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1 RESEARCH PROBLEM 

An approach to specify the requirements and design 
of a Distributed Software System (DSS), which is 
mostly used in recent years, is describing scenarios 
with visual artefacts, such as, UML Sequence 
Diagrams and ITU-T (ITU-T UNION, 2004) 
Message Sequence Charts (MSC) and High level 
Message Sequence Charts (hMSC) (Krüger, 2000). 
Scenarios describe system’s behavior and define the 
components and their interactions. Each scenario 
determines a partial behavior of the system. Hence, 
the restricted view of the components in each 
scenario and distributed functionality and/or control 
in DSS, may result in inconsistency in the system 
behavior. 

One problem that arise in scenario based 
Distributed Software Systems is emergent behaviors 
or implied scenarios that occur because of restricted 
view of one or more components. Emergent 
behaviors are known as unexpected behaviors that 
components show in their execution time (Uchitel, 
2003; Bhateja et al., 2007). However, this behavior 
was not defined in their designs. This unexpected 
behavior may imply a new scenario to the system, 
and can result in considerable cost and damage (Alur 
et al., 2005). Therefore, emergent behaviors should 
be detected in the early phases of software 
development to prevent damage or cost after 
deployment. The detected emergent behaviors can 
be either accepted or denied by the stakeholders. 
However, they should be detected and discussed, to 
be added as new designs, or to be specified as 
negative scenarios that should be avoided (Uchitel et 
al., 2002). 

In our research, we try to devise an automatic 
methodology to detect the emergent behaviors 
(implied scenarios) from the designs of the system. 
We also mean to help the designers for the exact 
point of the problem in the system and the possible 
solutions to remove the detected emergent 
behaviors.  

2 OUTLINE OF OBJECTIVES 

Many approaches in the literature are defined, for 
the detection of emergent behaviors in early phases, 
to save cost of fixing them after deployment. Some 
of the approaches use formal methods and Finite 
State Machine methodologies to construct the 
behavior modeling of the components and verify 
them against some properties. 

Some of the issues with many methodologies 
under this category are performance, their cost, the 
amount of time for defining the constraints and 
rules, besides expertise and knowledge required for 
the applications and language notations or 
techniques (Holzmann and Smith, 2002; Iglesias, 
2009; Uchitel, 2009; Briand, 2010).  Furthermore, in 
the requirement model checking of scenarios, these 
approaches cannot identify the exact location of the 
scenario specification causing errors (Song et al., 
2011). 

Some of the problems we have found during our 
study are:  

P1: The process of constructing behavioral models 
is complex and hardly scalable. Therefore, it needs 
special algorithms and tools to model components’ 
behavior besides the emergent behavior detection. 
The process of behavioral modeling is time 
consuming and complex (Mousavi, 2009). 

P2: The existing methods using behavior modeling 
are message dependent. This requires a great time 
and effort to verify the specifications if system 
requirements change, e.g. adding a new component 
or modifying interactions between the existing 
components. In this case, the whole process should 
be done from the scratch. Besides, the message 
dependency in this level requires domain expertise 
to annotate the model or specify proper 
specifications (Chaki et al., 2005) 

P3: While system requirements especially in 
scenario based systems show the interaction of all 
types of components of the system, they can’t show 
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this interaction among all instances for each type. 
Therefore, emergent behavior can still exist between 
some components of the same type (e.g. all sellers in 
an online auction system are of the Seller type); but 
existing research cannot handle this.   

P4: Differentiating between send and receive 
messages is not considered in many researches 
(Song et al., 2011), or needs identifying specific 
definitions to recognize between send and receive 
messages between the components. While in real 
world, send messages are not received at the 
moment they are sent. This makes a flaw between 
detecting emergent behaviors in requirement phase 
and what really happens in system execution. 

Specifically, we have the following research 
objectives in our research: 

O1: Classifying emergent behavior types in DSS. 

O2: Devising a message content independent 
technique for detection of a subset of classified 
emergent behaviors of G1 in DSS addressing the P1-
P4 problems. 

O3: Implementing a tool that can find emergent 
behaviors in DSS and providing solution to the 
research questions.  

3 STATE OF THE ART 

There is a lot of research that transform the MSCs or 
SDs to various versions of state machines for the 
detection of implied scenarios. Some research 
present theorems on the complexity and decidability 
of implied scenario detection in different 
specifications, and in various communication 
channels and styles (Alur et al., 2005; Bhateja et al., 
2007). Some other, provide tools to detect and 
animate the labelled transition systems for implied 
scenarios (Letier et al., 2005). (Chakraborty, et al., 
2010) mentions that some of these works are not 
amendable or do not show correctness. A common 
issue that exists in some methodologies is requiring 
human input. For example in (Mousavi, 2009) the 
domain expert should fill out some tables to define 
the semantic causalities among various messages. 
We try to solve this issue by using message labels 
instead of message contents, and not using semantic 
causality. Based on our knowledge, the only 
different method is generating and comparing two 
graphs for specification and implementation, which 
shows the points that an implied scenario can occur, 
without specifying clues for the designers (Song et 
al., 2011).  

4 METHODOLOGY 

In our approach, the components’ communications 
are modeled into interaction matrices, which is 
inspired by social network analysis (SNA) 
(Aggarwal, 2011), in which, the communications 
among individuals are modeled and mined. In SNA, 
the identities of the communicating individuals are 
important (may be confidential and hidden in some 
cases). Likewise, in our model, we try to keep the 
processes’ labels (identities) in the interactions, 
rather than just keeping the processes’ states. A 
direct advantage of this modeling is saving all the 
information about the communication of 
components. This information, which is preserved 
throughout the extracted vectors, is used as a clue 
for the designer to examine the consequences of a 
design decision and fix the detected emergent 
behaviors. Another advantage of this modeling is 
detecting warning points in processes’ interactions, 
in terms of, giving the information about the sender 
or receiver of a message, or hiding this type of 
information. The warning points can help the 
designers figure out the possible problems that are 
effects of a design decision, and provide clues to the 
designers on how to fix various issues. 

