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Abstract: A recent survey of potato (Solanum tuberosum) growers in the state of Michigan identified that soilborne 
pathogens were causing concerns as to whether growers would be able to continue to meet the high 
demands for marketable potatoes. Of these soilborne pathogens, Verticillium dahliae is one of the most 
concerning due to its direct correlation with yield decline and its persistence in the soil. Following the 
survey a statewide soil study was conducted to study soilborne pathogens and their interactions with 
multiple abiotic and biotic factors. The use of geostatistics and geographical information systems (GIS) 
were incorporated into this study to assess the spatially distribution of colonies of V. dahliae across a field 
and to use geostatistical methods to determine V. dahliae inoculum levels throughout the entire field from 
20 soil samples. Furthermore, the research team incorporated the use of a nonlinear indicator Kriging 
method to create conditional probability maps of soilborne pathogen inoculum levels and predict where 
inoculum levels would be high enough to result in infection. The methods presented in this paper evaluated 
conditional probability mapping of soilborne plant pathogens for the potential to become a practical crop 
management tool for commercial potato growers. 

1 INTRODUCTION 

In 2012, a team comprised of potato growers and 
university researchers was formed to address the 
issue of declining yields and decreased tuber quality 
in some areas in Michigan dedicated to potato 
production. The goals of the research were 1. to 
better understand the spatial variability of soilborne 
pathogen inoculum levels in potato fields; 2. to 
better understand the soil biology and quantify soil 
microbial diversity and 3. to predict where in the 
field an infection may occur based on pathogen 
levels determined by conditional probability.  

Verticillium dahliae is a soilborne pathogen that 
is particularly significant and, in conjunction with 
Pratylenchus penetrans (root-lesion nematode), can 
cause potato early die (PED) (Stevenson et al., 
2001). Verticillium dahliae has a wide host range 
including bell pepper, eggplant, mint, potato, and 
tomato. Potato plants are infected directly via 
penetration of root hairs by the fungus. Once the 
fungus has penetrated the root cortex it enters the 
xylem where it quickly plugs the vascular system 
leading to premature senescence (Figure 1). PED is 

an annual production concern for commercial potato 
growers and impacts plant health and subsequently, 
crop yield. The Ascomycota fungus Verticillium 
dahliae is a well-documented pathogen of potato 
plants (Martin et al., 1982, Nicot and Rouse, 1987b, 
Powelson and Rowe, 1993). The use conditional 
probability may better determine where infection by 
V. dahliae might occur based on inoculum levels at 
sampled locations.  

This research used geographic information 
systems (GIS) and geostatistics to create predictive 
maps of entire fields from known sample points. The 
use of linear Kriging methods in soil science has 
been well documented (Kerry et al., 2012, 
Kravchenko and Bullock, 1999, Mueller et al., 2004, 
Yost et al., 1982). This project evaluated a nonlinear 
Kriging model to interpolate the data for V. dahliae. 
Nonlinear Kriging techniques have advantages over 
linear Kriging techniques due to their ability to 
account for uncertainty and therefore are often used 
to predict the conditional probablity for categorical 
data at non-sampled locations (Eldeiry and Garcia, 
2013, Goovaerts, 1994). Indicator Kriging is a 
nonlinear Kriging technique that is flexible and can 
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Figure 1: The disease cycle for potato early die shows how direct penetration of the root cortex leads to vascular blockage 
and plant death. The dead plant tissue serves as an overwintering structure for new microsclerotia. Image is reproduced with 
permission, from Steere and Kirk © 2013 Michigan State University. All rights reserved. 

be modified to fit specific management or research 
goals by modifying the critical threshold criteria 
(Smith et al., 1993). Conditional probability maps 
generated using indicator Kriging can be used to 
visualize the probability of any point in space 
(within the field of interest) being greater than a set 
threshold. When known threshold values are 
available for certain pathogens and insects, a 
conditional probability map can be a valuable 
agronomic crop management tool. 

