
Checklist-based Inspection of SMarty Variability Models
Proposal and Empirical Feasibility Study

Ricardo T. Geraldi1, Edson Oliveira Jr.1, Tayana Conte2 and Igor Steinmacher3

1Informatics Department, State University of Maringá, Maringá-PR, Brazil
2Institute of Computing, Federal University of Amazonas, Manaus-AM, Brazil

3Department of Computing, Federal Technological University of Paraná, Campo Mourão-PR, Brazil

Keywords: Coding, Empirical Study, Feasibility, SMarty, SMartyCheck, Software Inspection, Software Product Line,
Qualitative Analysis.

Abstract: Software inspection is a particular type of software review applied to all life-cycle artifacts and follows a
rigorous and well-defined defect detection process. Existing literature defines several inspection techniques
for different domains. However, they are not for inspecting product-line UML variability models. This paper
proposes SMartyCheck, a checklist-based software inspection technique for product-line use case and class
variability models according to the SMarty approach. In addition, it presents and discusses the empirical fea-
sibility of SMartyCheck based on the feedback from several experts. It provides evidence of the SMartyCheck
feasibility, as well as to improve it, forming a body of knowledge for planning prospective empirical studies
and automation of SMartyCheck.

1 INTRODUCTION

A Software Product Line (SPL) encompasses a set of
products for a particular market or mission (Capilla
et al., 2013). The SPL concept has been consolidated
over the last years as a non-opportunistic reuse strat-
egy (Linden et al., 2007; Capilla et al., 2013).

Nowadays, several organizations handle huge
amounts of information, thus depending on software
applications for a competitive market (Capilla et al.,
2013). Therefore, such organizations need non error-
prone information systems, able to change over spe-
cific market rules (Mello et al., 2014).

Software inspection is efficient and mostly
adopted by industry (Fagan, 2002; Rombach et al.,
2008). The existing literature provides a few re-
cent studies concerned on the application of inspec-
tion techniques to SPL variability models (Cunha
et al., 2012; Mello et al., 2014). However, such
recently proposed techniques are not for inspecting
UML models. In this context, it is suitable to ap-
ply the Stereotype-based Management of Variability
(SMarty) approach (OliveiraJr et al., 2010), in combi-
nation with a software inspection technique, for re-
ducing potential defects at modeling SPL SMarty-
based variabilities. SMarty has been empirically eval-
uated in the last few years (Marcolino et al., 2014).

An inspection technique that takes as a basis SMarty
models become an interesting tool towards defect
identification in early life-cycle SPL artifacts with
variabilities. Therefore, this paper presents the pro-
posal of SMartyCheck, a checklist-based inspection
technique for use case and class SMarty SPL models,
as well as its feasibility study as an empirical qualita-
tive analysis.

The remainder of this paper is organized as fol-
lows: Section 2 presents the background with regard
to SPL variability management and the SMarty ap-
proach, software inspection, defect types and exist-
ing inspection techniques; Section 3 presents SMar-
tyCheck, the proposed inspection technique; Sec-
tion 4, presents the SMartyCheck empirical feasibility
study; Section 5 discusses related work; and Section
6 presents conclusion and directions for future work.

2 BACKGROUND

This section presents essential concepts on variability
management and software inspections.

2.1 The SMarty Variability Approach

A Software Product Line (SPL) is a set of software

268 T. Geraldi R., Oliveira Jr. E., Conte T. and Steinmacher I..
Checklist-based Inspection of SMarty Variability Models - Proposal and Empirical Feasibility Study.
DOI: 10.5220/0005350102680276
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 268-276
ISBN: 978-989-758-097-0
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



intensive systems that share a common infrastructure
formed by the SPL architecture and essential artifacts
(Linden et al., 2007). Such architecture and artifacts
have common features, the similarities, and variable
elements, the variabilities, in order to provide a means
to derive specific products for a given domain. Vari-
ability represents how SPL specific products differ
one another.

In this context, the existing literature presents sev-
eral variability management approaches based on fea-
ture models, UML and domain specific languages.
The Stereotype-based Management of Variability
(SMarty) approach has been developed OliveiraJr
et al. (2010) and empirically evaluated Marcolino
et al. (2014) for UML-based SPLs.

SMarty is composed of a UML profile, the SMar-
tyProfile, and a systematic process, the SMartyPro-
cess, to guide one on applying the SMarty stereotypes
and meta-attributes. SMarty version 5.1 supports use
case, class, component, activity and sequence models.

