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Abstract: Web service composition is studied by many works, and constitutes the heart of a great research activity. 
However, the majority of this work does not take into account all temporal constraints imposed by the 
service provider and the users in the composition process. Incorporating temporal constraints in Web service 
composition result in more complex model and make crucial the verification of temporal consistence during 
the modeling (at design time) and then during the execution (at run time). In this paper, we presented H-
Service-Net model for Web service composition with time constraints, and propose a modular approach for 
modeling composition with time constraint using Extend time unit system (XTUS), Allen’s interval algebra 
and comparison operators in a time Petri net model.  

1 INTRODUCTION 

The compositions of Web services allow to 
determine a combination of services that meets the 
customer's request, this composition is provided as a 
single service. Moreover, the composition of Web 
services should consider the time constraints 
associated with this composition. 

It is possible to identify at least two types of 
services available on the Web. The former include 
services that require an immediate response, such as 
dictionaries or weather services online. This type of 
service allows the user to get immediate answers. 
The second type of service refers to Web services 
that require estimates or more generally a 
negotiation such as travel agency, building a house 
or production and delivery of products. 

The terms orchestration and choreography 
describe two aspects of creating business processes 
from composite Web services. Orchestration refers 
to an executable business process that can interact 
with both internal and external Web services, the 
interactions occur at the message level. They include 
business logic and task execution order, and they can 
span application and organizations to define a long-
lived, transactional, multi-step process model. 
Orchestration always represents control from one 
part’s perspective. This differs from choreography, 
(Peltz, 2003). 

This article presents the definition of a formal 
model that supports the necessary abstractions such 

as time constraint, time consistency and proposing a 
framework that meets the needs of the user with the 
temporal properties. The content of this article is 
organized as follows: 

Section 2 presents some related work, Section 3 
presents our major objectives, Section 4 presents our 
model named ‘H-Service-Net’, and it is illustrated 
with an example. Finally, Section 5 concludes the 
paper. 

2 RELATED WORK 

Incorporating the time factor in the process of 
composing Web services has become essential for 
the implementation of time-based Web services.  
Several works have been proposed in the context of 
modeling time constraints in Web services (Dai, 
2007) (CHEN, 2011), (Hamadi, 2003), (Hamadi, 
2008). In the next section, we describe the 
approaches presented in the literature for the 
development of service composition based on time 
constraints. 

There are several formalisms of modeling Web 
service composition using Petri nets (Dai, 2007), 
(CHEN, 2011), (Hamadi, 2003) which is one of the 
most known formalisms and the most adapted to 
express the concurrent systems. Hamadi et al. 
(Hamadi, 2003), (Hamadi, 2008) propose a model 
based on Petri nets for Web service composition and 
model the control flow of Web services. Diaz et al. 
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(Diaz, 2006) use formal methods for describing and 
analyzing the behavior of Web Services, including 
time restrictions. Dai et al. (Dai, 2007)  present  a  
time  constraint  modeling  and analyzing  method  
for  Web  processes  based  on OWL-S annotations,. 
Lallali et al. (Lallali, 2007), (Lallali, 2008) proposed 
a new formalism called Web service time extended 
finite state machine (WS-TEFSM) and an 
intermediate format (IF) which enables modeling of 
timing constraints in BPEL. Rouached et al. 
(Rouached, 2006) propose an event driven approach 
for checking, functional and non-functional 
consistency of Web service composition expressed 
in BPEL by using the Event Calculus framework. 
The paper of Kazhamiakin et al. (Kazhamiakin, 
2004) introduced a new formalism called WSTTS 
(Web service time transition system) which enables 
verification of time constraints in Web service 
compositions using model checking for WS-BPEL 
processes to capture the time behavior. Lastly, Ting-
Wei et al. (CHEN, 2011) present  a  verification  
approach  of  time  constraint  consistency  of  Web  
service composition,  which  transform   OWL-S  to  
ETPN  (extended  time  Petri  net),  an algorithm of 
time consistency verification in Web service 
composition is proposed but this paper did not 
support time constraints for the execution of the 
service. 