2 MATERIALS AND METHODS 

2.1 Study Area and Collection of Data 

Three field sites located in a commercial potato 
production area were established for this study in 

Saint Joseph County in the Southwestern corner of 
Michigan. Each field was ~30 ha. Each field was on 
a two-year rotation, alternating between round white 
potatoes used for chipping and seed corn (Zea 
mays). 20 soil cores were collected from each field, 
on a grid-sampling scheme to obtain samples 
proportionally throughout the entire field, with a 25 
mm JMC soil corer (Clements Assoc., Newton, IA) 
to a depth of ~100 mm around a central point in each 
grid (10 cores and mixed). The position of each 
point was recorded using a Trimble Juno 3D 
Handheld GPS device (Trimble Navigation Limited, 
Sunnyvale, CA). Soil samples were placed in 
separate labelled plastic bags and stored at 4°C 
pending further analysis. Soil data were entered 
relative to their geographical coordinates and plotted 
and analysed using ArcGIS 10.1 (ESRI Inc., 
Redlands, CA). 
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2.2 Quantification of Verticillium 
dahliae Colony Forming Units 

To estimate V. dahliae colony forming units (CFU), 
10 g of soil from each sample point was prepared 
using the wet sieving method (Nicot and Rouse, 
1987a). Soil left in the 37μm sieve was plated onto 
an NP-10 medium (Kabir et al., 2004) which served 
as a selective nitrogen source and promoted the 
development of CFU of V. dahliae while inhibiting 
the growth of other soilborne fungi and bacteria. 
Isolates were stored at 20°C for 14-21 days and 
observed at 4x magnification under a dissecting 
microscope (Leica Microsystems Inc., Buffalo 
Grove, IL) and the number of microsclerotia (CFU) 
were recorded. Each sample point was replicated 
five times to confirm the accuracy of the initial CFU 
enumeration. 

2.3 Data Interpolation 

2.3.1 General Interpolation 

In most interpolation methods, predicted values can 
be estimated by weighted averages from the 
surrounding areas. The general equation for the 
interpolation of non-sampled locations is computed 
as follows: 

ܼ∗ሺݔ଴ሻ ൌ෍ߣ௜ܼሺݔ௜ሻ

௡

௜ୀଵ

 (1)

where ܼ∗ሺݔ଴ሻ is the non-sampled location that is 
being predicted, ܼሺݔ௜ሻ are the values at ݊ sampled 
locations and ߣ௜ are the weights assigned to each 
sampled data point (Goovaerts, 1997). The 
difference between interpolation methods is 
dependent on how ߣ௜ is calculated and what their 
respective values are. 

2.3.2 Indicator Kriging Interpolation 
Method 

The indicator Kriging model assumes an unknown, 
constant mean. The technique has been well 
documented (Journel, 1983; Solow, 1986) and the 
general form can be computed as follows (Eldeiry 
and Garcia, 2013) 

ሻݏሺܫ ൌ ߤ ൅ ሻ (2)ݏሺߝ

where ߤ is an unknown constant and ܫሺݏሻ is a binary 
variable. The indicator function under a desired cut-
off value zk is computed as 

,ݔሺܫ ௞ሻݖ ൌ ൜
1, ݂݅ ሻݔሺݖ ൒ ௞ݖ
0, ݁ݏ݅ݓݎ݄݁ݐ݋

 (3)

The indicator Kriging model estimator I(xi,zk) at the 
location can be calculated using 

;௢ݔሺ∗ܫ ௞ሻݖ ൌ෍ߣ௜ܫሺ

௡

௜ୀଵ

;௜ݔ ௞ሻ (4)ݖ

and the indicator Kriging, given Σλ=1, is 

෍ߣ௝ߛூ൫ݔ௝ െ ௜൯ݔ ൌ ௢ݔூሺߛ െ ௜ሻݔ െ ߤ

௡

௝ୀଵ

 (5)

Where ߣ௝ is the weight coefficient, ߛூ is the 
semivariance of the indicator kriging codes at the 
respective lag distance, and ߤ is the Lagrange 
multiplier. These steps transform the data set into 
values between 0 and 1 based on the probability of 
that point in space being above the set threshold 
value. Based on previous work done on the number 
of V. dahliae CFU needed to promote PED (Nicot 
and Rouse, 1987b), the threshold value for this 
interpolation method was set at 5 CFU/10 g of soil. 

