
Context-sensitive Indexes in RDBMS for Performance Optimization
of SQL Queries in Multi-tenant/Multi-application Environments

Arjun K. Sirohi1 and Vidushi Sharma2

1PSR (Performance, Scalability, Reliability) Engineering, Oracle U.S.A. Inc., Bellevue, WA, U.S.A.
2School of Information and Communication Technology, Gautam Buddha University, Greater Noida, India

Keywords: Indexes, Mixed-load Queries, Multi-tenant Queries, Multi-application Queries, SQL Performance
Optimization.

Abstract: With the recent shift towards cloud-based applications and Software as a Service (SaaS) environments,
relational databases support multi-tenant and multi-application workloads that query the same set of data
stored in common tables, using SQL queries. These SQL queries have very different query constructs and
data-access requirements leading to different optimization needs. However, the business-users' expect sub-
second response times in getting the data that they requested. The current RDBMS architectures where
indexes “belong” to a table without any object privileges of their own, and, therefore, must be considered and
used by the optimizer for all SQLs referencing the table(s), pose multiple challenges for the optimizer as well
as application architects and performance tuning experts, especially as the number of such indexes grows. In
this paper, we make the case for “Context-Sensitive Indexes”, whereby applications and tenants could define
their own indexes on the shared, transactional database tables to optimize the execution of their SQL queries,
while at the same time having the optimizer keep such indexes isolated from other applications and
tenants/users for the purposes of query optimization.

1 INTRODUCTION

Today, there is an increasing need for relational
database management systems (RDBMS) to support
mixed-load and multi-tenant queries. Additionally,
the changing landscape of enterprise business
applications, coupled with the easy availability of
cloud services and software-as-a-service paradigm,
many small and medium sized businesses who could
not afford to implement applications like Customer
Relationship management (CRM) in-house, have
now started adopting these applications through cloud
providers as hosted application services. All this is
leading to a situation where the back-end databases
need to support multiple concurrent applications that
send SQL queries against the same schema and data,
albeit with very different query constructs, data
access requirements and optimization goals. The
providers of SaaS and Cloud environments also face
the challenge to support multi-tenancy, wherein the
applications’ schema in the database may be shared
and yet the data stored in those schema tables is
isolated and protected from each other. What is not
changing, though, is the business-users' expectations

of sub-second response times in getting the data that
they requested of the database. Cloud and SaaS
providers are finding themselves implementing
various solutions that can act as a differentiator.

Most commercial enterprise business applications
use a relational database like Oracle at the back end
and all processing of data is managed through SQL
queries. At the lowest grain, the performance of such
SQL queries often dictates the performance and
scalability of the application, among other factors. In
this paper we examine the existing application and
database approach towards use of indexes and their
impacts on the performance of SQL queries. A large
number of performance problems arise from the fact
that most SQL queries are dynamically generated at
run-time by middleware SQL-generation engines
based on an abstract layer of the logical data model,
which results in complex queries. It has been
lamented that the use of indexes in the database to
help performance of SQL queries is as old as
relational databases and yet we find inadequacy and
poor quality of indexes (Leach and Lahdenmaki,
2005). So we feel that it is time to take a fresh look at
the humble indexes in the context of multi-tenant and

259K. Sirohi A. and Sharma V..
Context-sensitive Indexes in RDBMS for Performance Optimization of SQL Queries in Multi-tenant/Multi-application Environments.
DOI: 10.5220/0005350802590270
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 259-270
ISBN: 978-989-758-096-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

multi-application environments to see how indexes
can be better leveraged to improve query
performance.

This paper begins by providing the motivation and
background work done on this topic. Next, we discuss
the contributions of our paper followed by a
discussion of existing architectures and their
limitations as related to the topic of our research. This
includes highlighting the two most important
limitations in existing architectures. Next, we discuss
our proposal of context-sensitive indexes and their
implementation aspects, including maintenance. The
paper then presents results from experiments
conducted to support the proposal. The paper
concludes with ideas for taking action and possible
directions for implementation.

2 MOTIVATION AND
BACKGROUND WORK

Modern business applications have to process
increasing volumes of data stored in transactional
databases. This means that SQL queries have to
process more data but still achieve acceptable query
processing times. This has added increased pressure
on RDBMS providers to come up with new
techniques to handle increased volumes of data on
one hand and to keep query processing times within
acceptable limits, if not improve further, on the other.
Adding to this complexity are the Cloud and SaaS
offerings from independent service and application
providers. To support such application models,
database vendors have tried to make changes and
adjustments to the database architectures. For
example, the offerings and multi-tenant scenarios
from IBM, like separate databases for tenants, shared
database but different schemas or shared database and
shared schema for multiple tenants have been
discussed (Chong, 2012). There are similar offerings
made by Microsoft Corporation (Chong, Carraro and
Wolter, 2006). Oracle’s latest database release 12c
also provides many enhancements to support multi-
tenancy (Oracle, 2014). All such offerings and
architectures are focused around the use and sharing
of database instances, databases, schemas and
applications. Most research has been focused on
optimizing such architectures in order to achieve user
satisfaction in terms of query processing times.