2.2 Software Inspection

Software inspection is a specific type of software re-
view (Ciolkowski et al., 2003) applied to artifacts by
means of a systematic and well-planned defect identi-
fication process (Fagan, 1986). More than 60% of de-
fects can be identified in early phases of the software
life-cycle1 (Boehm and Basili, 2001; Fagan, 1986).
By means of software inspection it is possible to ver-
ify several elements of software artifacts in order to
detect different defect types persistent in software
specifications (IEEE, 1998b).

Fagan (1986) proposed a software inspection pro-
cess driven by roles, such as, moderator, inspector and
author and activities. The process of defect detection
must be standardized and non-ambiguous for the doc-
ument under revision, as for instance, a requirements
specification (IEEE, 1998a). Therefore, Anda and
Sjøberg (2002) propose a taxonomy of defect types
for checklist-based software inspections specifically
for use cases. Such a taxonomy is composed of the
following defect types: Omissions, Incorrect facts, In-
consistencies, Ambiguities and Extraneous Informa-
tion. In addition, these are the main existing defect
types in the literature, as we can see in Travassos et al.
(1999). Furthermore, the literature improves such a
taxonomy by providing several more studies on defect
types, such as in Hayes et al. (2006), IEEE (2012),
Mello et al. (2014), Travassos et al. (1999) and Cunha
et al. (2012).

Therefore, for defect detection it might be used
inspection techniques, thus, the study of Anda and

1http://www.cebase.org/defect-reduction.html

Sjøberg (2002) presents the Checklist-Based Reading
(CBR), which is a non-systematic technique for de-
fect detection. It does not provide directions or mech-
anisms on “how” the inspection should be performed,
but “what” must be inspected through guidance us-
ing a document in a checklist format (Alshazly et al.,
2014).

Furthermore, the CBR technique based on check-
list is one of the most adopted inspection techniques
for analyzing artifacts, as well as for identifying the
most relevant information required for certain review
tasks (Mello et al., 2014). The checklist verification
items are simple to follow. The checklist format is a
list of non-ambiguous questions, based on either pre-
vious experiences or history, which must be clearly
answered as “Yes” or “No”. In order to make the
checklist able to be applied, a list of defect types must
be available for the inspector (Alshazly et al., 2014).

3 SMartyCheck

The SMartyCheck technique acts at the Domain En-
gineering activities. SMartyCheck was designed as
an inspection technique with the objective of detect-
ing defects in SMarty SPL use case and class vari-
ability models of SPL by means of a checklist with
20 items. The SMartyCheck technique is composed
of two checklists: one for use case models, and one
for class models. We are aware that the automation of
SMartyCheck is an important issue to contribute for
assuring quality in inspection activities, thus, we are
developing a tool for it.

In order to perform inspections, inspectors should
read the checklist answering each question from a
list of assertive questions, marking a single check per
question, based on their prior knowledge with relation
to the SMartyCheck checklist defect types.

The checklist was developed based on the anal-
ysis and adaptation of defect types extracted from a
systematic mapping study that we carried out from
February to March/2014. From the analysis and clas-
sification of the 51 most relevant retrieved primary
studies, it was evident the identification of several
different studies with distinct defect types taxonomy
proposals, most of them empirically evaluated, that
can be adapted by existing software inspection tech-
niques, such as SMartyCheck.

The taxonomy of defect types for the SMarty-
Check checklist contains 13 defect types, adapted
from the following sources: IEEE (2012), IEEE
(1998b), IEEE (1998a), Travassos et al. (1999), Hayes
et al. (2006), Lamsweerde (2009) and Cunha et al.
(2012).