2.3.3 Model Evaluation 

The accuracy of the indicator Kriging model was 
evaluated by using the root mean square error 
(RMSE) cross-validation calculated as (Ramos et al., 
2008) 

ܧܵܯܴ ൌ ඩ
1
ܰ
෍ሾ መܼሺݔ௜ሻ െ ܼሺݔ௜ሻሿଶ
ே

௜ୀଵ

 (6)

where መܼሺݔ௜ሻ is the predicted value at the cross-
validation point, ܼሺݔ௜ሻ is the measured value at point 
 ௜ and ܰ is the number of data sets measured. Theݔ
successfulness of the model in assessing the 
variability was evaluated by using the root mean 
squared standardized error (RMSSE) cross-
validation statistic calculated as (Ramos et al., 2008) 

ܧܵܵܯܴ ൌ ඩ
1
ܰ
෍ቈ

መܼሺݔ௜ሻ െ ܼሺݔ௜ሻ

௜ሻݔଶሺߪ
቉
ଶே

௜ୀଵ

 (7)

where መܼሺݔ௜ሻ is the predicted value at the cross-
validation point, ܼሺݔ௜ሻ is the measured value at point 
 ௜, ܰ is the number of data sets measured, andݔ
 .௜ݔ ௜ሻ is the variance at cross-validation pointݔଶሺߪ
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3 RESULTS AND DISCUSSION 

Cross-validation statistics analysis was performed on 
data for the three fields with a low-, high- and 
variable-risk based on spatial distribution of CFU 
(Table 1). These cross-validation statistics are used 
to determine how well the indicator Kriging 
equation interpolated the V. dahliae CFU numbers 
for each of the three fields. The closer the RMSE is 
to zero, the closer the prediction is to the measured 
values (Robinson and Metternicht, 2006). All three 
fields had RMSE values relatively close to zero 
meaning that the model derived from the data points 
in each of the respected fields accurately predicted 
the probability of any point in space within the field 
being greater than the threshold of 5 CFU/10 g of 
soil. 

Table 1: Cross-validation parameter root mean squared 
error (RMSE). 

Field RMSEa RMSSEb

1 0.1133264 0.953032 
2 0.3442308 1.145598 
3 0.4960541 1.034625 

a Root mean squared error, the root value of the mean squared 
error 
b Root mean squared standardized errors The closer to 1, the more 
accurate the prediction of variability for that model 
 

The RMSSE shows the model’s successfulness 
in assessing variability. The closer the RMSEE is to 
1, the more successful the prediction of variability 
for that model was (Robinson and Metternicht, 
2006). The calculations using the indicator Kriging 
equations above for each of the three fields of 
interest showed high levels of accuracy in predicting 
and assessing variability. Each of the three equations 
preformed well in regards to how accurate the 
predictions of the established threshold probability 
(CFU > 5 CFUs/10 g of soil) at points that were not 
sampled. 

Conditional probability maps were generated for 
the three individual fields (Figure 2). These maps 
spatially represented the probability of PED 
incidence based on a 5 CFU/10 g of soil threshold. A 
conditional probability map was generated of the 
low-risk field (Figure 2A). Based on the 20 original 
V. dahliae CFU values and a threshold value of 5 
CFU/10 g of soil, the indicator Kriging model 
developed for this field predicts a low incidence of 
PED. The small portion of the field colored red had 
a probability from 0.95 to 1 of PED. The majority of 
the field, colored in blue had a probability between 0 
and 0.1 for PED. A conditional probability map was 
generated of the high-risk field (Figure 2B). The 

majority of this field had a probability between 0.95 
and 1 for PED. This is quite a contrast from the low-
risk field. Finally a conditional probability map was 
generated of the variable-risk field (Figure 2C). The 
result is a map where the probability of being above 
the established PED threshold varied throughout the 
field. 