Improving query processing time is an ongoing,

complex research subject and advancements have
been made in recent years by RDBMS vendors in
many different areas of query optimization. One such
area of advancement is the use of various types of
indexes used in query optimization. We find that most
of the existing work done by researchers on indexes
has been mostly on the aspects of internal
implementation of various types of indexing
mechanisms. For example, the issues related to
optimizing of multidimensional index trees for main
memory access were researched and addressed by
using two-dimensional CR-tree index structure that
performs searches much faster than the ordinary R-
tree and at the same time consuming less memory
space (Kihong and Sang, 2001). These researchers
have focused on the physical design structures of
indexes and better algorithms to optimize storage and
access. The impacts of multiple and different types of
applications like OLTP applications and
transactional business intelligence applications
sending a mixed and varied query load to the
database, on the performance and scalability of
queries has not been the focus of much research. The
origins of mixed query workloads like OLTP and
analytics workloads and their characteristics have
been researched and discussed earlier (Powley,
Martin and Bird, 2008). However, much of the
research has been directed at finding ways and means
to somehow shield the transactional business
applications’ queries from the effects of analytical
and business intelligence type of queries. For
example, in one solution, it was proposed to adjust the
memory allocation in order to meet response time
goals for mixed workloads (Brown, Mehta, Carey,
and Livny, 1994). Another solution proposed was an
algorithm for memory allocation and prioritization
based on resource usage, workload characteristics and
performance statistics (Pang, Carey and Livny, 1995).
Other researchers put their focus on creating
benchmark standards that could effectively bench
such mixed-load applications (Krueger, Tinnefeld,
Grund, Zeier, and Plattner, 2010). To the best of our
knowledge, there is no current published research on
query optimization through creation and use of
context-sensitive indexes, whereby
tenants/users/schemas and applications could decide
which indexes should be used as input by the
optimizer to arrive at the best access paths for their
SQL queries instead of the optimizer being burdened
with this task of evaluating all available indexes on a
given table.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

260

3 CONTRIBUTIONS OF THIS
PAPER

In this paper, we present a novel way to optimize
query processing for the shared environments where
a single shared-database, shared-schema approach
provides multi-tenancy or multi-applications
environments or both. In these approaches, multiple
instances of an application and/or multiple different
applications point to the shared database and shared
schema tables that hold the applications’ data. The
tenants are identified by a unique column in every
table that stores the application data, most commonly
named “Tenant_Id”. While this shared approach
provides considerable cost savings in terms of
infrastructure and operational costs, there are
performance and scalability considerations and
concerns arising out of this architecture. Similarly,
even in single-tenant database environments, there
are often multiple applications and modules within
applications with different optimization goals and
SQL query constructs that are a cause for
performance concerns.

In this paper, we propose the creation and
handling of indexes in a manner that can lead to better
optimized query processing, thereby resulting in
better performance and scalability of such multi-
tenant and/or multi-applications environments. We
focus on improving the performance of SQL queries
in a mixed-load and/or multi-tenant enterprise
business application through the creation and use of
context-sensitive indexes, owned by an application
and/or tenant/user, shared with other
applications/tenants/users if needed, and used by the
RDBMS optimizer solely for SQL queries originating
from these owner applications’ modules and actions
and/or tenants/users.

For the purposes of this paper, we refer to the
Oracle database’s implementation of schema and
indexes in order to compare with our proposed
solution since Oracle is the most widely used
commercial database. Also, in this paper, we use the
term “context-sensitive indexes” to describe indexes
that are only visible to and/or owned by specific
applications, schemas and/or tenants and used by the
RDBMS optimizer ONLY to optimize access paths
for queries originated by the specific
tenant/user/schema and/or applications’ modules and
sub-modules termed as Actions. These have the
potential to significantly improve the performance of
the SQL queries in a shared, multi-tenant and/or
multi-application architecture and as a result improve
the performance and scalability of such applications.

A word on the limits of the scope of our research
and this paper’s proposal is in order here. We want to
clarify that we do not delve into the physical
implementation characteristics and optimizations of
table and index structures. We also do not propose
any new type of index structures. What we have
researched and what we propose is a methodology for
the segregation of ownership of the tables that contain
application data from the creation and use of context-
sensitive indexes that support the search and retrieval
of data from such tables by multiple
tenants/users/schemas and/or applications’ Modules
and Actions.

4 EXISTING ARCHITECTURES
AND LIMITATIONS

In this section, we provide a snapshot of the existing
architectures and their limitations as related to the
topic of our research. For example, in Oracle
database, tables and indexes are schema objects that
exist in different namespaces. (Oracle Database SQL
Language Reference 12c, 2014). A query is defined
as an operation that retrieves data from one or more
tables or views. In this reference, a top-level SELECT
statement is called a query. Further, Oracle
documentation defines indexes as structures that
allow fast access path to data and are meant to reduce
disk I/O, thereby improving query performance.
Indexes are independent of the data in the tables and
can be created or dropped without affecting the data.
Similarly, SQL statements are written independent of
the indexes and are not affected by any changes in
indexes. (Oracle® Database Concepts, 2014).

Indexes can be created in one’s own schema well
as in another schema, with appropriate privileges.
One key property of indexes in Oracle database that
affects query optimization is whether the index is
visible or invisible to the optimizer. An invisible
index is maintained by Data Manipulation Language
(DML) operations, but it is not used by the optimizer
during query hard parsing and optimization unless
explicitly asked for.

Similarly, in IBM’s DB2 UDB database, an index
is described as "a set of pointers that are logically
ordered by the values of one or more keys. Indexes
are used to improve performance and ensure
uniqueness" (IBM DB2, 2014). In the Hierarchy of
DB2 UDB authorities and privileges on database
objects like tables and indexes, the only privilege that
can be granted on indexes is "CONTROL", which
grants the privilege to drop the index (Wasserman,

Context-sensitive�Indexes�in�RDBMS�for�Performance�Optimization�of�SQL�Queries�in�Multi-tenant/Multi-application
Environments

261

2012). DB2 UDB documentation further states that
“Although the query optimizer decides whether to use
a relational index to access relational table data, it is
up to you to decide which indexes might improve
performance and to create those indexes” (IBM DB2,
2014).