The composition of Web services is an issue that 
has been studied by many researches and is the core 
to a wide research activity. However, most studies 
(Diaz, 2006), (Lallali, 2007), (Kazhamiakin, 2004), 
(Hamadi, 2003), (CHEN, 2011), (Rouached, 2006), 
(Dai, 2007), (Hamadi, 2008) did not consider all 
types of temporal constraints "local, global, relative, 
absolute..." imposed by the composition, the client 
and the service provider. Therefore, the results did 
not satisfy the needs and time preferences. 
Moreover, works like (Hamadi, 2003), 
(Kazhamiakin, 2004) can only answer whether there 
is temporal inconsistency, but they did not provide a 
concrete solution. 

3 MAJOR OBJECTIVES 

To guaranty vulnerabilities of web service 
composition and control system behavior is an 
important criterion and can be done by defining a 
temporal consistency at design and run time of the 
composition 

Recently, Web service composition model and 
languages do not allow defining all types of 
temporal constraint imposed by the client, the 

provider and the composition in a declarative and 
formal way and verify temporal consistency at 
design and run time, defining if there is a temporal 
contradiction at design time is important because 
modification of temporal constraint cannot be done 
at run time.    

4 COMPOSED WEB SERVICES 
AS TIME PETRI NETS 

4.1 H-Service-Net: A Temporal Model 
for Web Service Composition 

Although the temporal RDP allows to define 
temporal performance information, there are not 
enough for modeling any complex system such as 
temporal constraints in web service composition, For 
this, we have extended the timed  RDP in order to 
define a well-suited timed model for the 
formalization of a web service orchestration. Thus, 
we have defined an extended time Petri net called H-
Service-Net. 

The H-Service-Net model (an  acronym  for  
Hierarchical Service Net) is a time Petri net-based 
model It allows the  modeling  of  time-critical  
aspect  in  the  field  of  Web Services. It allows 
incremental composition of services, as well as 
consistency checking after each modification. It 
introduces a new type of places named composite 
places. A composite place is an abstract place 
represented by a sub-network, allowing a degree of 
independence between the parts of the H-Service-
Net. Indeed, a composite or single place in H-
Service -Net depends only on the subnet to which it 
belongs.  In other words, the modification of a 
component can affect its subnet or the subnets of the 
same hierarchy. This representation allows for 
incremental modeling of the H-Service-Net.  This  
will  allow for  easy  correction  of  errors,  an  exact  
location  of  conflicts between the subnet elements 
and support rapid changes. Thus, the H-Service-Net 
model is well suited for modeling the 
synchronization constraints in a temporal scenario. 
As a result, it was chosen to model the composition 
of web services. We present in what follows the 
different elements of the H-Service-Net model: 
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4.1.1 Places in H-Service-Net 

Table 1: Places in H-Service-Net. 

Place Modelin
g 

Description 

Ordinary  
Place 

 
 

It models a basic element (Web 
service) and its execution time. 

Virtual 
Place 

 
 

It models a temporal constraint. 

Silent 
Place 

 
 
 

It models a place without any 
specific task, which is used to 
handle exceptions. 

Parallel 
Place 

 
 
 

It models a set of elements of 
the same group that operate 
simultaneously, which is used 
to model concurrent Web 
service. 

Sequenti
al 
Place 

 
 
 

It models a sequence of 
elements of the same group that 
run in sequence. It is used to 
model sequential Web services. 

Root 
Place 
 

 
 
 

It represents the root of the 
global Petri net and behaves 
like a sequential composite 
place. 

Loop 
Place 

 
 
 

It is an element that runs in a 
loop and is used to model a 
recursive Web service. 
 
 

4.1.2 Transitions in H-Service-Net 

Table 2: Transitions in H-Service-Net. 

Transition Modeling Description 
 
Simple 
transition 
 

 It is fired when all its 
input places are active 
and have available 
tokens.  

Master 
transition 
 
 

 
 

It is fired as soon as the 
place associated with 
the Master arc is active 
and has an available 
token. 

First 
transition 
 

 
 

It is fired when one of 
its input places is active 
and has a free token.  