The visualized differences among these three 
maps shows how the use of conditional probability 
can be used to predict the spatial distribution of plant 
diseases in the soil and provide and informational 
tool for commercial potato growers. In an effort to 
help reduce inoculum levels of V. dahliae and other 
soilborne pathogens, growers will often elect to use 
soil fumigants. For many years, soil fumigants such 
as methyl bromide were used, with great 
effectiveness, to eliminate soilborne plant pathogens 
such as V. dahliae (Wilhelm and Paulus, 1980, 
Wilhelm et al., 1961, Ebben et al., 1983). More 
recently, the commercial agriculture industry has 
phased out the use of methyl bromide due to its 
negative effect on the environment (Thomas, 1996). 
New soil fumigants such as metam sodium and 
chloropicrin have taken the place of methyl bromide 
but as researchers begin to better understand the role 
of beneficial soil microorganism related to plant 
health (Hayat et al., 2010) the use of any broad-
spectrum fumigant is being re-evaluated in a new 
context. While these soil fumigants may control 
soilborne pathogens, they may be, in effect, reducing 
the beneficial soil microorganism populations that 
assist in plant growth and natural defence against 
plant pathogenic bacteria and fungi.  

The accessibility of conditional probability maps 
could become a useful informational tool for 
growers implementing integrated pest management. 
Rather than making crop management decisions for 
a field’s acreage as a whole, a grower would be able 
to assess each field individually, or even at the sub-
field level to determine problem fields or areas of 
the field that would benefit from soil fumigation. If 
the grower maintained a low-risk field (Figure 2A), 
they could use conditional probability as a holistic 
management tool to determine no need for 
fumigation in that field based on the PED risk. 
Conversely, if the grower assesses the conditional 
probability for PED and the results indicate a high-
risk for PED above the established threshold (Figure 
2B), the grower may elect to treat with applications 
of soil fumigants. Lastly, if a grower is managing a 
variable-risk field for PED (Figure 2C), this would 
allow the grower to make decisions based on a sub-
field management approach and only apply fumigant 
to the portions of the field that present a greater
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Figure 2: Conditional probability maps developed for low-risk field (A), high-risk field (B), and variable-risk field (C) 
using the indicator Kriging method of interpolation with the threshold set at 5 CFUs/10 g of soil. The conditional 
probability map for each field represents the risk for the development of potato early die (PED) based on the probability of 
that area in space having greater than 5 CFUs/10 g of soil with the color red representing a high probability and the color 
blue representing a low probability based on predicted values of Verticillium dahliae CFUs at that location in the field. 

probability of PED. By moving away from 
generalized, large-scale management practices and 
into single field and sub-field management strategies 
with the incorporation of geostatistics and GIS, 
growers have the potential to greatly decrease input 
cost and negative environmental effects brought on 
by heavy regimens of soil fumigants and pesticides, 
and other inputs. 

4 CONCLUSIONS 

The results of this research show how the 
incorporation of conditional probability into an 
integrated pest management system has the potential 
to inform management decisions that can decrease 
the amount of soil fumigants applied on commercial 
potato fields. Though this study had a narrow focus 
looking at only one soilborne pathogen in one 
cropping system, the methods described above are 
adaptable and flexible enough to be easily 
incorporated into integrated pest management 
programs across cropping systems and for other 
soilborne pathogens. From an agronomic 
perspective, having the ability to sample a relatively 
small amount of data points and use those points to 
predict values for an entire field could greatly 
influence how integrated pest management is 
conducted in the future. Research going forward will 
be geared towards the geospatial interactions of soil 
pathogens and soil microbial populations in hopes of 
reducing the use broad-spectrum soil fumigants. 
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