The optimizer is described as built-in database
software that determines the most efficient way to
execute a SQL statement by considering factors
related to the objects referenced and the conditions
specified in the statement. The Oracle database
optimizer receives the parsed query and generates a
set of potential plans for the SQL statement based on
available access paths and hints. It estimates the cost
of each plan based on statistics in the data dictionary.
Optimizer statistics are created for the purposes of
query optimization and are stored in the data
dictionary. The cost of plans is an estimated value
proportional to the expected resource use needed to
execute the statement with a particular plan. It
compares the costs of plans and chooses the lowest-
cost plan, known as the query plan. As documented,
“To choose an access path, the optimizer first
determines which access paths are available by
examining the conditions in the statement's WHERE
clause and it’s FROM clause. The optimizer then
generates a set of possible execution plans using
available access paths and estimates the cost of each
plan, using the statistics for the index, columns, and
tables accessible to the statement. Finally, the
optimizer chooses the execution plan with the lowest
estimated cost” (Oracle® Database Performance
Tuning Guide, 2014).

In the existing architecture, we note that the
RDBMS optimizer is burdened with all the analysis
and decision-making that goes into finding the most
optimal index access paths for the data being sought
by an SQL query. The popular RDBMS
implementations like Oracle, DB2 UDB and SQL
Server provide limited control to the applications and
developers, by way of SQL constructs, using index
hints or altering session properties that can influence
the optimizer’s access path selection in using specific
indexes built on tables. During its query plan
generation, the optimizer takes into consideration all
indexes created on tables with few exceptions like
cases where in Oracle an index has been made
unusable or invisible. We find that one limitation in
the existing architecture is that during this process,
the optimizer does not consider the already available
contextual metadata in terms of index ownership and
the application’s module/action from which the SQL
originated. The documented reason for this is that
“some schema objects, such as clusters, indexes,

triggers, and database links, do not have associated
object privileges” (Oracle® Database Security Guide,
2014)

This is best illustrated with examples. Let’s say in
Oracle database, a user/schema ‘B’ representing a
specialized application, has read access and index
creation privileges on table ‘T1’ which is owned by
another user/schema ‘A’. Now indexes can be created
on table ‘T1’ and owned by user/schema ‘B’ such as
‘B.T1-IDX1’. Suppose that user/schema ‘A’ has two
other existing indexes on table ‘T1’, namely ‘A.T1-
IDX2’ and ‘A.T1-IDX3’. Now, when a SQL from
user/schema ‘A’ comes to the optimizer that involves
data access from table ‘T1’, the optimizer takes into
consideration all three indexes - ‘A.T1-IDX2’, ‘A.T1-
IDX3’ as well as ‘B.T1-IDX1’. It does not matter that
index ‘B.T-IDX1’ was created by application
designers to only support specific SQLs coming from
user/schema ‘B’ for a specific application’s module
and action. Under this current architecture where
indexes “belong” to a table without any object
privileges of their own, and, therefore, must be
considered and used by the optimizer for all SQLs
referencing the table, we find two performance
related problems as described in the following
sections.

4.1 Higher Hard Parse times

The first problem in the existing architecture where
indexes “belong” to tables and thus all indexes on all
tables referenced in the query must be evaluated by
the optimizer during hard parse, is that this can often
lead to higher hard parse times and locking
contentions, especially when multiple hard parse
requests come in to the database concurrently
accessing the same objects. In most N-Tier modern
business applications, the SQLs are dynamically
generated by middleware SQL-generation engines
based on an abstracted logical data model layer. As a
result of and due to various limitations in the process
of run-time dynamic SQL generation, the number of
tables referenced in SQLs has been getting larger. In
addition, the number of indexes created on each table
has also increased significantly due to the number and
type of applications that need to be supported. For
example, in the latest Oracle Fusion Applications, we
frequently find SQLs referencing 20 to 40 tables, each
with a large number of indexes. The final result is that
the number of indexes for all tables in a SQL that need
to be considered and evaluated by the optimizer has
increased manifold. In addition, the optimizer goes
through more permutations at hard parse time to get
the most optimal execution plan due to many more

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

262

query transformations in newer releases of RDBMSs
like Oracle, DB2 UDB and SQL Server. In cases
where there is a cost tie between different plans, the
optimizer needs to decide which of the competing
indexes to use. For example, Oracle database
optimizer sorts index names alphabetically as the
method of choosing one index over another, when
both have the same cost. This results in increased
query hard parse time.

4.2 Potential for Sub-optimal Plans

The second problem relates to sub-optimal execution
plans chosen by the optimizer for some SQL queries,
in part due to the large number of, and sometimes,
competing indexes. The problem itself emanates from
the combined effects of the complexity and size of the
dynamically generated SQLs, the increased number
of tables referenced in these SQLs, the large number
of indexes created on these tables, the increased
complexity and newer features of the optimizer code
itself. The net result is that the optimizer has to now
evaluate many more potential access paths and
combinations of optimizations to satisfy the data
requested by SQL queries. This results in a higher
probability of the optimizer making some sub-
optimal choices, which can be very detrimental to an
application’s performance and scalability. The
contribution of the large number of indexes to this
problem of sub-optimal plan choices is quite
significant and thus, cannot be ignored. Oracle
documents this problem in Oracle® Database
Performance Tuning Guide under Section 14.1.1
titled ‘Tuning the Logical Structure’ as follows:
“Note that creating an index to tune one statement can
affect the optimizer's choice of execution plans for
other statements. For example, if you create an index
to be used by one statement, then the optimizer can
choose to use that index for other statements in the
application as well. For this reason, re-examine the
application's performance and execution plans, and
rerun the SQL trace facility after you have tuned those
statements that you initially identified for tuning”
(Oracle® Database Performance Tuning Guide,
2014). We note that this is a very limiting factor that
creates additional testing and analysis workload for
application architects and performance tuning experts
when they want to create a new index for a specific
application’s module and/or action as noted in the
documentation above.