This modeling is one step toward the 
implementation of design decisions that guides the 
designers to include necessary information in the 
system designs. The other benefit of our modeling is 
visualization of components’ interactions and their 
state diagrams – by preserving information about 
their interactions – that provides visual support for 
the designers. The warning points and possible 
problems can be illustrated in various diagrams, 
which supply the information about the exact state, 
MSC, and cause of the emergent behavior in the 
system. 

To overcome the problems mentioned in 
previous sections, we have two main techniques in 
our proposed methodology. First, we approach the 
problem by identifying the components that will not 
show an implied scenario. These components can be 
omitted from further component level analyses. This 
will help scalability of the component level implied 
scenario detection (i.e. analyzing the behavior of 
each component, without considering the other 
components' behaviors in the system) (Fard and Far, 
2013). Second, we have classified the implied 
scenarios in various types. Until now, six main 
categories are specified, based on the literature, and 
our studies. To the best of our knowledge, this 
classification is a contribution of our work. The 
classification of common types of emergent 
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behaviors can lead to better study the detection, 
reasons behind each problem, and developing 
solutions for each type of emergent behavior. The 
six types that we have classified are: 

TYPE TP1: Process p may have an implied 
scenario when it has some shared states in two or 
more MSCs and it sends one or more messages to 
different processes in these MSCs. The send action 
of process p can be in or after its shared states. 

TYPE TP2: This type is similar to TP1. In this type, 
the send actions of process p are a response to its 
previous interactions with various processes, where 
these interactions are exactly before or in shared 
states of process p. This type is important in cases 
that security or privacy issues should be 
implemented. The interaction details of process p 
may be shown in the designs, but should be hidden 
in the implementations. Therefore, the design and 
implementation are not equal. This difference, can 
lead to an implied scenario.  

TYPE TP3: Consider that process p is sending 
messages in MSC M1 and process q is sending 
messages in MSC M2. The combination of 
projections of these MSCs is a new scenario M3 that 
is implied to the system. In M3, which is not in the 
designs, both processes p and q are sending 
messages.  

TYPE TP4: This class of implied scenario 
originates from the asynchronous concatenation of 
MSCs; a case that the processes perform their tasks 
independently. In other words, a process may 
proceed to the next MSC, while other processes are 
still involved in the previous MSCs. Therefore, there 
is no guarantee that all events in MSC M2 are 
performed after all events in MSC M1, where M2 is 
designed to execute after M1 in hMSC. We have 
specified various subcategories of this type of 
implied scenario and the situations that may result in 
having TP4. 

TYPE TP5: A sub category of TP4 is known as 
non-local or branching choice. In this case, different 
processes can follow different choices according to 
the hMSC. However, the result is that some 
processes follow a branch and the rest follow 
another MSC. Consequently, the result is not in 
accordance with any of the branching choices in the 
hMSC. We have devised this type as a separate class 
of implied scenarios because of the importance of 
investigating the interactions of processes in 
branching choices. We have found that, not all of the 
processes can follow various branches in a 
branching choice in hMSC. The processes that may 
behave differently are the ones that start an 

interaction in those MSCs and do not depend on 
receiving some messages from other processes to 
continue their actions. We call these active 
processes. 

TYPE TP6: The local visual order of process p is 
not always preserved in the execution time. 
Therefore, a change in the order of events on a 
process life line can lead to TP6. A subcategory of 
this type is known as race conditions. In race 
conditions, two or more processes compete in 
reaching a resource (sending a message to one 
process in our case). 

For each type, we specify the situations that can lead 
to an implied scenario. Based on the required 
information for the occurrence of each type, 
different vectors are defined and extracted from the 
models for the detection algorithms. 

5 EXPECTED OUTCOME 

The classification of common types of emergent 
behaviors is based on the reasons and various 
conditions that can lead to each case. Therefore, the 
classification will help devising the detection 
algorithms, specifically to each category, which can 
also lead to suggest solutions on how to omit the 
problem or change the designs to fix the detected 
emergent behavior or implied scenario.  

In this section, we focus on one of the emergent 
behavior types (TP4) that can occur because of 
asynchronous concatenation of MSCs. The 
asynchronous concatenation of MSCs is interpreted 
as concatenation of processes’ actions 
independently. In other words, in an hMSC, one 
process can proceed to the next MSC, while another 
process is still involved in the previous MSC. The 
asynchronous concatenation of MSCs can cause two 
main problems that should be detected, in order to 
prevent emergent behaviors. These two problems, 
which we refer to as issues I1 and I2, are 
investigated here. In general, for this type, the high 
level structure ࣡௣ of each process is identified. This 
structure is compared with the structure of hMSC. 
The ࣡௣ of each active process, should have the same 
loops, initial and final MSCs as the hMSC. If the 
initial MSC of ࣡௣ for an active process is not the 
same as initial MSC of hMSC, there is a chance to 
emerge an implied scenario. The reason is that, the 
active process can start to perform its actions 
without depending on the other processes. Thus, this 
process may start its tasks in its own initial MSC, 
while the other processes are not performing the 
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same MSC, resulting in a new scenario that is not in 
the hMSC of the system.  

5.1 Definitions  

The basic definitions required for our modeling are 
described in this section.  

5.1.1 Message Sequence Charts (MSC) 

Let ܲ ൌ ሼ	݌, ,ݍ ,ݎ … ሽ be the finite set of processes 
(components, agents) of the system, which are 
interacting with each other. We define ∑௣ as the set 
of communications that process ݌ takes part in.  

∑௣ ൌ 	 ሼ݌! ,ሺ݉ሻݍ ?݌ ,݌|ሺ݉ሻݍ ݍ ∈ ܲ	,݉ ∈  ሽܯ

where ܯ is the finite set of messages on the system. 
The ݌!  ݉ sends message ݌ ሺ݉ሻ defines that processݍ
to process ݍ, and ݌?  ݌ ሺ݉ሻ defines that processݍ
receives message ݉ from process ݍ. We define 
∑ ൌ	∪௣∈௉ ∑௣. 