Checklist-based�Inspection�of�SMarty�Variability�Models�-�Proposal�and�Empirical�Feasibility�Study

269



Thus, each type of SMartyCheck defect is de-
scribed as follows, in which is possible to under-
stand “what” to inspect throughout the SMartyCheck
checklist for use case and class models:

1. Ambiguous: use case or class model elements
should have only one interpretation. This defect
type was adapted from IEEE (2012) aiming at de-
tecting redundancy;

2. Anomaly: use case or class model element is as-
sociated to another element in an unusual way.
This defect type was adapted from Cunha et al.
(2012) to the context of SMarty models in order to
detect different elements relationships which are
not allowed;

3. Incomplete: absence of any significant use case
or class model elements. It was adapted from
IEEE (2012);

4. Inconsistency: refers to the lack of internal con-
sistency, in which a subset of individual elements
has conflicts with use case or class models. This
defect type was adapted from IEEE (2012);

5. Incorrect: any element must meet the predicted
relationships of use case or class models. It was
adapted from IEEE (2012);

6. Intentional Deviation: an use case or class model
element that requires or depend on its relation-
ship to other elements according to SMarty vari-
ability models. Its descripton was interpreted and
adapted from Hayes et al. (2006) to the SMarty-
Check context;

7. Instable: every use case or class model element
has a unique identifier (for instance the meta-
attribure name) indicating its importance or sta-
bility. Such an identifier specifies an element ac-
cording to its singularity and responsibility. This
defect type was adapted from IEEE (1998b,a);

8. Incorrect Fact: contradiction in any use case or
class model element. This defect type was inter-
preted and adapted from Travassos et al. (1999);

9. Extraneous Information: non-necessary pro-
vided information from any use case or class
model elements. Over specified or duplicated el-
ements in use case ou class models should be de-
tected by this kind of defect, adapted from Travas-
sos et al. (1999);

10. Infeasible: any unachievable element of use case
or class models taking into consideration other
system factors, such as, adding new elements
in SMarty SPL models. This defect type was
adapted from Hayes et al. (2006);

11. Non-modifiable: when the structure and the style
of one or more elements of use case or class mod-
els can be maintained by any changes. The el-
ements should be expressed in separate way in
order to be consistent and not redundant. It was
adapted from IEEE (1998b,a);

12. Omission: absence of any element of use case and
class models. This defect ype was interpreted and
adapted from Lamsweerde (2009);

13. Business Rule: the definition of business rules of
a specific domain may be incorrectly described or
specified according to SMarty use case and class
models. Its description was adapted from Lam-
sweerde (2009).

We present an application excerpt of how SMarty-
Check is applied to an SPL, in this case to the Arcade
Game Maker (AGM) (SEI, 2009) use case original
model (Figure 1(a)). Therefore, for illustration pur-
pose, we have inserted defects to the AGM use case
model (Figure 1(b)).

a)

b)

Figure 1: AGM Use Case Model according to SMarty: (a)
with no defects (original) (OliveiraJr et al., 2010) and (b)
with inserted defects.

The following items present the application of
SMartyCheck based on the defined defect types and
checklist items answered ”Yes”:

4 Inconsistency (Incons)
� Incons.1 Is there any use case in the

SPL use case model with the stereotype

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

270



<<variationPoint>> whose number of
specified variants is larger than defined in
maxSelection the variability associated?
Identified Defect: The use case Play Selected
Game has four variants. Should have at maxi-
mum three.

6 Intentional Deviation (ID)
� ID.1 Is there any use case in the SPL use

case model which requires the selection of an-
other (<<requires>>) and this another is
not specified in the SPL?
Identified Defect: The use case Check Previ-
ous Best Score requires the selection of the use
case Save Score.

8 Incorrect Fact (IF)
� IF.1 Is there any use case in the SPL use case

model which was described incorrectly?
Identified Defect: The use case Play Pong was
described as Pl Pon.

� IF.2 Is there any use case in the SPL use case
model that it is not be mapped its description?
Identified Defect: The use cases Play Tetris
and Pl Pon can not be mapped.

11 Non-modifiable (Nm)
� Nm.1 Is there any use case in

the SPL use case model with the
stereotype <<variationPoint>>,
in which variants associated
(<<optional>>, <<alternative OR>>
or <<alternative XOR>>) cannot be
combined or selected in accordance with the
meta-attribute variants?
Identified Defect: The use case Play Selected
Game has selected variants Play Tetris and Pl
Pong erroneously specified.

12 Omission (Om)
� Om.1 Is there any use case specified as manda-

tory in the SPL use case model through the
stereotype <<mandatory>> that is not speci-
fied on the SPL?
Identified Defect: The use cases Exit Game,
Initialization and Animation Loop are not spec-
ified in the SPL.

13 Business Rule (BR)
� Domain/Business Rules: The system should be

able to allow you to install and uninstall a game,
allows choosing a to game, save the state of the
game, exit the game, define options and provide
the player a way to save his score and check
your best score previous.
BR.1 The use cases of the SPL use cases model

are not clear with the purpose and the desired
functionalities based on defined domain?
Identified Defect: The system is not able to
allow exit game, define the options of game and
provide the player a way to save his score.