 

 

 

4.1.3 Tokens and Arcs in H-Service-Net 

Table 3: Tokens and arcs in H-Service-Net. 

Arc \ token Modeling Description 
State 
Token 

 It defines the state of the 
Web service associated 
with the place 

Exception 
Token  

▲ It is used to handle 
exceptions 

Simple arc  Control the firing  of a 
simple transition 

Master arc  Control the firing of a 
Master transition. 

4.2 Case Study 

In this section, we illustrate an application of our 
system with a real example. 

Real Scenario: An orchestration Service of 
building a house 

The time constraints imposed by house building 
services are very important because in the case of 
exceeding the expiration time can cause large 
financial loss. Therefore, verification of temporal 
consistency is important to overcome this loss. 

A composition of service must be provided to 
satisfy the customer and links must be established 
with other entities such as: real estate agency, a 
notary, the mayor, the contractor, a company of 
selling building materials and finally a bank to 
perform all financial transactions, for that seven 
Web service should be invoked: 
• Ws1: Estate agency: is an intermediary in 
transactions concerning real estate. 
• Ws2: Ws8: The bank allows performing financial 
transactions and online payment. 
• Ws3: human resource: the notary establishes the 
act of buying the plot of land between the client and 
the seller of the plot through the real estate agency. 
• WS4: human resource the architect establishes the 
house plans, according to the customer's 
requirements. 
• WS5: The City Hall: Establishes the permit to 
build the house. 
• WS6: human resource: The contractor: who 
manages the construction of the house. 
• WS7: The sales service of building materials. 
 

For  the  modeling  of  these  Web  Services  in  a  
single  H-Service-Net, we add the following 
composite places: 
• The online payment service Ws2 and the notary 
service Ws3 can run in parallel, we model them in 
H-Service-Net by a parallel composite place P1.   
• The architect service Ws4 and the City Hall service 
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can run in sequence, we model them with a 
sequential composite place S1. 
• The contractor service Ws6 and The building 
materials sales service ws7 can run in the loop, we 
model them with a loop composite place L1.   
• The estate agency service Ws1 and the Composite 
services P1, S1, L1 and the online payment service 
Ws8 run in sequence, we have modeled this set by 
the root place R. Remember that by definition the 
elements of the root run in sequence.   

 

Figure 1: H-Service-Net for the example. 

4.3 Temporal Constraint in H-Service-
Net Model 

In order to complement our system we propose a 
modular approach to model composition and 
consider all types of temporal constraints using 
Extend time unit system (XTUS) (Bouzid, 2005) to 
represent temporal interval and the algebra of 
Allen’s intervals (Allen, 1983) in order to define 
temporal relations between Web services and 
comparison operators (<, ≤, >, ≥, =, ≠) for 
comparing temporal interval to a specific time unit 
in a time Petri net [(BERTHOMIEU, 1991)] model.  

4.3.1 Allen’s Interval Algebra 

James F. Allen (Allen, 1983) has defined a set of 
13 basic temporal relations between two intervals 
{b, m, o, s, d, f, eq, a, mi, oi, si, di, fi} which 
describe the relative positions between two times 
intervals, These relations cover all possible cases of 
temporal relations. 

4.3.2 XTUS (Extend Time Unit System) 

XTUS (Bouzid, 2005) is an algebraic tool for 
constructing temporal specifications in a simple and 
powerful way, as XTUS refers to absolute time, 

basic time units are defined by providing a full date 
specification including the following temporal 
attributes: year, month, day, hour, minute and 
second. 

Although the system is extensible and other BTU 
(Basic time Unit) can be added, each absolute time 
can be specified in a unique way as a sequence of 
integers i with the following form: i = [year, month, 
day, hour, minute, second]. (Bouzid, 2005)    

4.3.3 Schematic Representation of Time 
Constraints in H-Service-Net 

Different measures of time exist to describe the 
temporal constraints in our model seven time units 
are adopted so the diagram is defined as follows:  
[Year, Month, Day, Weekday, Hour, Minute, 
Second] that allows to express temporal constraints 
which must be confirmed with calendar dates. 