Each MSC ࣧ shows a visual form of processes 
ܲ and their interacting messages over the finite set 
of messages ܯ. An MSC ࣧ is a structure ࣧ ൌ
ሺܧ, ,ܯ,ܲ ,ߤ ൑,   :ሻ whereߙ

ܧ ൌ ሼ݁ଵ, ݁ଶ, … ሽ is a finite set of ܵ݁݊݀	and 
ܵ events, where	݁ݒܴ݅݁ܿ݁ ൌ ሼݏଵ, ,ଶݏ … ሽ is the set of 
ܵ݁݊݀	events and ܴ ൌ ሼݎଵ, ,ଶݏݎ … ሽ is the set of 
  .events	݁ݒܴ݅݁ܿ݁

ܲ is a finite set of processes. 

 .is a finite set of messages ܯ

:ߤ ܧ → ∑ is a mapping function of events to 
messages and processes. For ݌ ∈ ݔ ,ܲ ∈ ∑ and 
݁ ∈  :ܧ

௣ܧ ൌ ሼ݁	|	ߤሺ݁ሻ ∈ ∑௣, ሺ݁ሻߤ ൌ  ሽݔ

The set of events on process ݌ ∈ ܲ is: 

௣ܧ ൌ ሼ݁	|	∃݉ ∈ ,ܯ ݁ ∈ ܵ, ሺ݁ሻߤ ൌ !݌ ݁	ݎ݋	ሺ݉ሻݍ
∈ ܴ, ሺ݁ሻߤ ൌ ?݌  ሺ݉ሻሽݍ

And 

ܧ ൌ	∪௣∈௉  ௣ܧ

൑ is the set of total orders on ܧ and ߤ.  

:ߙ ܵ → ܴ maps the send events to receive events. For 
݁, ݁′ ∈ ,݌  and ܧ ݍ ∈ ܲ, we define: 

݁ ൏௣௤ ݁ᇱ ≡ 	∃݉ ∈ ሺ݁ሻߤ	ݐ݄ܽݐ	݄ܿݑݏ	ܯ
ൌ !݌ ሺ݁′ሻߤ	݀݊ܽ	ሺ݉ሻݍ ൌ ?ݍ  ሺ݉ሻ݌

The ݁ ൏௣௤ ݁ᇱ relation explains that the message ݉ 
sent by ݌ at event ݁ is received by ݍ at event ݁′. 

Each MSC ࣧ has a visual structure showing the set 
of processes ܲ interacting to each other via sending 
or receiving messages. The process ݌ ∈ ܲ in an 
MSC is shown by a vertical line representing the life 
line of the process. The interacting messages are 
shown with arrows (edges ܥ) from one process to 
another process. The events ܧ௣ on process ݌ have a 
local visual order represented by ൏௣, which is the 
total order of events on ݌ as displayed in the MSC.  

The visual order of an MSC ࣧ contains the 
local orders of all processes and the set of all edges 
 :on that MSC ܥ

ሺ∪௣∈௉	൏௣ሻ 	∪  ܥ

5.1.2 High Level MSC 

High level MSC (hMSC) is a structure ࣡ ൌ
ሺܲ,ܯ,ग,ܸ, ,݀ܧ ∁, ,଴ܨ  ௙ሻ, where ܲ is the set ofܨ
processes, ܯ is the set of messages, ग represents 
the set of MSCs,  ܸ represents the vertices, ݀ܧ ⊆
ܸ ൈ ܸ is the set of edges, and ∁ is a mapping 
function ∁: ܸ →ग. The ܨ଴ ⊆ ܸ and ܨ௙ ⊆ ܸ are the 
initial and final vertices of ࣡. 

For each process ݌ ∈ ܲ in ࣡, we define a 
structure ࣡௣ ൌ ሺܯ௣,ग௣, ௣ܸ, ,௣݀ܧ ∁௣, ,଴௣ܨ  ,௙௣ሻܨ

where ग௣ ⊆ग is the set of MSCs that ݌ 
participates in, and has at least one action such that 
∑௣ ് ௣ܯ .∅ ⊆  .is the set of messages over ग௣ ܯ

௣ܸ and ݀ܧ௣ ⊆ ௣ܸ ൈ ௣ܸ are the set of vertices and 
edges that are mapped by ∁௣: ௣ܸ → ग௣. The 
଴௣ܨ ⊆ ௣ܸ and ܨ௙௣ ⊆ ௣ܸ are the initial and final 

vertices over ௣ܸ as visually displayed in ࣡. 
Each process ݌ ∈ ܲ follows a visual order on its 

events ܧᇱ௣ ൌ	∪ग೛  ௣ as displayed in ࣡௣. We defineܧ

Ն௣ as global visual order of ݌ over ࣡௣, which is the 
total order of events ܧᇱ௣ in ग௣. 

5.1.3 Example 

Figure 1 illustrates the traffic situation, containing 
two highways HW1 and HW2, and two ramps, 
which are the exit ramps of HW2 and entrances of 
HW1. The flow of vehicles in the highways and 
ramps are depicted with dashed arrows. The inflow 
and outflow of the ramps to HW1 and from HW2 is 
controlled by ramp metering installations (RMI) 
RMI1 and RMI2. When congestion starts to build up 
on HW1 downstream of the second ramp, RMI2 will 
detect this and reduce the inflow. Likewise, when 
the exit ramp of HW2 starts to build up congestion, 
RMI1 and RMI2 will take action to reduce 
congestion. In order to have better performance and 
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take better actions, RMI1 and RMI2 should be aware 
of future congestion. Therefore, the system is 
designed as a Multiagent System (MAS), which can 
be considered as a subset of DSS, in which the 
agents are capable of communicating to each other. 
In this way, they can react in advance and solve the 
congestion timelier. 

 
Figure 1: Multiagent System for congestion control. 

The system has two highway agents for each 
highway and one RMI agent for each ramp. The 
highway agents have the capability of developing an 
image of the current traffic situation, depending on 
their own estimation and incoming messages from 
downstream agents. The arrows in Figure 1 indicate 
the possible communications of each agent. 
Highway agents can send “no problem”, “help-
urgent high”, and “help-urgent low” messages to 
their neighbor agents and RMI agents. The RMI 
agents can take actions “make the traffic light green” 
or “make the traffic light red” based on the messages 
they receive from highway agents.  