4 THE FEASIBILITY STUDY

A qualitative empirical study was carried out aiming
at analyzing the SMartyChek feasibility, then improv-
ing the proposed technique.

The analysis of this qualitative study was based
on the data collected from 8 experts. The majority
of the experts are from software engineering with ten
years of expertise in average. Selection criteria took
into account lecturers and practitioners, who directly
worked with or research on software verification and
validation over the past years in different universities
and companies in Brazil.

The study documents were given the experts, thus
aiming to support them while answering the elec-
tronic questionnaires to evaluate the feasibility of
SMartyCheck. We created 6 electronic questionnaires
with 6 defective models, in which 2 questionnaires
(1 checklist with 2 use case models and 1 checklist
with 2 class models) were distributed and electroni-
cally randomly sent to the experts. At the end of the
assignment, we asked the experts to answer an open-
ended questionnaire composed of 7 questions about
the SMartyCheck technique. Experts spent about 90-
120 minutes for performing all given tasks of the
study.

Then, experts answered the questionnaire specifi-
cally related to the characterization of SMartyCheck.
Next items present examples of questions:

In your opinion, the inspection process based on
the SMartyCheck technique is adequate for de-
tecting defects in use case and class SMarty SPL
models? Please, support your answer with justi-
fication.

In your opinion, the format of the SMartyCheck
checklist clearly, objectively and accurately con-
tributes for inspecting use case and class SMarty
SPL models? Please, support your answer with
justification.

The answers received were qualitatively analyzed
using procedures of Grounded Theory (GT) (Corbin
and Strauss, 2008). GT approach is based on the con-
cepts of Coding (Corbin and Strauss, 2008). Coding
allows assigning codes or labels to excerpts of text
(Open Coding), which can be grouped and catego-
rized (Axial Coding) according to an expressed idea

Checklist-based�Inspection�of�SMarty�Variability�Models�-�Proposal�and�Empirical�Feasibility�Study

271



for the purpose of elucidate the phenomenon (Corbin
and Strauss, 2008). The Selective Coding was not per-
formed in this study, as we do not intend to formalize
a theory, but evaluate the feasibility of the SMarty-
Check technique.

Analysis included only procedures of Open Cod-
ing and Axial Coding. As a result of such coding,
enabled the creation a conceptual model.

During the coding process, 3 categories emerged
from the data collected from the experts regarding
feasibility of SMartyCheck technique: “Feasible for
Inspection”, “Possible Improvements” and “Automat-
ing SMartyCheck”.

A brief description of each category along with
their related codes are presented, as well as excerpts
from the data collected from the experts and the cat-
egorization of codes to evaluate questions concerning
the feasibility of SMartyCheck.

Feasible for Inspection: this category evaluates
the feasibility of SMartyCheck, providing evidence
that improvements are required. Figure 2 presents a
graphical representation of factors that are part of this
category.

Analyzing the experts answers with regard to
SMartyCheck, such a technique supports the correct-
ness based on the coding Supports Correctness as-
signed in accordance to the excerpt from expert #1:
“...the process is interesting and confers greater de-
gree of correctness to the model.”; and the excerpt
from expert #3: “...supporting the correction of the
models.”. Furthermore, the SMartyCheck technique
detects inconsistencies in SMarty models based on
excerpt from expert #6: “...facilitates inconsisten-
cies mapping.”; and the excerpt from expert #8: “...a
checklist guides the reviewer at identifying possible
inconsistencies of the model.”.

Contributes to 
Defect Detection

Seems Better than 
Ad hoc Technique 

Uses SMarty Stereotypes
Has Coherent Defect Types

Supports Correctness

[CA] Feasible for Inspection

is part

is part
is part

is part

is part

Figure 2: Graphical Representation with the Associations
related to the Feasible for Inspection Category.

We evidenced that the SMartyCheck
Contributes to Defect Detection. This factor was
supported by some quotes from the experts, who
answered “Yes.” to “In your opinion, the format
of the SMartyCheck checklist clearly, objectively
and accurately contributes for inspecting use case
and class SMarty SPL models? Please, support
your answer with justification.”. Expert #3 also
answered “Yes, because it allowed to detect different
defect types in the UML models.”, whereas expert

#6 answered “Yes, it is possible to identify process
failures throughout the mapping.”.