We also note that in databases like Oracle, a lot of
useful information about a SQL query is captured for
reporting and performance analysis purposes but is
currently not utilized by the optimizer as additional

inputs into the metadata and statistics on which it
relies to generate efficient query plans. For example,
applications typically pass certain parameters along
with the SQL request to the database including
MODULE and ACTION using the package
DBMS_APPLICATION_INFO.SET_MODULE.

However, this information is not currently utilized
by the optimizer for the purposes of optimizing query
plans, though it is used for certain other functions
including Enterprise Manager’s performance graphs,
Active Session History (ASH) and Automatic
Workload Repository (AWR) reports.

In brief, when run-time, dynamically generated
SQLs from multiple applications’ modules and
actions execute SQL queries against the same tables,
with very different SQL constructs and optimization
goals, we find that this current architecture puts undue
burden on the optimizer to make the access plan
choices that can sometimes result in sub-optimal
performance of such queries and resultant poor
application performance.

We would like to note one additional limitation
with the current architecture. Databases like Oracle
have traditionally provided ‘HINTS’ to be used in
SQLs as a way to influence the optimizer’s decision-
making and choices in the selection of access paths,
including indexes. The hints include ways to specify
that the optimizer should use named indexes as
provided in the hint section of a SQL query. As
documented, “The INDEX hint instructs the
optimizer to use an index scan for the specified table.
You can use the INDEX hint for function-based,
domain, B-tree, bitmap, and bitmap join indexes.”
(Oracle Database Online Documentation, 2014).
While this approach worked for older applications
that used hand-crafted SQLs, the approach has many
serious pitfalls for the run-time, dynamically
generated SQLs that are produced by SQL-generation
engines based on an abstracted logical data model,
that are more the norm in N-tier application
architectures that we see in the industry today.
Adding hints in such dynamically generated SQLs
has been found to be very risky in terms of unintended
consequences for optimizer plan selection and
performance of SQL queries. For example, in one
implementation of Oracle Fusion Applications,
addition of hints in ADF View Objects (VOs) by
some developers and performance tuning experts, to
tune one set of queries, resulted in many other queries
originating from other modules/actions to suddenly
perform extremely poorly. Subsequent performance
analysis of such SQLs showed that the added hints
were the root cause of performance degradation.

Context-sensitive�Indexes�in�RDBMS�for�Performance�Optimization�of�SQL�Queries�in�Multi-tenant/Multi-application
Environments

263

To the best of our knowledge and in our research,
we do not find any current implementation of our
proposed concept of “Context-Sensitive Indexes”.
We describe "Context-Sensitive Indexes" as database
index structures built on tables that are used in a
manner which provides methods for the RDBMS
optimizer to establish the context in terms of
Tenant/User/Schema as well as Applications'
MODULE and ACTION for the optimizer to use such
established context for minimizing the number of
indexes evaluated during hard parse with the aim of
achieving the most optimal access paths and
execution plan possible for the SQL query with
reduced hard parse.

5 CONTEXT-SENSITIVE
INDEXES FOR SQL QUERY
PERFORMANCE

There are many factors that affect the performance of
SQLs. Our focus in this paper is on making the use of
indexes context-sensitive by the optimizer to arrive at
the most optimal execution plan for a given
tenant/user/schema or application’s module/action.
The idea behind our proposal is two-fold. One,
reducing the hard parse time by limiting the number
of indexes that the optimizer needs to evaluate while
arriving at query plans. Two, minimizing the
possibility of the optimizer not choosing the most
appropriate index and thus using an inefficient
execution plan, by providing the optimizer a
restricted list of indexes based on the application
owner/architect’s knowledge of the application and
data model including data shape in tables.

Context for indexes can be defined in terms of
any one or more of the following:
1. Tenant context in case of multi-tenant
applications or Schema/User context in case of
multiple schemas/users accessing data from the same
tables in the database.
2. Application Module context in both cases of
single and multi-application environments.
3. Application Module’s Action context in case of
both single and multi-application module
environments.

For example, the new Fusion Applications from
Oracle comprise of a number of different applications
like CRM (Customer Relationship Management),
HCM (Human Capital Management), CDM
(Customer Data Management), OTBI (Oracle
Transactional Business Applications), and Business
Intelligence Applications (BI Apps) among others.

Within each of the applications, there are various
Modules, each with one or more Actions. As
mentioned earlier, the SQLs are dynamically
generated at run time, by ADF and BI Server. Within
these applications, a number of schema tables are
shared not only within applications’ modules but also
across the applications. Even though the tables are
shared, each application has some unique
requirements that necessitate use of specific indexes
for SQLs originating from those applications’
modules and actions. For example, SQLs for the
Fusion CRM Applications generated for the
transactional application and User Interface (UI) can
be quite different from the SQLs generated by the
Business Intelligence Server (BI Server) for OTBI
and BI Apps Extract, Transform, Load (ETL) queries,
which have entirely different SQL constructs and
optimization goals due to their very nature. Even
within the Fusion CRM applications, modules that
serve the UI use cases are very different from uses
cases like Microsoft Outlook integration using web
services. In one internal implementation of Fusion
Applications in Oracle, there are over four hundred
module-action combinations. In a large number of
such cases, “context-sensitive indexes” will provide
application architects a very useful way of defining
and creating indexes to serve specific use cases
without the fear of interfering with the performance
stability of queries from other applications and
modules. All this becomes possible with our proposal
to make indexes context-sensitive. In the next few
paragraphs, we discuss how context for indexes is
important in different scenarios.