Two scenarios of this system are described using 
MSCs. These MSCs demonstrate a situation that the 
first agents of highway one and two, HW1-1 and 
HW2-1 respectively, requests urgent help from 
RMI1. In the first MSC M1, the request of HW2-1 is 
received sooner. Therefore, the RMI1 makes the 
traffic light green. This is shown in Figure 2.  

In MSC M2, illustrated in Figure 3, HW1-1 
sends its help request sooner and RMI1 agent makes 
the traffic light red. 

 

Figure 2: MSC M1- Agent in HW2 requests high urgent 
help. 

The hMSC of these two MSCs is shown in Figure 
4. The upside down triangle demonstrates the start 
and the regular triangle exhibits the termination of 
hMSC. 

 

Figure 3: MSC M2- Agent in HW1 requests high urgent 
help. 

 

Figure 4: High level MSC of MAS congestion system. 

5.2 Modeling Processes’ Interactions  

We model the interaction of processes in each ܥܵܯ௜ 
into its corresponding interaction matrix ܯܫ௜. An 
interaction matrix is an square matrix of size 
݊ ൌ |ܲ| equal to the total number of processes in the 
system. Two types of interaction matrices are 
defined that are used for various communication 
channels: Send Interaction Matrix and Receive 
Interaction Matrix.   

We define a send vector ߜ௣ࣧ ൌ ሺܽଵ, ܽଶ, … , ܽ௡ሻ 
for each process ݌ ∈ ܲ in an MSC ࣧ. The elements 
of ߜ௣ࣧ can have one of the following values: 

௜ݍ∃	݂݅	 (1 ∈ ܲ, ௝ݏ∃ ∈ ܵ, ∃݁ ∈ ܵ	ܽ݊݀	∃݉ ∈
ሺ݁ሻߤ		ݐ݄ܽݐ	݄ܿݑݏ	ܯ ൌ !݌ ௜ܽ	݄݊݁ݐ௜ሺ݉ሻݍ ൌ  .௝ݏ

௜ݍ∃	݂݅	(2 ∈ ܲ, ௝ݏ	݁݉݋ݏ	ݎ݋݂ ∈ ܵ, ௞݁	݁݉݋ݏ	ݎ݋݂	݀݊ܽ ∈
௞݉	݁݉݋ݏ	ݎ݋݂	݀݊ܽ	ܵ ∈ ሺ݁௞ሻߤ		ݐ݄ܽݐ	݄ܿݑݏ	ܯ ൌ
!݌ |ሺ݁௞ሻߤ|	݀݊ܽ		௜ሺ݉௞ሻݍ ൐ ௜ܽ	:ݐ݁ݏ	ܽ	ݏ݅	௜ܽ	݄݊݁ݐ	1 ൌ
∪௝  .௝ݏ

௜ݍ	ݎ݋݂	݂݅	 (3 ∈ ܲ, ݏ∄ ∈ ܵ, ∄݁ ∈ ܵ, ܽ݊݀	∄݉ ∈
ሺ݁ሻߤ		ݐ݄ܽݐ	݄ܿݑݏ	ܯ ൌ !݌ ௜ܽ	݄݊݁ݐ௜ሺ݉ሻݍ ൌ ∅. 
 

The send vector ߜ௣ெ consists of ݊ element where 
݊ ൌ |ܲ|. The ߜ௣ࣧ is a set of sets {ܽଵ, ܽଶ, … , ܽ௡ሽ. 
The ܽ௜ is the set of all send events in which process 
௜ݍ sends messages to another process ݌ ∈ ܲ in an 

HW2-1 RMI1
Help-Urgent High

M1- Agent HW2-1 requests high urgent help 

Green Light

HW1-1

Help-Urgent High

HW2-1 RMI1

Help-Urgent High

M2- Agent HW1-1 requests high urgent help 

Red Light

HW1-1

Help-Urgent High

M 1

M 2
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MSC ࣧ. The three cases above, represent that ܽ௜ 
can have exactly one member (case 1), more than 
one member (case 2), or be an empty set (case 3). 
௣ߜ ൌ∪ࣧ  .௣ࣧߜ

A Send Interaction Matrix ܵܯܫ over ܲ is a 
matrix that represents all communications in an 
MSC ࣧ that are of type “Sending”. The entries of 
,ଵ݉݅ݏare ሼ ܯܫܵ …,ଶ݉݅ݏ ሽ where ݉݅ݏ௭ ∈ ܵ and ݓ݋ݎ௣ 
represents the ݌௧௛ row in ܵܯܫ and ݓ݋ݎ௣ ൌ  .௣ࣧߜ

We define a receive vector ߛ௣ࣧ ൌ ሺܾଵ, ܾଶ, … , ܾ௡ሻ 
for each process ݌ ∈ ܲ in an MSC ࣧ. The elements 
of ߛ௣ࣧ can have one of the following values: 

௜ݍ∃	݂݅	 (1 ∈ ܲ, ௝ݎ∃ ∈ ܴ, ∃݁ ∈ ܴ	ܽ݊݀	∃݉ ∈
ሺ݁ሻߤ		ݐ݄ܽݐ	݄ܿݑݏ	ܯ ൌ ?݌ ௜ܾ	݄݊݁ݐ௜ሺ݉ሻݍ ൌ  .௝ݎ

2) if ∃q_i∈P,for some r_j∈R,and for some e_k∈R 
and for some m_k∈M such that  μ(e_k )=p?q_i 
(m_k ) and |μ(e_k )|>1 then b_i  is a set: 
b_i=∪_j r_j 

௜ݍ	ݎ݋݂	݂݅	 (3 ∈ ܲ, ݎ∄ ∈ ܴ, ∄݁ ∈ ܴ, ܽ݊݀	∄݉ ∈
ሺ݁ሻߤ		ݐ݄ܽݐ	݄ܿݑݏ	ܯ ൌ ?݌ ௜ܾ	݄݊݁ݐ௜ሺ݉ሻݍ ൌ ∅. 