4.3.4 Representation Model of Temporal 
Constraints 

CWS: refers to a composite Web service that is 
represented as H-Service-Net Model. 
CWS = {ID, WS, M, R} 
ID: identifier of the composite Web service. 
WS = {ws1, ws2,…, wsi,…, wsn}: Non-empty set of 
Web service, wsi: is a Web service component which 
belongs to the composite Web service CWS. 
M?! = {? m / m ∈ M? } ∪ {! m / m ∈ M! }. M?: Non-
empty set of incoming message, M!: Non-empty set 
of outgoing message. 
R: Finite set of temporal constraint, R= R1 ∪ R2. 
R1: A relation that allows assigning absolute time 
constraints. 
R1 = {XTUS, φKC1∧ φKC2, wsi ∨ M?!}. 
R2: A relation that allows assigning relative time 
constraints between two Web services. 
R2 = {wsi∨M?!, XTUS, RAK(φKC1∧φKC2), wsj∨ M?!} 
XTUS: Time interval expressed in the XTUS system 
with the follows schema [Year, Month, Day, Day of 
Week, Hour, Minute, Second]. 
K: the number of the temporal attribute. 
K  ∈ {0,1,2,3,4,5}. 
k=0 (BTU=”Year”, k=1 (BTU=”Month”, k=2 
(BTU=”Day”, k=3 (BTU=”Day of Week”, k=4 
(BTU=”Hour”, k=5 (BTU=”Minute”, k=6 
(BTU=”Second”. 

φK: A set of comparison operator, φK ∈ {<K, ≤K, >K, 
≥K, =K, ≠K}. 

C1, C2: Constants that express the values of BTU. 

RAK  :Allen’s Relation, RA∈ {bk, mk, ok, sk, dk, fk, 
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eqk, ak, mik, oik, sik, dik, fik} 

The following table represents illustrative examples 
that express relative temporal constraints using our 
system for each Allen’s relation: 

Table 4: Relative Time constraints for each Allen’s 
relation. 

Allen 
Relation Example 

iws b jws  
jws can be run between 1 and 5 days 

after the execution of  iws   ji wsbws ),51(,, 2   

iws m jws  
jws   can be run Just after iws   the 

first trimester of each year 
 ji wsmws ,]],31[,[,   

iws o jws  
jws can be run at least 20 minutes 

before the beginning of iws  
 ji wsows ),20(,, 5   

iws s jws  

jws can be run at the beginning of 

iws  every work day from 8 to 16 
hours 
 ji wssws ,]],168[],62[,,,[, 
 

iws d jws  

jws can be run at least 10 minutes 
before the start of wsଵ		and more than 
20 minutes after the end of iws  
 ji wsdws ),20,10(,, 5   

iws f jws  
iws must end its execution by the end 

of jws  the last day of each year 
 ji wsfws ,],31,12,[,  . 

iws eq

jws  

iws must begin and end with jws  
each weekend. 
 ji wseqws ,]],1,0[,,,[,   

Our model allows expressing all relations of Allen 
interval algebra. In order to model the temporal units 
of Web services with time constraints, solutions in 
section 2 (Diaz, 2006), (Kazhamiakin, 2004), 
(CHEN, 2011) model time with one basic time unit 
such as second or an hour. However, all basic time 
units can be expressed in our solution. 

Our system is applicable in every type of service 
and especially in service aimed at temporal 
constraints as critical 

4.3.5 Temporal Constraint in H-Service-Net 

The following temporal constraints are specified 
TC1: if the client sends a valid credit card number 
the notary must send the contract of purchasing the 
land within a period of 8h. 

Temporal constraints can be expressed either by 

absolute constraints affected to a single service or by 
a relative constraint between two messages 
exchange. 

 .?),8(,,? 4 ActBuyingbCCN 
 

TC2: in winter, a discount of the price is given to 
building materials service.  