5.1 The Multi-tenant/User/Schema
Context-sensitive Indexes

Oracle 12c has introduced the concept of pluggable
databases (PDB), whereby one PDB could be used for
each tenant in the multi-tenant architecture (Oracle
Database Online Documentation, 2014). However,
for the use cases where multiple tenants share the
same database and schema, whether in Oracle or other
RDBMS systems, it has been a challenge for
application architects and developers to achieve high
performance. Our proposed concept of context-
sensitive indexes provides for allowing the
tenant/user/schema context in the creation and use of
indexes. In our proposed architecture, it should be
possible for RDBMSs to provide a methodology to
not only segregate the ownership of specific indexes
amongst tenants/users/schemas but also
partition/filter the common indexes based on tenant
id. This is possible if we move away from the

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

264

historical architecture of indexes belonging to a table,
rather than belonging to a tenant/user/schema and
then providing visibility of those partitions to specific
tenants/users/schemas whose data is indexed in those
partitions.

In the context of tenants/users/schemas, we
propose that the indexes (or index partitions) on
common tables should be created and owned by
tenants/users/schemas and the indexed data in such
indexes should only contain filtered data based on
tenant id.

Our proposed architecture is slightly different
from the existing concept of partitioned tables and
indexes. The existing global partitioned indexes in
databases provide the means to create indexes on
different partitioning keys and it is currently possible
to partition the tables and/or indexes by tenant key.
By creating such partitioned indexes, we can take
advantage of the optimizer’s ability to use partition-
pruning and technique known as partition-wise joins
to improve performance. However, this approach
requires the creation and maintenance of such
partitioned indexes for all tenants. This current
methodology works for use cases where the indexes
on the same columns are required for use by all
tenants. However, it does not work in use cases where
different tenants require indexes on different sets of
columns. For example, let us say there are 100
tenants and an index named Index1 on Colum1,
Column2 and Column3, partitioned by Tenant-ID. In
the current architecture, this index would result in
creation and maintenance of 100 partitions of Index1.
If this index were needed only by 10 tenants, then the
remaining 90 partitions will not only add to the
maintenance overhead but we also put these 90
tenants confronting the problems of higher hard parse
time and instable execution plans that we have
described earlier in the paper due to high number of
indexes. In our proposal, tenants/users/schemas
would have the flexibility to create indexes that they
need and have the index filtered down to only their
own data. Other tenants/users/schemas would
therefore not be burdened with such indexes that they
do not have a need for. Overall, the database will also
have lower cost of index maintenance by restricting
the number, size and partitions of indexes.

It may be argued that our proposed methodology
may lead to more number of indexes overall and
arguably slightly higher cost of maintenance.
However, this need not be the case if due diligence is
done by application architects in creating a scheme of
visible/invisible indexes from amongst the existing
indexes itself. Also, the performance gains for queries
from tenants/users will more than offset the slightly

increased maintenance costs, if any. Such tenant
specific filtered indexes (or index partitions) will be
smaller in size and possibly have lower heights, with
fewer levels and fewer leaf blocks because these only
contain index entries for a specific tenant.
Specifically, index fast full scan operations will
benefit because their performance is directly
proportional to the index size. There will be lesser
number of index splits due to inserts, updates and
deletes because now such operations will be divided
and spread across the many different tenant/user
indexes. DML operations like insert, update and
delete done by a specific tenant/user will not require
the updating of indexes for another tenant/user,
thereby isolating index maintenance costs to the
specific tenant.

Another key advantage in our proposed
architecture is that tenants/users will get the freedom
to create their own indexes that help with their
specific types of queries and data shapes without
burdening the optimizer from considering their
indexes during creation of query plans for other
tenants/users. This is very significant in terms of
index creation and maintenance and will provide
further isolation between tenants/users. The
performance gains for SQL queries will therefore
come from savings in hard parse time due to the fewer
number of indexes to be evaluated by the optimizer,
from potentially more stable, optimal execution plans
as well as from better execution times due to the
smaller traversal paths through such smaller and more
compact indexes. We establish the performance
advantages of our proposed architecture in the
experimental results presented in Section 6 of this
paper.

5.2 Applications’ Module and Action
Context-sensitive Indexes

To recall, in the current RDBMS architectures,
indexes do not have object privileges and for the
purposes of the optimizer’s choice of SQL execution
plan, it must consider all available indexes for tables
referenced in the SQL query. Often, a large number
of indexes get created on a table to support many
different SQL queries to support multiple
applications, modules and sub-modules (Actions).
When this happens, the optimizer, in some cases, is
unable to choose the best possible query plan due to
the large number of competing indexes. We propose
that indexes should be treated as database objects on
which privileges can be granted and revoked. The
reason for this proposal is to give application
architects the ability to make the fine-grained choices

Context-sensitive�Indexes�in�RDBMS�for�Performance�Optimization�of�SQL�Queries�in�Multi-tenant/Multi-application
Environments

265

about which indexes they wish to have access to for
the purposes of optimization of their applications’
SQL queries and which indexes to ignore as irrelevant
for the optimization of their SQL queries. A common
use case scenario these days is the different types of
applications accessing data in the same tables, but
with different SQL constructs and optimization goals.
For example, in Oracle’s Fusion Applications, the
needs of the transactional Fusion Application’s
queries are very different from the requirements of
OTBI queries. There are also many additional types
of applications like mobile applications, bulk data
loading, and BI Apps ETL for pulling data to the data
warehouse. By modifying the RDBMS architecture to
allow database objects like indexes to have object
privileges, we can facilitate the creation of an
application’s Module and Action context which can
then be used by the optimizer to limit the indexes it
considers for optimization of SQL query plans.