The receive vector ߛ௣ࣧ consists of ݊ elements 
where ݊ ൌ |ܲ|. The ߛ௣ࣧ is a set of sets 
{ܾଵ, ܾଶ, … , ܾ௡ሽ. The ܾ௜ is the set of all receive events 
in which process ݌ receives messages from another 
process ݍ௜ ∈ ܲ in an MSC ࣧ. The three cases 
above, represent that ܾ௜ can have exactly one 
member (case 1), more than one member (case 2), or 
be an empty set (case 3). ߛ௣ ൌ∪ࣧ  .௣ࣧߛ

A Receive Interaction Matrix ܴܯܫ over ܲ is a 
matrix that represents all communications in an 
MSC ࣧ that are of type “Receiving”. The entries of 
,ଵ݉݅ݎare ሼ ܯܫܴ …,ଶ݉݅ݎ ሽ	݁ݎ݄݁ݓ	݉݅ݎ௭ ∈ ܴ and 
௣ݓ݋ݎ and ܯܫܴ ௧௛ row in݌ ௣ represents theݓ݋ݎ ൌ
௜ܯܫܴ ௣ࣧ. In FIFO communications, we haveߛ ൌ
ሺܵܯܫ௜ሻ் for their corresponding MSC ௜ࣧ, i.e. the 
two matrices ܵܯܫ௜ and ܴܯܫ௜ are transpose of each 
other. However, in other communication channels, 
 ,௜ for their corresponding MSC ௜ࣧܯܫܴ ௜ andܯܫܵ
might be different based on the definitions of that 
channel, and ܴܯܫ௜ ് ሺܵܯܫ௜ሻ். 

We define a state vector ߚ௣ࣧ ൌ ሺ∪
൫ߜ௣ࣧ, ௣ࣧ൯,൏௣ሻߛ ൌ ሺ߬ଵ, ߬ଶ, … , ߬௭ሻ for each process 
݌ ∈ ܲ of an MSC ࣧ where ݖ ൌ  ௣|. The stateܧ|
vector ߚ௣ࣧ is the total order set of ܧ௣ in the MSC 
ࣧ with respect to its local visual order ൏௣: 

߬௜ ൌ ݁௜ ∈ ,	௣ܧ ∃݉ ∈ ,ܯ ݁		ݐ݄ܽݐ	݄ܿݑݏ ∈ ܵ, ሺ݁ሻߤ
ൌ !݌  ሺ݉ሻݍ

݁	ݎ݋	 ∈ ܴ, ሺ݁ሻߤ ൌ ?݌  ሺ݉ሻݍ

For process ݌ we define ߚ௣ ൌ∪ࣧ  ௣ࣧ with respectߚ

to its global visual order Ն௣ over ࣡௣.  
The state transition vector 

߮௣ࣧ ൌ ሺߪଵ, ,ଶߪ … , ݌ ௫ሻ for each processߪ ∈ ܲ of an 
MSC ࣧ where ݔ ൌ  ௣|, represents the senders ofܧ|
messages that cause a transition in states of process 
 in the MSC ࣧ. Each action on the life time of ݌
process ݌ in MSC ࣧ is either ݌! ?݌ or	ሺ݉ሻݍ  ሺ݉ሻݍ
for ݉ ∈ ݉ For .ܯ ∈ ݁∀ and	ܯ ∈  :௣ܧ

௜ߪ ൌ ሺ݁ሻߤ	݂݅	݌ ൌ !݌ ௜ߪ	ݎ݋	ሺ݉ሻݍ ൌ ሺ݁ሻߤ	݂݅	ݍ
ൌ ?݌  	ሺ݉ሻݍ

We define ߮௣ ൌ∪ࣧ ߮௣ࣧ as the total set of state 
transitions for process ݌ ∈ ܲ over the set of 
 ग in ࣡௣ with respect to its global visual	ݏܥܵܯ
order Ն௣.  

The basic state diagram ܦ௣ࣧ ൌ ሺ ௣ܰࣧ, ੯௣ࣧሻ is a 
directed graph that represents the visual structure of 
events ܧ௣ for each process ݌ ∈ ܲ of an MSC ࣧ, 
where	 ௣ܰࣧ ൌ ሼሺݐݏ, ݐݏ|ሻ݀݊ݏ ∈ ݀݊ݏ	݀݊ܽ	௣ࣧߚ ∈
߮௣ࣧሽ is the set of nodes and 
੯௣ࣧ ൌ ሼሺݎݏ, ,ݎݏ|ሻ݉,݃ݐ ݃ݐ ∈ ௣ܰࣧ	ܽ݊݀	݉ ∈  ሽ isܯ
the set of edges, where 
∃݁ ∈ ,௣ܧ ௜ߪ ∈ ߮௣ࣧ	݄ܿݑݏ	ݐ݄ܽݐ	ߤሺ݁ሻ ൌ
!݌ ሺ݁ሻߤ		ݎ݋ሺ݉ሻݍ ൌ ?݌  .ሺ݉ሻݍ

The state diagram  ܦ௣ ൌ ሺ ௣ܰ, ੯௣ሻ represents the 
total set of states of process ݌ ∈ ܲ over the set of  
MSCs ग. ܦ௣ ൌ	∪ ௣ࣧ, where ௣ܰܦ ൌ	∪ ௣ܰࣧ and 
੯௣ ൌ	∪ ੯௣ࣧ.  

We define a minimum state diagram ܦᇱ
௣ ൌ

ሺܰᇱ
௣, ੯ᇱ௣ሻ for process ݌, where ܰᇱ

௣ ⊆ ௣ܰ and 
੯ᇱ௣ ⊆ ੯௣. For ݊ᇱ ൌ ሺݐݏ, ሻ, ݊ᇱ݀݊ݏ ∈ ܰᇱ

௣,	ݐݏ ∈  ,௣ߚ
݀݊ݏ ∈ ߮௣ , ݍ ∈ ܲ, ݊ଵ, ݊ଶ ∈ ௣ܰ, and ݁ ∈  :ᇱ௣ܧ

ଵݐݏ	݂݅ ൌ ଵ݀݊ݏ	݀݊ܽ	ଶݐݏ ൌ ଵ݊	݄݊݁ݐ	ଶ݀݊ݏ ൌ 	݊ଶ ൌ
݊ᇱ.  