In addition, the SMartyCheck technique
Has Coherent Defect Types, according to the ex-
perts. When asked “In your opinion, the defects
types are coherent with the description of the check-
list items of SMartyCheck technique for inspection
SMarty SPL models taking into account use case
and class models? Justify.”, the expert #3 answered:
“Yes, they are coherent as they allowed to analyze
possible errors in different elements and correct such
errors.”; and the excerpt from expert #4: “Yes, I
believe that the defect types are fine segmented.”; and
the excerpt from expert #6: “I believe so, because
they express the problem to be mapped.”; and the
excerpt from expert #7: “Yes... Defect types are clear
and objective. However, they could be grouped and
placed on the natural order.”.

Furthermore, several experts reported that
SMarty stereotypes are important elements to
better performing inspections. Based on this,
Uses SMarty Stereotypes factor emerged, supported
by the following quotes: “Yes, the specification of
stereotypes is interesting and think their use is essen-
tial for the correct reading of the model.” [Expert
#1]; “Yes, because they represent the key elements of
variability, variation points and variants.” [Expert
#3]; “Yes, stereotypes are essential because they
present clear and intuitive elements related to the
variability of a SPL.” [Expert #4]; “Yes, they are key
elements for inspection, since it is also based mostly
on these stereotypes.” [Expert #5].

In addition, SMartyCheck is different in com-
parison to the Ad hoc technique. The Ad hoc is
an “informal” technique that does not provide in-
structions, procedures, criteria or systematic mecha-
nisms for inspectors performing the reading of soft-
ware artifacts. Therefore, the Ad hoc technique de-
pends on the viewpoint of the inspector, his knowl-
edge and experience in the detection of defects (Rom-
bach et al., 2008). Thus, the SMartyCheck is bet-
ter in comparison to the Ad hoc based on the cod-
ing Seems Better than Ad hoc technique assigned in
accordance to the expert answer #8: “Very different
when the reviewer has to do its work performing an
ad hoc comparison.”.

Figure 2 presents the representation of the
SMartyCheck feasibility by supporting correctness
(Supports Correctness) of SMarty use case and
class models, detecting inconsistencies and defects
(Contributes to Defect Detection). Further-
more, SMartyCheck is suitable for detecting several
different coherent defect types (Coherent Defect
Types). With regard to the SMarty approach, its

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

272



stereotypes are essential and intuitive for defect de-
tection (Uses SMarty Stereotypes).

Possible Improvements: SMartyCheck requires
possible improvements, because it has some limita-
tions, considering redundancies reported by experts
on the items of the checklist.

SMartyCheck has a few redundancies in
items of the checklist based on the coding
Redundant in the Checklist Items, supported by
quotes extracted from answers of expert #4: “...some
questions seemed to me somewhat recurring, which
can be considered a threat to the validity of this pro-
posal.”; and expert #5: “...I consider the technique
with some redundant inspections.”; and expert #7:
“...there are duplicate and ambiguous questions.”;
and expert #7: “The items of SMartyCheck: Incons.1,
Incom.1, An.1, Incons.3, Incons.2 can be done
automatically by syntax analysis of the model.”.

Furthermore, the SMartyCheck technique
has confused descriptions related to the items
of the checklist. It can be evidenced this
Confusion in the Checklist Items on answers from
expert #1: “...some items have caused a little of
confusion initially.”; and expert #3: “...some of the
questions are formulated to hinder understanding.”.

In addition, experts answered that some defect
types are incoherent, ambiguous and hard to interpret
based on the coding Has Incoherent Defect Types as-
signed in accordance to the expert answer #1: “The
defect identified as ”Non-modifiable” seemed to me
confused as to its description.”; and expert #5: “De-
fect #5 (Incor.2), I do not understand why relating 2
mandatory items is incorrect.”; and expert #7: “In
An.1, it must be clear the type of association, the ques-
tion leads to an incorrect markup. In Incons.1, it must
be clear the implication of this.”.

Automating the SMartyCheck: some ex-
perts suggested the automation of some check-
list items to improve SMartyCheck technique.
Automating SMartyCheck was suggested by expert
#4: “...I believe that automating process of system-
atic development, as in the case of SPL, can aggregate
much in the quality requirement.”.

