therefore divide into explicit and implicit ad-
dition of semantics. The first one addresses the stated
extension of textual element descriptions. The second
one refers to additional semantics coming from syn-
tactical changes.
Consequences. As the semantics of a conceptual
modeling language cannot be formalized, it is not
possible to automate any semantical modification on
model level. Rather, it has to be proven, whether a
model is still consistent in the light of the changed
semantics. If not, parts of the model have to be re-
arranged (Esswein and Weller, 2007).

3.1.10 Remove Semantics

Removing semantics is understood as increasing the
degree of freedom regarding to a particular meta
model element. This could be seen as simplification
of a language in order to provide more interpretations
and applications. On the one side, such reduction
could be helpful for widening the scope of a language
or its concepts. On the other side, it provokes the
risk of language softening and defacement (see Sec-
tion 3.2).
Consequences. There is no need for further follow-
up operations as the models are implicitly valid.

3.1.11 Specify Semantics

Specifying semantics covers situations where inten-
tionally under-specified semantics of meta model ele-
ments are refined and described in detail by providing
more specific contextual information. Hence, the way
of model interoperation is usually restricted. This is
a simple way of adapting a modeling language for a
specific domain without changing the syntax at all.
For instance, the Lane concept of BPMN is intention-
ally under-specified and needs to be adapted for a par-
ticular model context (OMG, 2011a, p. 308).
Consequences. Each model element, which is instan-
tiated from a meta model element with specified se-
mantics, needs to be checked whether it is still in the
tighter scope of meaning or not. If not, it is necessary
to update either the title of the element or the model
arrangement.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

284



3.1.12 Redefine Semantics

The redefinition of parts of a modeling language
should not be acceptable as it would lead to an imme-
diate defacement of the semantical core of a model-
ing language. As a modeling language dialect should
always enable the identification of the original mod-
eling language, we do not recommend semantical re-
definitions. It has to be emphasized, that semantical
redefinitions can also occur by enormous adding and
removing operations (see above). Thus, it is neces-
sary, to provide strong reasons and evidences for each
of these operations in order to avoid excessive alien-
ation from the original language.

3.2 Modeling Language Defacement

As stated at several passages, iterative or even exces-
sive modifications of a language meta model could
lead to language defacement or language alienation.
It stands for a remarkable estrangement of the origi-
nal intention of a language and is caused by the pos-
sibility of both removing elements and changing its
semantics. We therefore distinguish three categories
of alienation:
Concept Estrangement. Basically, each alteration of
a language element leads to some kind of estrange-
ment. However, we argue that added relations and in-
heritances between existing OTs are especially cruical
as they contradict the original structure and meaning
of a modeling language. We therefore argue, that ad-
ditional inheritances and references between original
OTs should be avoided.
Language Reduction. As stated, meta models can be
pruned or sliced by respective techniques. However,
especially a strong reduction of abstract syntax de-
creases the intended expressiveness and consistency
of the entire language. In order to avoid destruction
of the language core (in the sense of the most impor-
tant and relevant OTs and its relations), it seems to be
promising the assess the indispensability of an OT for
a language and forbid its removal. Alternatively, is
might be appropriate to relax strict constraints within
a meta model (e.g., changing mandatory to optional
relations) and avoid element removing in general.
Semantics Redefinition. As already stated, explicit
semantical changes or redefinitions are crucial if they
affect large parts of a language and lead to a decou-
pling of syntactical elements and their interpretation.
We therefore recommend, that only semantical speci-
fications and additional semantics should be applied.
Removing or overwriting is not recommended.

4 CONCLUSION

This research-in-progress article propose an inte-
grated framework for meta model modifications of
enterprise modeling languages in order to support sys-
tematic ad hoc changes. We therefore adapted the E3
meta framework and provide add, remove and change
operations for each segment. As the framework is
generically applicable to any meta model, it can be
used for conducting meta model alterations of model-
ing languages from different meta model languages.
We explicitly focused on the meta model level as most
of the adaptions are conducted on that level due to ar-
chitectural reasons within the most languages. This
article also outlines limitations and risks of excessive
meta model interventions. Of course, there are several
aspects for further research:

In terms of better methodical support, an algo-
rithm for (partly automated) adaption of models af-
ter meta model modifications should be designed. As
there are several approaches for single purposes (e.g.,
meta model pruning), it seems to be necessary to inte-
grate them to an entire method according to our pro-
posed framework. It is than possible to extend each
meta model based language systematically. Techni-
cally, this method should be designed generically but
needs to be validated with MOF based languages as
MOF is the de-facto standard for meta meta model-
ing. Further, it is necessary to provide suitable mod-
ification patterns for specific modification purposes.
Finally, research on modeling language dialects needs
to be intensified in general. For instance, it is conceiv-
able to highlight those elements of a meta model that
should not be changed in order to keep a stable lan-
guage core a avoid language defacement.

ACKNOWLEDGEMENT

The presented research results are partial outcome
of the research project ”SFB Transregio 96” that is
funded by the German Research Foundation (DFG).
The authors is grateful for the funding and its related
research opportunities.

REFERENCES

Atkinson, C., Gerbig, R., and Fritzsche, M. (2013). Model-
ing language extension in the enterprise systems do-
main. In 17th IEEE International Enterprise Dis-
tributed Object Computing Conference, pages 49–58.