For ݁݀݃ᇱ ൌ ሺݎݏ, ሻ, ݁݀݃ᇱ݉,݃ݐ ∈ ੯ᇱ௣,	ݎݏ, ݃ݐ ∈
௣ܰ, ݎݏ ൌ ݊ଵ ൌ 	݊ଶ ൌ ݊ᇱ, ݉,݉ଵ,݉ଶ ∈  , ܯ

݁݀ ଵ݃, ݁݀݃ଶ ∈ ੯௣, ݁݀ ଵ݃ ൌ ሺݎݏ, ݐ ଵ݃, ݉ଵሻ, and	݁݀݃ଶ ൌ
ሺݎݏ,  :ଶ,݉ଶሻ݃ݐ

1) if ݐ ଵ݃ ൌ ݉ଵ	ܽ݊݀	ଶ݃ݐ ൌ ݉ଶ	݄݊݁ݐ	݁݀ ଵ݃ ൌ
	݁݀݃ଶ ൌ ݁݀݃ᇱ. 

2) if ݐ ଵ݃ ൌ ݉ଵ	ܽ݊݀	ଶ݃ݐ ് ݉ଶ	݄݊݁ݐ	݁݀ ଵ݃ ് ݁݀݃ଶ 
and we define two edged ݁݀݃ᇱଵ ൌ ሺݎݏ, ݐ ଵ݃, ݉ଵሻ 
and ݁݀݃ᇱଶ ൌ ሺݎݏ,  .ଶ,݉ଶሻ݃ݐ

3) if ݐ ଵ݃ ് ݉ଵ	ܽ݊݀	ଶ݃ݐ ൌ ݉ଶ	݄݊݁ݐ	݁݀ ଵ݃ ് ݁݀݃ଶ 
and we define two edged ݁݀݃ᇱଵ ൌ ሺݎݏ, ݐ ଵ݃, ݉ଵሻ 
and ݁݀݃ᇱଶ ൌ ሺݎݏ,  .ଶ,݉ଶሻ݃ݐ

In the minimum state diagram for each process, we 
merge the vertices based on the states and the state 
transition of that state. Therefore, if two vertices in	 
has the same vertex and edge, they are merged in 
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one vertex in ܦᇱ
௣ (case 1). However, if any of the 

states or state transitions (defined in the edges) are 
different, two edges are displayed in the minimum 
state diagram ܦᇱ

௣. This indicates that the senders of 
messages that change a state transition are 
considered in merging the vertices. The latter 
illustrates a branch in ܦᇱ

௣ (case 2 and 3). 
Note that since the events ܧ௣ on process ݌ have a 

local visual order ൏௣, the ൏௣ relation is preserved in 
the send, receive, and state vectors ߜ௣ெ, ߛ௣ெ, and 
 ,௣ߛ ,௣ߜ ,௣ெ in the MSC ࣧ. For the same reasonߚ
and ߚ௣ follow the global visual order Ն௣ in its high 
level structure ࣡௣. 

5.3 Emergent Behaviors of 
Asynchronous Concatenation 

Emergent behaviors, also known as implied 
scenarios, are referred to as unexpected behaviors of 
processes (agents) during their execution, which 
were not seen in their design. The word emergent 
behavior is mostly used for the unexpected behavior 
of one process without considering other processes 
in the system. Implied scenarios are used for a 
situation that an unexpected behavior occurs when 
considering all processes in the system. In this case, 
a new scenario is implied, and it is considered as 
system level emergent behavior. Emergent behaviors 
and implied scenarios both refer to unexpected 
behaviors in the system; the only difference is that 
the unexpected behavior is examined in component 
or system level. Therefore, we may use these terms 
interchangeably in this paper.  

In asynchronous concatenation of MSCs in a 
HMSC, the processes may proceed in next MSCs in 
different times (Muscholl and Peled, 2005). Let 

ଵࣧ, ଶࣧ ∈ 	ग be two MSCs from the set ग that 
contains all MSCs of the system, and ଵࣧ precedes 

ଶࣧ in the HMSC ࣡. Consider processes ݌, ݍ ∈ ܲग 
where ܲग is the finite set of processes (agents) of 
ग; and ݌ and ݍ have some actions in both ଵࣧ and 

ଶࣧ. In asynchronous concatenation of MSCs, 
processes do not wait until all other processes 
accomplish their actions in one MSC. Therefore, 
while process ݌ is still involved in ଵࣧ, process ݍ 
may proceed to perform its actions in ଶࣧ that we 
refer to as issue I1.  

Consider the MAS system in the example. The 
agent HW2-1 in MSC M1 can proceed to M2 and 
send a request of “high urgent help” to agent RMI1; 
while, HW1-1 is still proceeding its actions in M1. 
This can result in a repetition in executing MSC M1. 
Thus, an emergent behavior that is shown in Figure 

5 (a) can happen. The same situation can occur for 
HW1-1 in M2. Consequently, the MSC M2 is 
repeated and emergent behavior of Figure 5 (b) can 
arise.  

The asynchronous concatenation of MSCs may 
result in another issue I2. Let a third process ݎ ∈ ܲग 
that is involved in ଵࣧ, ଶࣧ ∈ 	ग where it has 
interactions with both processes ݌ and ݍ in ଵࣧ and 

ଶࣧ and it receives some messages from both 
processes ݌ and ݍ. 

 

Figure 5: Two emergent behaviors caused by issue I1. 

In this case, there is no control over the receive 
events on process line of ݎ when its senders are 
different. This is referred to as a race condition in 
the literature. The same situation can occur when 
,݌ ,ݍ ݎ ∈ ܲग and process ݎ receives some messages 
from process ݌ and ݍ in MSC ࣧ ∈ 	ग. 

Let add another MSC to the MAS example that 
is depicted in Figure 6. In this MSC, M3, agent 
HW2-1 send a low urgent help request to RMI1. 
Therefore, RMI1 asks HW1-1 for its situation to 
take the best action. Since the urgency of HW1-1 is 
high, RMI1 makes the traffic light red.  

 

Figure 6: MSC M3- Agent in HW2 requests low urgent 
help. 