The same concept can be further expanded to
different Modules and Actions within modules of an
application, whereby, it should be possible for
application architects to specify to the RDBMS
optimizer, which indexes should be considered while
parsing and optimizing SQL queries originating from
specific modules/actions of an application. Our
proposed solution improves upon and provides a
more generic and broader way to guide the optimizer
in choosing efficient query plans over the existing
methodology of specifying particular index usage
hints in the text of specific SQLs, which is becoming
very hard to achieve for dynamically generated SQLs.

It can be argued that one down-side of this feature
could be generation of multiple child cursors for the
same SQL because of the context and possibly
resulting in increased number of hard parses.
However, the effects of this feature would be similar
to the effects of existing database features like
adaptive cursor sharing, which create new child
cursors based on factors like bind-peeking etc. Thus,
the benefits of reduced hard parse times and more
optimal execution plans should outweigh the effect of
some additional hard parsing and creation of child
cursors. Similar to any other database optimizer
feature like adaptive cursor sharing, this new feature
could also have a parameter to switch it on or off.

5.3 Implementation Aspects of
Context-sensitive Indexes

In the current RDBMS architectures, indexes do not
have object privileges. For the purposes of the
optimizer’s choice of SQL execution plan, it must
consider all available indexes for a given table

referenced in the SQL query. Our proposed
architecture can be achieved by RDBMS vendors in
multiple ways. The first and foremost requirement is
to upgrade the status of indexes in databases by
declaring indexes as database objects on which
VISIBLE privilege can be granted and revoked.
“Context-Sensitive Indexes” implementation will
need to be done at two levels of context as discussed
in subsequent sections.

5.3.1 Tenant/User/Schema Context

The first enhancement to implement “context-
sensitive indexes” would be to declare indexes as
database objects on which an object privilege,
VISIBLE, can be granted or revoked. This can be
implemented similar to currently used privileges on
objects like TABLE (SELECT, INSERT etc). By
granting VISIBLE privilege on specific indexes to
tenants/users/schemas, the optimizer can eliminate
from evaluation certain indexes during hard parse on
which the tenant/user/schema does not have
VISIBLE privilege. This will give
tenants/users/schemas the ability to make the fine-
grained choices about which indexes they wish to
have access to for the purposes of optimization of
their SQL queries and which indexes to ignore as
irrelevant. In addition, a Global Visible scheme for
indexes can help application architects to grant
VISIBLE to all Tenants/Users/Schemas for some or
all indexes as needed. Alternately, the default
privilege could be VISIBLE for all
tenants/users/schemas on all indexes, as in current
RDBMS implementations. Database
administrators/application architects could then
selectively revoke VISIBLE privilege on specific
indexes that they do not wish to be used by the
optimizer for their SQLs. This will achieve
tenant/user/schema context-sensitive indexes. For
example, say there are two users ‘A’ and ‘B’. The
following statements will grant and revoke VISIBLE
privilege:
 GRANT VISIBLE ON <index_name> TO
<User B>;
 REVOKE VISBILE ON <index_name> FROM
<User A>;

The VISBILE privilege’s grant and revoke
architecture can address the implementation of
context-sensitive indexes for multi-tenant and multi-
user/schema environments as depicted in Figure 1.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

266

 Declarative Scheme for User/Schema Context‐Sensitive Indexes

Context/Index TABLE1.IDX1 TABLE1.IDX2 TABLE1.IDX3 TABLE1.IDX4 TABLE1.IDX5

Table Owner User/Schema Yes Yes Yes Yes Yes

User/Schema2 Yes Yes Yes No Yes

User/Schema3 Yes No No No No

User/Schema4 Yes Yes No No Yes

User/Schema5 Yes No Yes Yes Yes

User/Schema6 Yes No No Yes Yes

Figure 1: Declarative Scheme for Tenant/User/Schema
Context.

5.3.2 Applications’ Module and Action
Context

The aim is to make it possible for creating and
declaring indexes that should only be used by
specified applications’ modules and actions. Hence,
the visibility of such context-sensitive indexes will
need to be controlled by an additional, optional
scheme of granting or revoking visibility on indexes
to/from specific combinations of Applications,
Modules and Actions. This would require creation
and maintenance of metadata related to application
Modules and Actions by the RDBMS. For example,
new object types – MODULE and ACTION – can be
created that could be owned by tenants/users/schemas
and stored in dictionary tables, for example,
DBA_MODULES, DBA_MODULE_ACTIONS.
These modules and actions could be granted
VISIBLE privilege on indexes. Further, metadata for
index visibility privileges could be stored in a new
dictionary table, for example, DBA_IDX_PRIVS,
similar to existing table privileges in
DBA_TAB_PRIVS.