Bae, J. H., Lee, K., and Chae, H. S. (2008). Modulariza-
tion of the uml metamodel using model slicing. In In-
formation Technology: New Generations, 2008. ITNG

A�Generic�Framework�for�Modifying�and�Extending�Enterprise�Modeling�Languages

285



2008. Fifth International Conference on, pages 1253–
1254. IEEE.

Becker, J., Delfmann, P., and Knackstedt, R. (2007). Adap-
tive reference modeling: integrating configurative and
generic adaptation techniques for information models.
In Reference Modeling, pages 27–58. Springer.

Bettin, J. and Clark, T. (2010). Advanced modelling made
simple with the gmodel metalanguage. In Proceedings
of the First International Workshop on Model-Driven
Interoperability, pages 79–88. ACM.

Braun, C. and Winter, R. (2005). A comprehensive enter-
prise architecture metamodel and its implementation
using a metamodeling platform. Proceedings of the
Workshop Enterprise Modelling and Information Sys-
tems Architectures, pages 24–25.

Braun, R. (2015a). Behind the scenes of the bpmn exten-
sion mechanism - principles, problems and options for
improvement. In Proceedings of the 3rd International
Conference on Model-Driven Engineering and Soft-
ware Development.

Braun, R. (2015b). Towards the state of the art of extending
enterprise modeling languages. In Proceedings of the
3rd International Conference on Model-Driven Engi-
neering and Software Development.

Braun, R. and Esswein, W. (2014). Classification of
domain-specific bpmn extensions. Lecture Notes of
Business Information Processing, 147:42–57.

Braun, R., Schlieter, H., Burwitz, M., and Esswein,
W. (2014). Bpmn4cp: Design and implementa-
tion of a bpmn extension for clinical pathways. In
IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pages 9–16. IEEE.

Esswein, W. and Weller, J. (2007). Method modifications in
a configuration management environment. Proceed-
ings of the Fifteenth European Conference on Infor-
mation Systems, pages 2002–2013.

Fondement, F., Muller, P.-A., Thiry, L., Wittmann, B., and
Forestier, G. (2013). Big metamodels are evil. In
Model-Driven Engineering Languages and Systems,
volume 8107 of Lecture Notes in Computer Science,
pages 138–153. Springer Berlin Heidelberg.

Frank, U. (1999). Conceptual modelling as the core of the
information systems discipline-perspectives and epis-
temological challenges. In Proceedings of the Fifth
Americas Conference on Information Systems (AM-
CIS 1999), pages 695–697.

Frank, U. (2002). Multi-perspective enterprise model-
ing (memo) conceptual framework and modeling lan-
guages. In Proceedings of the 35th Annual Hawaii
International Conference on System Sciences, pages
1258–1267.

Greiffenberg, S. (2004). Methodenentwicklung in
Wirtschaft und Verwaltung. Kovač.

Häggmark, M. and Ågerfalk, P. J. (2006). Why software
engineers do not keep to the principle of separating
business logic from display: A method rationale anal-
ysis. In Advanced Information Systems Engineering,
pages 399–413. Springer.

Lankhorst, M. M., Proper, H. A., and Jonkers, H. (2009).
The architecture of the archimate language. In En-

terprise, Business-Process and Information Systems
Modeling, pages 367–380. Springer.

OMG (2011a). Business Process Model and Notation
(BPMN) - Version 2.0. Object Management Group
(OMG).

OMG (2011b). Unified Modeling Language, Infrastructure,
Version 2.4.1. OMG.

OMG (2014). Meta Object Facility (MOF) Core Specifica-
tion, Version 2.4.2.

Pardillo, J. (2010). A systematic review on the definition of
uml profiles. In Model Driven Engineering Languages
and Systems, pages 407–422. Springer.

Pfeiffer, D. and Gehlert, A. (2005). A framework for
comparing conceptual models. In Proceedings of the
Workshop on Enterprise Modelling and Information
Systems Architectures (EMISA 2005), pages 108–122.
Citeseer.

Ralyté, J., Rolland, C., and Deneckère, R. (2004). Towards
a meta-tool for change-centric method engineering: A
typology of generic operators. In Advanced Informa-
tion Systems Engineering, pages 202–218. Springer.

Scheer, A.-W. and Nüttgens, M. (2000). ARIS architecture
and reference models for business process manage-
ment. Springer.

Schuette, R. and Rotthowe, T. (1998). The guidelines of
modeling–an approach to enhance the quality in in-
formation models. In Conceptual Modeling–ER’98,
pages 240–254. Springer.

Sen, S., Moha, N., Baudry, B., and Jézéquel, J.-M. (2009).
Meta-model pruning. In Model Driven Engineering
Languages and Systems, pages 32–46. Springer.

Silingas, D. and Butleris, R. (2009). Towards customizing
uml tools for enterprise architecture modeling. Infor-
mation Systems, pages 25–27.

Stark, J. and Esswein, W. (2012). Rules from cognition for
conceptual modelling. In Conceptual Modeling, pages
78–87. Springer.

Strahringer, S. (1996). Metamodellierung als Instru-
ment des Methodenvergleichs: Eine Evaluierung am
Beispiel objektorientierter Analysenmethoden. PhD
thesis, TU Darmstadt.

Stroppi, L. J. R., Chiotti, O., and Villarreal, P. D. (2015).
Defining the resource perspective in the development
of processes-aware information systems. Information
and Software Technology, pages 86–108.

Wand, Y. and Weber, R. (2002). Research commen-
tary: information systems and conceptual modeling—
a research agenda. Information Systems Research,
13(4):363–376.

zur Muehlen, M. and Recker, J. (2008). How much lan-
guage is enough? theoretical and practical use of the
business process modeling notation. In Advanced in-
formation systems engineering, pages 465–479.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

286