[CA] Possible 
Improvements

Redundant in the 
Checklist Items

Confusion in the 
Checklist Items

is part

Has Incoherent Defect Types

is part is part

Figure 3: Graphical Representation with the Associations
related to the Possible Improvements Category.

Therefore, it is clear that some adjustments are
necessary to improve the SMartyCheck technique ac-

cording to the issues presented under the categories
“Possible Improvements” and “Automating SMarty-
Check”. Figure 3 presents a graphical representation
of the factors, which are part of the category “Possible
Improvements” and the defect types suggested by the
experts that can be automated in prospective improve-
ments related to the category “Automating SMarty-
Check”.

Figure 3 presents the possible improvements cod-
ings of SMartyCheck, which are due to some of
the checklist items are redundant (Redundant in
the Checklist Items) and confusing (Confusion
in the Checklist Items). Thus, they were im-
proved. Incoherent defects are also present in SMar-
tyCheck as we can see in the Has Incoherent
Defect Types coding. Such issues that form the
Possible Improvements coding were reviewed and
improved.

The following items present the improved check-
list of SMartyCheck. Although such items refers to
use case models, they also serve for class models.

1. Business Rule (BR)
BR.1 The use cases of the SPL use cases model
(with defects) model are not clear with the pur-
pose and the desired functionalities based on de-
fined domain?

2. Incomplete (Incom)
Incom.1 All use cases with <<mandatory>>
(required) are not specified in the SPL use case
model (with defects)?

3. Inconsistency (Incons)
Incons.1 Is there any use case in the SPL
use case model (with defects) specified with
the stereotype <<variationPoint>> whose
number of specified variants is larger (greater)
than defined in maxSelection the variability
(<<variability>>) associated?
Incons.2 Is there any use case in the SPL
use case model (with defects) specified with
the stereotype <<variationPoint>> whose
number of specified variants is smaller (mi-
nor) than defined in minSelection the variability
(<<variability>>) associated?

4. Incorrect (Incor)
Incor.1 Is there any use case in the SPL use case
model (with defects) specified with the stereo-
type <<variationPoint>> which is associ-
ated with a use case in SPL (with defects) that is
not <<alternative OR>>?

5. Incorrect Fact (IF)
IF.1 Is there any use case in the SPL use case
model (with no defects) which was described in-

Checklist-based�Inspection�of�SMarty�Variability�Models�-�Proposal�and�Empirical�Feasibility�Study

273



correctly in SPL (with defects)?
IF.2 Is there any use case in the SPL use case
model (with defects) that it is not be mapped its
description in SPL (with no defects)?

6. Ambiguous (Am)
Am.1 Is there any use case in the SPL use case
model (with defects) that your description does
not reflect on your real goal?
Am.2 Is there any use case in the SPL use case
model (with defects) in that its name or descrip-
tion is equal to the use case which is associated to
owning a duplicate interpretation?

7. Non-modifiable (Nm)
Nm.1 Is there any use case in the SPL use
case model (with defects) specified with
the stereotype <<variationPoint>>,
in which variants associated
(<<optional>>, <<alternative OR>>
or <<alternative XOR>>) can not be com-
bined or selected in accordance with the variants
already specified in the meta-attribute variants in
SPL (with no defects)?

8. Anomaly (An)
An.1 Is there any use case in the SPL use case
model (with defects) specified with the stereo-
type <<alternative OR>> associated with a
use case that is not specified with the stereotype
<<variationPoint>>?

9. Instable (Ins)
Ins.1 Is there any use case in the SPL use case
model (with defects) specified with the stereo-
type <<variationPoint>>, in which has
the stereotype associated <<variability>>
whose meta-attribute name equals to other use
cases elsewhere specified with the stereotype
<<variationPoint>>?

10. Infeasible (Inf)
Inf.1 Is there any use case in the SPL use case
model (with defects) specified with the stereo-
type <<variationPoint>> whose number of
variants speciifed is not (false) allows you to add
new variants as defined in the meta-attribute al-
lowsAddingVar?

11. Omission (Om)
Om.1 Is there any use case specified as mandatory
(required) in the SPL use case model (with no de-
fects) through the stereotype <<mandatory>>
that is not specified on the SPL (with defects)?

12. Extraneous Information (EI)
EI.1 Is there any use case in the SPL use case
model (with defects) specified besides use cases

existing in the SPL (with no defects)?
EI.2 Is there any use case in the SPL use case
model (with no defects) with its functionality du-
plicated in SPL (with defects)?