An implied scenario that can occur is shown in 
Figure 7. The agent HW2-1 can proceed to MSC M1 
and send a high urgent request. Since there is no 
control on the receiving messages of RMI1 that are 
sent by different agents (HW2-1 and HW1-1), RMI1 
may proceed to M1 and make the traffic lights 
green.  

M 1

M 2

M 1

M 2

(a) (b)

HW2-1 RMI1
Help-Urgent Low

M3- Agent HW2-1 requests low urgent help 

Red Light

HW1-1

Ask info

Help-Urgent High
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Figure 7: Implied scenario caused by issue I2. 

5.3.1 Define Detection Rules for Issue I1  

We define active and passive processes that are 
processes that, whether or not, have control to start 
an MSC, respectively. Since an active process sends 
its first message in an MSC, the process does not 
need to wait for an action that changes its state. 
Therefore, an active process is the sender of its first 
action that leads to a state transition for its first state. 
However, this is not held for a passive process. A 
passive process should wait for the sender of its 
action to send it a message and changes its state. 
Therefore, for a passive process, starting an MSC is 
not in its control and depends on other processes. 
The definitions for active and passive processes are: 

Let processes ݌, ݍ ∈ ܲ have some actions in 
an	ܥܵܯ	ࣧ ⊆ग. We define process ݌ as an active 
process in ࣧ if for the first action of ݌ in its local 
visual order ൏௣, the following condition is satisfied 
in ࣧ:  

∃݉ ∈ ,ܯ ݁ ∈ ሺ݁ሻߤ	|ܵ ൌ !݌  ሺ݉ሻݍ

Let processes ݌, ݍ ∈ ܲ have some actions in 
an	ܥܵܯ	ࣧ ⊆ग. We define process ݌ as a passive 
process in ࣧ if for the first action of ݌ in its local 
visual order ൏௣, the following condition is satisfied 
in ࣧ:  

∃݉ ∈ ,ܯ ݁ ∈ ሺ݁ሻߤ	|ܵ ൌ ?݌  ሺ݉ሻݍ
Let ग௣௔ ⊆ग as the set of MSCs in which a 
process ݌ ∈ ܲ is an active process.  

Rule R1: An active process ݌ ∈ ܲ can lead to issue 
I1 in all MSCs ࣧ ⊆ग௣௔ if there is no timing or 
control over the MSCs. The reason is that process ݌ 
has the control of starting an action in a new MSC in 
ग௣௔. 

Rule R2: Let process ݌ ∈ ܲ in hMSC ࣡ ൌ
ሺܲ,ܯ,ग,ܸ, ,݀ܧ ∁, ,଴ܨ  ௙ሻ, that has ࣡௣ structureܨ
࣡௣ ൌ ሺܯ௣,ग௣, ௣ܸ, ,௣݀ܧ ∁௣, ,଴௣ܨ  ௙௣ሻ, be an activeܨ

process. Process ݌ can lead to issue I1 if one of the 
following conditions holds: 

଴௣ܨ (1 ് ଴௣ܨ	݀݊ܽ	଴ܨ ⊆ ग௣௔ 

଴௣ܨ (2 ൌ ௙௣ܨ	݀݊ܽ	଴ܨ ് ݒ∃	݀݊ܽ	௙ܨ ∈

௣ܸ	݄ܿݑݏ	ݐ݄ܽݐ	∁௣ሺݒሻ 	⊆ ग௣௔ 

଴௣ܨ (3 ് ௙௣ܨ	݀݊ܽ	଴ܨ ് ݒ∃	݀݊ܽ	௙ܨ ∈

௣ܸ	݄ܿݑݏ	ݐ݄ܽݐ	∁௣ሺݒሻ 	⊆ ग௣௔ 

When the ࣡௣, the structure of MSCs that an active 
process ݌ ∈ ܲ follows,  is different from the 
structure of hMSC ࣡, which is defined as a global 
view for all processes, it might lead to issue I1. The 
first condition defines a situation in which the initial 
MSC of ࣡௣ is different from the initial MSC in ࣡. 
Therefore, process ݌ can start its high level 
structure, without following the scenarios that the 
whole system performs. The second condition, states 
that the initial MSCs in ࣡௣ and ࣡ are the same. 
However, the termination MSC for ݌ is different. In 
this situation, the active process ݌ starts its initial 
MSC when the other processes start performing their 
scenarios. However, it does not follow the same 
scenarios that other processes are performing in 
other iterations of the hMSC. Because the 
termination nodes (final vertices) are different, ݌ can 
start performing its high level structure ࣡௣ again, 
while the other processes are performing actions in 
the rest of MSCs in ࣡. The third condition, is a more 
general condition in which process ݌ has different 
initial and termination MSCs in ࣡௣ with initial and 
termination MSCs in ࣡, respectively. 

Rule R3: Issue I1  can occur when process ݌ has a 
loop in its ࣡௣ structure, which is an internal loop in 
hMSC ࣡ ൌ ሺܲ,ܯ,ग,ܸ, ,݀ܧ ∁, ,଴ܨ  ࣡ ௙ሻ. The loop inܨ
is an internal loop when it does not include the 
initial and termination vertices ܨ଴ and ܨ௙. Process ݌ 
can be either an active or a passive process.  

When ݌ performs actions in an internal loop, it may 
execute the loop more than other processes. The 
termination MSCs are different in ࣡௣ and ࣡. 
Therefore, ݌ can start performing ࣡௣ again, while 
the other processes are continuing to perform their 
actions in other MSCs in ࣡.   

Rule R4: Consider an active or passive process ݌ 
that has a loop in 
࣡௣ ൌ ሺܯ௣,ग௣, ௣ܸ, ,௣݀ܧ ∁௣, ,଴௣ܨ  ௙௣toܨ ௙௣ሻ fromܨ

 ଴௣. If this loop is an internal loop in hMSCܨ

࣡ ൌ ሺܲ,ܯ,ग,ܸ, ,݀ܧ ∁, ,଴ܨ  can cause ݌ ௙ሻ, processܨ
issue I1.  