Application architects and owners can then
register/create application modules and actions
with/in the database in the same manner as other
objects are currently created. Once created/registered,
the application modules and actions could be used for
index visibility grants. VISIBLE grant could be
granted to an application’s specific module and action
once registered with the database using CREATE
MODULE and CREATE ACTION statements. For
example, user/schema ‘A’ could create/register
MODULE1 and ACTION1, ACTION2 under that
module and then control the visibility on indexes as
under:

CREATE MODULE <Module1> FOR USER <User
A>;

CREATE ACTION <Action1> FOR MODULE

<User A>.<Module1>;

CREATE ACTION <Action2> FOR MODULE <User
A>.<Module1>;

GRANT VISIBLE ON <User A>.<Idx3> TO
<Module1.Action1>;

REVOKE VISIBLE ON <User A>.<Idx3> TO
<Module1.Action2>;

The above example would allow the index IDX3
to be used by the optimizer for SQLs originating from
MODULE1.ACTION1 for user ‘A’ but not used for
SQLs originating from MODULE1.ACTION2 for the
same user. Providing such a granular, declarative way
for the implementation of context-sensitive indexes to
application architects and performance tuning
professionals, the RDBMS optimizer’s burden of
making the right index choices will be reduced. As a
result, the optimizer will do less work, save on time
and database resources and arguably produce
efficient, stable execution plans for SQL queries.
Based on testing and performance review,
applications’ architects, database administrators and
SQL tuning professionals will be able to make
adjustments to the context-sensitive indexes
declarative scheme to further fine-tune the matrix for
optimal performance

A simplified chart example of such a declarative
scheme of context-sensitive indexes is shown in
Figure 2.

 Declarative Scheme for Index Visibility to Applications' Module‐Action

Context/Index TABLE1.IDX1 TABLE1.IDX2 TABLE1.IDX3 TABLE1.IDX4

Application1.Module1 Yes Yes No No

Application1.Module2 Yes No Yes No

Application1.Module1.Action1 Yes Yes No Yes

Application1.Module1.Action2 Yes Yes Yes No

Application1.Module2.Action1 Yes No Yes Yes

Application1.Module2.Action2 Yes Yes Yes No

Application2.Module1.Action1 Yes No No Yes

Application2.Module1.Action2 Yes Yes Yes No

Application2.Module1.Action3 Yes No No Yes

Application2.Module2.Action1 Yes No No No

Figure 2: Declarative Scheme for Application Module/
Action Context-Sensitive Indexes.

Our other proposed methodology described above -
of making indexes as objects on which grants can be
given or revoked using tenants/user/schemas for the
purposes of granting privileges on indexes - would
co-exist with the applications’ module/action context
declarative scheme under our proposed granular
architecture. Such context-sensitive indexes will go a
long way in addressing the problems of performance
and execution plan stability for SQL queries in a
multi-tenant and/or multi-application mixed-load
environment.

Context-sensitive�Indexes�in�RDBMS�for�Performance�Optimization�of�SQL�Queries�in�Multi-tenant/Multi-application
Environments

267

5.3.3 Maintenance of Context-sensitive
Indexes

It could be argued that the proposed context-sensitive
indexes may increase the maintenance overhead.
However, we feel that the overhead in managing
context-sensitive indexes is expected to be quite
insignificant, especially in the context of packaged
enterprise business applications which have many
applications/modules/actions and
users/schemas/tenant. The database optimizer,
though very sophisticated, does not have a better
understanding of the applications, their modules and
actions than the application and SQL-tuning
architects, especially when there are separate
architects dedicated to different applications,
modules and actions. Even under the present
arrangement, the database optimizer does not play
any significant role in the index design process. It is
the application and SQL-tuning architects who design
indexes and go through the SQL-tuning process
iteratively, to add, remove and modify indexes. They
do so, trying to find the elusive fine balance of just
the right indexes that can serve all applications,
modules and actions as well as
tenants/users/schemas. This is simply based on their
deep knowledge of the data model, application flows
and SQL queries for those applications. What we
have observed in the case of enterprise business
applications like Oracle Fusion Applications, is that
the design and development teams for different
applications and modules/actions often have to add or
modify indexes to tune the queries for their respective
applications. Based on the review and analysis of
hundreds of poorly performing SQL queries in Oracle
Fusion Cloud Applications, we observe that very
often, such actions to add or modify indexes,
inadvertently cause adverse effects on the
performance of many other applications' queries,
which does not come to be realized until late in the
release cycle, very often after customer complaints of
sudden performance degradation after an upgrade or
patch cycle. In addition, with the current architecture,
it is not only very expensive to carry out meaningful
regression testing for all
applications/modules/actions when one or more
indexes are added by developers for tuning one
particular application/module/action but is nearly
impractical to do so. The proposed context-sensitive
indexes will provide a simple methodology for
application and SQL-tuning architects to add, modify
or remove indexes for the purposes of the optimizer's
consideration while optimizing the execution plans
by simply making the indexes visible or invisible.

There is no additional overhead than what application
architects currently do except deciding which indexes
to use out of all the available ones.

6 EXPERIMENTAL RESULTS

We sampled some SQLs from Oracle’s currently
deployed 0 indexes visible or invisible. The following
commands were used:

ALTER INDEX <Index Name> INVISIBLE;

ALTER INDEX <Index1> VISIBLE;

6.1 Benchmark Results: Higher Hard
Parse times Use Case

We benchmarked representative SQLs from Oracle
Fusion CRM Application against Oracle 11.2.0.3
database to find the co-relation between the number
of visible indexes and the SQL hard parse time. One
such SQL had 34 tables referenced, which had a
combined total of 389 indexes. As the graph in Figure
3 demonstrates, the hard parse time closely followed
the graph line for the number of visible indexes.
Similar results were recorded for many SQLs
benchmarked in a similar manner. What we found is
that the higher the number of visible indexes, the
higher the hard parse time.

Figure 3: Co-relation between number of visible indexes
and hard parse time.