13. Intentional Deviation (ID)
ID.1 Is there any use case in the SPL use case
model (with no defects) which requires the selec-
tion of another (<<requires>>) and this an-
other is not specified in the SPL (with defects)?
ID.2 Is there any use case in the SPL use case
model (with no defects) not which requires selec-
tion of another (<<mutex>>) and this another is
specified in the SPL (with defects)?

By analyzing the overall obtained results, we can
provide evidence that SMartyCheck is feasible, as it:
(i) supports correctness of models; (ii) explicitly con-
tributes for defect detection; (iii) has coherent defect
types; (iv) correctly uses SMarty stereotypes, making
such a detection intuitive and objective; and (v) seems
to be more appropriate than the ad hoc technique.

The following major threats to the validity of this
empirical study are discussed:

Threats to Internal Validity. Tasks performed
by the experts were conducted in a similar manner,
except for the electronic forms (questionnaires) ran-
domly mailed. Experts were trained on the basics
of SPL, variability and software inspection, beyond
the understanding and comprehension of the SMarty-
Check. 20 to 27 days was required to the experts fill in
the questionnaires, thus, fatigue effects were reduced;

Threats to External Validity. Pedagogical SPLs
used in training sessions (SPL Mobile Media) and
in the empirical study (SPL Arcade Game Maker
(AGM)) can endanger the external validity. There-
fore, we tried to use SMartyCheck and AGM stan-
dardized technical documents. Obtaining practitioner
experts from industry was one of the greatest difficul-
ties encountered in this study;

Threats to Conclusion Validity. The main threat
is related to the sample size, 8 experts, however the
previous knowledge of the experts was significant.
Therefore, we intend to perform more empirical stud-
ies with a larger sample;

Threats to Construct Validity. This study was
defined and tested based on a pilot project carried out,
refining the SMartyCheck and AGM instrumentation,
which was adequate to apply to a real study. Although
the level of knowledge required on the concepts of
UML modeling, SPL and software inspection is basic,
experts presented high-level skills.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

274



5 RELATED WORK

The set of techniques “The Software Product Line In-
spection Techniques (SPLIT)” by Cunha et al. (2012)
is aimed at comparing the SPL requirements docu-
ment, feature model and product map. SPLIT has
contributed to the definition of defect types, adopted
by SMartyCheck. The study conducted by Anda and
Sjøberg (2002) also has. Such a study presents a tax-
onomy of typical defects of use case models based on
two empirical studies.

The study of Belgamo et al. (2005) proposes
TUCCA, a “Technique for Use Case Model Construc-
tion and Construction-based Requirements Document
Analysis”, which is composed of two reading tech-
niques. In such a work, it was identified new defect
types in experiments that might contribute to improve
SMartyCheck. These defect types are not explicitly
mentioned in the study of Belgamo et al. (2005).

6 CONCLUSION

This paper presented the proposal of SMartyCheck
technique for inspecting SMarty use case and class
models, as well as an empirical qualitative study,
which provided evidence that SMartyCheck is feasi-
ble. Such a technique contributes to SPL model in-
spections by means of coherent defect types, lead-
ing to correctness of models based on a well-defined
structure supported by SMarty stereotypes.

In fact, the qualitative results helped to improve
SMartyCheck since it was possible to identify defects
that require adjustments and correcting the checklist
items considered ambiguous and difficult to under-
stand. Furthermore, the feedback from subjects pro-
vided evidence that SMaryCheck is feasible, because
stated support correctness SMarty SPL models. Fur-
ther empirical studies must be planned and conducted
in academia and industry to evaluate the accuracy of
SMartyCheck.

As future work, we plan to: (i) allow the inspec-
tion of different SMarty models, such as component,
sequence and activity; (ii) automate, partially or to-
tally, the inspection process by means of a tool for sin-
tax analysis of SMarty models; (iii) combine SMarty-
Check and perspective-based techniques to increase
its inspection power; and (iv) conduct more empirical
studies to refine SMartyCheck, as well as corroborate
and generalize the obtained results.

ACKNOWLEDGEMENTS

CAPES-Brasil for granting R. Geraldi a two-year
master’s degree scholarship. Experts from several
universitites.