The reason is similar to the reason of rule R3. The 
final MSCs in ࣡௣ and ࣡ are different. Therefore, 
process ݌ can start executing its MSCs, while the 

HW2-1 RMI1
Help-Urgent Low

Implied Scenario 3

Green Light

HW1-1

Ask info

Help-Urgent High

Help-Urgent High
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other processes are continuing their actions in other 
MSCs.  

5.3.2 Define Detection Rules for Issue I2 

Suppose that processes ݌, ,ݍ ݎ ∈ ܲ have interactions 
with each other in an MSC ࣧ. If process ݌ has at 
least one receive message from each of the other 
processes ݍ and ݎ, and there is no control over the 
order of receive messages for process ݌ with respect 
to its visual order ൏௣, a race condition can occur. In 
this situation the visual order ൏௣ in MSC ࣧ is not 
preserved.  

Rule R5: Let ߛ௣ࣧ ൌ ሺܾଵ,… , ܾ௥, … , ܾ௤, … , ܾ௡ሻ be the 
receive vector of process ݌ in an MSC ࣧ. The 
elements ܾ௥ and ܾ௤ represent the set of events that ݌ 
receives from processes ݎ and ݍ respectively. Let 
௣ࣧᇱߛ ൌ ሺܾଵ, … , ܾ௤, … , ܾ௥, … , ܾ௡ሻ be the new receive 
vector for process ݌, where the order of ܾ௥ and ܾ௤ 
has changed, compared to ߛ௣ࣧ. We have ߚ௣ࣧ ൌ ሺ∪
൫ߜ௣ࣧ,  and ݌ ௣ࣧ൯,൏௣ሻ as the state vector ofߛ
௣ࣧߚ

ᇱ ൌ ሺ∪ ൫ߜ௣ࣧ,  ௣ࣧᇱ൯,൏௣ሻ as the new state vectorߛ
of process ݌.  

If ߚ௣ࣧ
ᇱ is not in the set of ߚ௣ ൌ∪ࣧ ሺߚ௣ࣧሻ, then 

process ݌ can cause issue I2 because of a change in 
its receive orders: 
݂݅	∃݉,݉ᇱ ∈ ;ܯ 	݁, ݁ᇱ ∈ ;௣ܧ ,ሺ݁ሻߤ ሺ݁ᇱሻߤ

∈ ∑௣	݄ܿݑݏ	ݐ݄ܽݐ	ߤሺ݁ሻ
ൌ ?݌ ሺ݁ᇱሻߤ	݀݊ܽ	ሺ݉ሻݍ
ൌ ?݌ ௣ࣧߚ	൓൫	ܽ݊݀	ሺ݉ᇱሻݎ

ᇱ ⊆  	௣൯ߚ

௣ࣧߚ	݄݊݁ݐ
ᇱ	is	an	emergent	behavior	ܺ	for	݌. 

Rule R5 indicates that a change in the order of 
receiving messages for process ݌ should be in the 
events of process ݌ in other MSCs, or receiving of 
such messages should be controlled, in order to 
prevent an emergent behavior.  

Rule R6: Let ߛ௣ࣧᇱ ൌ ሺܾଵ,… , ܾ௤, … , ܾ௥, … , ܾ௡ሻ be a 
new receive vector for process ݌, where the order of 
ܾ௥ and ܾ௤ has changed, compared to ߛ௣ࣧ and 
∃ࣧᇱ ∈ ग such that ߚ௣ࣧ

ᇱ ⊆ ௣ࣧܦ ௣. Letߚ ൌ
ሺ ௣ܰࣧ, ੯௣ࣧሻ be the associated basic state diagram 
for receive vector ߛ௣ࣧ and state vector ߚ௣ࣧ in ࣧ. 
Consider ܦ௣ࣧ

ᇱ ൌ ሺ ௣ܰࣧ
ᇱ, ੯௣ࣧ

ᇱሻ as the associated 
basic state diagram for receive vector ߛ௣ࣧᇱ and state 
vector ߚ௣ࣧ

ᇱ in ࣧᇱ. We define ݊௤ᇱ, ݊௥ᇱ ∈ ௣ܰࣧ
ᇱ as 

the corresponding nodes in ܦ௣ࣧ
ᇱ, for the states of 

process ݌ that receive messages from process ݍ and 
௣ࣧܦ respectively. If ,ݎ

ᇱ is not in ܦ௣ ൌ	∪  ௣ࣧ, thenܦ
௣ࣧߚ

ᇱ ൌ ሺ∪ ൫ߜ௣ࣧ,  ௣ࣧᇱ൯,൏௣ሻ is an emergentߛ
behavior ܺ. 

Rule R6 defines more restrictive criteria that a 
process can have a behavior that leads to issue I2. 
Other than the new receive vector in the states of 
process ݌, the state transition vectors should be 
considered as well; to check whether or not a 
process can lead to I2 and show an emergent 
behavior.  

A change in the order of states ܾଵ and ܾଶ, 
resulted from communications with processes ݍ and 
 creates a new ,݌ in the receive states of process ,ݎ
receive vector ߛ௣ࣧᇱ. The ߛ௣ࣧᇱ can exist in the state 
vectors of ݌ in another MSC ࣧᇱ. However, the 
communicating processes associated to states ܾଵ and 
ܾଶ in ࣧᇱ, may be different, namely, processes ݕ and 
௣ࣧߚ ௣ࣧ andߚ Therefore, the two state vectors .ݖ

ᇱ, 
are not considered as similar state vectors when 
considering their associated state transitions; 
because their communicating processes for these 
two states (ܾଵ and ܾଶ) are different. In this situation, 
although the state vectors in the two MSCs are the 
same, process ݌ can still show an emergent 
behavior, because of a difference in its state 
transition vectors. 

6 STAGE OF THE RESEARCH 

Until now, the categories of emergent behaviors are 
formalized. For each category, various conditions 
and reasons that can lead to an implied scenario are 
investigated, and some algorithms are devised. The 
first parts of the methodology, including 
transforming the designs into interaction matrices, 
and detecting components with no emergent 
behaviors are implemented. The current research 
trend is focused on testing algorithms on large scale 
systems, using communication of processes in Linux 
clusters as the test bed. 
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