6.2 Benchmark Results: Sub-optimal
Plan Use Case

In the current Oracle Fusion Cloud Applications, high
hard parse time and sub-optimal execution plans are
very significant problems that cause poor user
experience. The optimizer not picking the right

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

268

indexes is a frequent finding in the slow SQL tuning
analysis. We benchmarked such a representative SQL
from Oracle Fusion CRM Application against Oracle
11.2.0.3 database to highlight use cases where the
optimizer may choose the wrong indexes resulting in
sub-optimal execution plan and extremely poor
performance. The benchmarked SQL references 27
tables which have a total of 272 indexes. As Figure 4
and 5 demonstrate, performance in terms of execution
time, CPU time and logical I/Os (buffer gets) is
dramatically better in the use case where the number
of visible indexes was restricted.

Figure 4: Co-relation between number of visible indexes
and execution, CPU and I/O time.

Figure 5: Co-relation between number of visible indexes
and Buffer Gets and Disk Reads.

7 CONCLUSIONS

The use of indexes in various forms and physical
implementations has long been established as an
industry standard practice for RDBMSs and is used in
many types of applications including enterprise
business applications. However, indexes have largely
been treated as being tightly coupled with tables for
the purposes of privileges and visibility to the
optimizer for use in generation of query execution
plans. The effects of having a large number of indexes
on the optimizer’s performance have also been much

researched. However, treating indexes as schema
objects on which privileges and grants can be given
has not been the focus of much research. In this paper
we have researched, documented and presented a
novel architecture whereby indexes can be made
context-sensitive to accommodate a declarative
scheme of telling the optimizer which indexes to
consider for specific tenants/users/schema and/or
applications’ modules and actions. The current
methodology of the optimizer taking into
consideration all indexes created on a table without
regard to the context in which a SQL query has been
sent to the database, poses performance problems and
can be a risk to the success of enterprise business
applications. We have proposed a solution that takes
into account context attributes for indexes under
which the optimizer should process SQL queries to
improve the performance of such SQLs, for which a
US Patent application has been filed (ORA150617-
US-PSP). Adoption of the proposed solution by
RDBMS vendors can thus provide significant
performance improvements in RDBMS optimizer
query plan generation, thereby improving the
performance and scalability of enterprise applications
on one hand and consuming fewer database resources
on the other.

REFERENCES

M. Leach, T. Lahdenmaki, 2005. Relational database index
design and the optimizers: DB2, Oracle, SQL Server et
al, John Wiley & Sons, Inc, Page: 4, 2005, ISBN-13
978-0-471-71999-1.

Chong, R. F., 2012. Designing a database for multi-
tenancy on the cloud - Considerations for SaaS
vendors.
https://www.ibm.com/developerworks/data/library/tec
harticle/dm-1201dbdesigncloud.

Chong F., Carraro G., and Wolter R., 2006. Multi-Tenant
Data Architecture http://msdn.microsoft.com/en-
us/library/aa479086.aspx#mlttntda_topic2.

Oracle White Paper - Application Development with Oracle
Database 12c, http://www.oracle.com/
technetwork/database/multitenant/overview/index.htm
l.

K.S.K. Kihong, K. C. Sang, 2001. Optimizing
Multidimensional Index Trees for Main Memory. In
proceedings of the 2001 ACM SIGMOD international
conference on Management of data.

W. Powley, P. Martin, and P. Bird, 2008. Dbms workload
control using throttling: experimental insights. In
Proceedings of the conference of the center for
advanced studies on collaborative research, pages
1{13, New York, NY, USA, 2008. ACM.

Context-sensitive�Indexes�in�RDBMS�for�Performance�Optimization�of�SQL�Queries�in�Multi-tenant/Multi-application
Environments

269

Brown, K. P., Mehta, M., Carey, M. J., and Livny, M.,
1994. Towards Automated Performance Tuning for
Complex Workloads. In VLDB.

Pang, H., Carey, M. J., and Livny, M., 1995. Multiclass
Query Scheduling in Real-Time Database Systems. In
IEEE Trans. on Knowl. And Data Eng.

Krueger, J., Tinnefeld, C., Grund, M., Zeier, A., & Plattner,
H., 2010. A case for online mixed workload processing.
In DBTest.

Oracle® Database SQL Language Reference 12c Release
1(12.1)
http://docs.oracle.com/cd/E16655_01/server.121/e172
09/sql_elements008.htm#SQLRF51129.

Oracle® Database Concepts 12c Release 1 (12.1).
http://docs.oracle.com/cd/E16655_01/server.121/e176
33/indexiot.htm#CNCPT721.

IBM DB2 10.1 for Linux, UNIX, and Windows
documentation.
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index
.jsp?topic=/com.

Wasserman, Ted J., 2012. DB2 UDB security, Part 4:
Understand how authorities and privileges are
implemented in DB2 UDB.
http://www.ibm.com/developerworks/data/library/tech
article/dm-0601wasserman/

Oracle® Database Performance Tuning Guide 11g Release
2 (11.2) Chapter 11 The Query Optimizer.
https://docs.oracle.com/cd/E29597_01/server.1111/e1
6638/optimops.htm.

Oracle® Database Security Guide 12c Release 1 (12.1).
http://docs.oracle.com/cd/E16655_01/network.121/e17
607/authorization.htm#DBSEG99910.

Oracle Database Online Documentation 11g Release 2
(11.2) / Database Administration, Database SQL
Language Reference. https://docs.oracle.com/cd/
E11882_01/server.112/e41084/sql_elements006.htm#
SQLRF51098.

Oracle® Database Performance Tuning Guide 11g Release
2 (11.2) Chapter 19 Using Optimizer Hints.
https://docs.oracle.com/cd/E11882_01/server.112/e41
573/hintsref.htm#PFGRF005.

Oracle Database Online Documentation 12c Release 1
(12.1) / Database Administration Chapter 17
Introduction to the Multitenant Architecture.
https://docs.oracle.com/database/121/CNCPT/cdbovrv
w.htm#CNCPT89234.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

270