REFERENCES

Alshazly, A. a., Elfatatry, A. M., and Abougabal, M. S.
(2014). Detecting defects in software requirements
specification. Alexandria Engineering Journal.

Anda, B. and Sjøberg, D. I. K. (2002). Towards an inspec-
tion technique for use case models. In Proc. Int. Conf.
on Software Engineering and Knowledge Engineering
(SEKE), pages 127–134, New York, NY, USA. ACM.

Belgamo, A., Fabbri, S., and Maldonado, J. C. (2005).
TUCCA: Improving the Effectiveness of Use Case
Construction and Requirement Analysis. In Proc.
Int. Symposium on Empirical Software Engineering
(ESEM), pages 257–266. IEEE.

Boehm, B. and Basili, V. R. (2001). Software Defect Re-
duction Top 10 List. IEEE Computer, pages 135–137.

Capilla, R., Bosch, J., and Kang, K.-C. (2013). Systems and
Software Variability Management: Concepts, Tools
and Experiences. Springer Berlin Heidelberg.

Ciolkowski, M., Laitenberger, O., and Biffl, S. (2003). Soft-
ware Reviews: The State of the Practice. IEEE Soft-
ware, 20(6):46–51.

Corbin, J. M. and Strauss, A. L. (2008). Basics of Qualita-
tive Research: Techniques and Procedures for Devel-
oping Grounded Theory. Sage Publications, 3 edition.

Cunha, R., Conte, T. U., de Almeida, E. S., and Maldon-
ado, J. C. (2012). A Set of Inspection Technique on
Software Product Line Models. In Proc. Int. Conf.
on Software Engineering and Knowledge Engineering
(SEKE), pages 657–662.

Fagan, M. (2002). A History of Software Inspections.
Springer Berlin Heidelberg.

Fagan, M. E. (1986). Advances in Software Inspections.
IEEE Transactions on Software Engineering (TSE),
pages 744–751.

Hayes, J., Raphael, I., Holbrook, E., and Pruett, D. (2006).
A Case History of International Space Station Re-
quirement Faults. In Proc. Int. Conf. on IEEE En-
gineering of Complex Computer Systems (ICECCS),
page 10. IEEE Computer Society.

IEEE (1998a). Recommended Practice for Software Re-
quirements Specifications, Standard 830-1998.

IEEE (1998b). Software Reviews, Standard 1028-1997.
IEEE (2012). System and Software Verification and Valida-

tion, Standard 1012-2012.
Lamsweerde, A. (2009). Requirements Engineering: From

System Goals to UML Models to Software Specifica-
tions. John Wiley & Sons.

Linden, F., Schmid, K., and Rommes, E. (2007). Software
Product Lines in Action: The Best Industrial Practice
in Product Line Engineering. Springer.

Checklist-based�Inspection�of�SMarty�Variability�Models�-�Proposal�and�Empirical�Feasibility�Study

275



Marcolino, A., OliveiraJr, E., Gimenes, I., and Barbosa, E.
(2014). Empirically Based Evolution of a Variabil-
ity Management Approach at UML Class Level. In
Proc. Int. Conf. Computers, Software & Applications
(COMPSAC), pages 354–363, Vasteras, Sweden.

Mello, R. M., Teixeira, E. N., Schots, M., and Werner, C.
M. L. (2014). Verification of Software Product Line
Artefacts: A Checklist to Support Feature Model In-
spections. Journal of Universal Computer Science
(JUCS), 20(5):720–745.

OliveiraJr, E., Gimenes, I., and Maldonado, J. (2010).
Systematic Management of Variability in UML-based
Software Product Lines. Journal of Universal Com-
puter Science (JUCS), 16(17):2374–2393.

Rombach, D., Ciolkowski, M., Jeffery, R., Laitenberger, O.,
McGarry, F., and Shull, F. (2008). Impact of research
on practice in the field of inspections, reviews and
walkthroughs. ACM SIGSOFT Software Engineering
Notes, 33(6):26.

SEI (2009). Software Engineering Institute Arcade Game
Maker (AGM) Pedagogical Product Line. Carnegie
Mellon University.

Travassos, G. H., Shull, F. J., Fredericks, M., and Basili,
V. R. (1999). Detecting Defects in Object-Oriented
Designs: Using Reading Techniques to Increase Soft-
ware Quality. In Proc. Int. Conf. (ACM SIGPLAN) on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 47–56, New York,
USA. ACM Press.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

276