 .?,]],111[,[ materialdevis   

TC3: service of selling and building materials has its 
specific delivery time constraints in collaboration 
with the contractor: 
 If the delivery request is received from 8h to 

12h material is delivered after at most 1 hour. 
 If the delivery request is received from 13h to 

16h material is delivered after at least 3 hours. 
 If the delivery request is received the weekend 

the material is delivered over 24 hours. 
 
 
 deliverybdeliveryofordre

deliverybdeliveryofordre

deliverybdeliveryofordre

?),3(]],1612[,,,,[,!

?),1(]],118[,,,,[,!

?),24(]],10[,,,[,!

4

4

4






 

TC4: the client imposes that the construction of the 
house should not exceed the realization delay of six 
months. 
 .!),6(,,? 1 workendbaccept 

 

4.3.6 Checking Temporal Consistency at 
Design Time   

This section presents the check-relative-constraint-
at-design-time algorithm for verifying relative 
constraint in composite Web services. It affects the 
new local constraint to the composite place that 
contains relative constraint and then checks if the 
relative constraint between two web services can be 
satisfied compared to the local constraint of each 
Web service. For the successful case, the outcome is 
“total or partial temporal consistency”, and for the 
unsuccessful case the outcome is “temporal 
inconsistency”  
Check-relative-constraint-at-design-time 
algorithm 

ALGORITHM 1.   Check-relative-constraint-at-
design-time algorithm 
Input: 
LCi= [mini, maxi] ki: Local constraint affected to wsi with 
BTU=ki; 
LCj=[minj,maxj]kj : Local constraint affected to wsj with 
BTU=kj; 
RCi-j={wsi,-,Rk(i-j) (>l ⋀ <m),wsj}: Relative constraint 
affected to composite place TCi-j between wsi and wsj with 
BTU=k(i-j); 
Return (PTC: partial temporal consistency, TTC: total 
temporal consistency, TI: temporal inconsistency) 
Int Max-k= Max(ki,kj,k(i-j) ); 
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s∈ {i, j, i-j}; 
 
Vt  convert (V, i, j) { 
 T array [6];T [0] =12;T [1] =30;T [2] =24;T [3] =1; 
 T [4] =60;T [5] =60; 

Int t =1; 
For k=i to (j-1)  
 {t=t*T [k];} 
Vt=V*t; 
Return Vt ;         } 

 
If (ks<Max-k) then  
  LCs=[convert(mins,ks,Max-k),convert(maxs,ks,Max-k)]; 
End if  
Switch (R) { 

Case “b”: LC [TCi-j] = [mini+l+minj, maxi+m+maxj];         
break 
Case “m”: LC [TCi-j] = [mini+minj, maxi+maxj]; 
break 
Case “o”: LC [TCi-j] = [minj+l, maxj+m];  
Verify-o-constraint (); break 
Case “s, f”: LC [TCi-j] = [minj, maxj];  
Verify-s-f-constraint (); break. 
Case “d”: LC [TCi-j] = [minj, maxj];  
Verify-d-constraint (); break 
Case “eq”: LC [TCi-j] = [max0 (mini, mini), max (maxi, 
maxj)]; Verify-eq-constraint (); break 

    } 
Verify-o-constraint () { 
If (l+minj>mini) &(m+maxj>maxi) then return (‘’TTC ‘’); 
Else if (l+minj>mini) then return (‘PTC‘’); 
        Else if (m+maxj>maxi) then return (‘’OTC‘’) 
                Else return ("TI’’) 
                End if 
       End if 
End if                        } 
Verify-s-f-constraint () { 
If (minj−mini>0) & (݉ܽ0<݅ݔܽ݉−݆ݔ) then return (‘’TTC‘’) 
Else if (minj−mini>0) then return (“PTC ‘’) 
        Else if (݉ܽ0<݅ݔܽ݉−݆ݔ) then return (“PTC‘’) 
                Else return (“TI”) 
                End if 
        End if 
End if 
                                      } 
Verify-d-constraint () { 
If (minj>l+mini) &(݉ܽ݅ݔܽ݉<݆ݔ+݉) then return (‘’TTC‘’) 
Else if ((݆݉݅݊>݈+݉݅݊݅) then return (‘’PTC‘’) 
        Else if (݉ܽ݅ݔܽ݉<݆ݔ+݉)) then return (‘’PTC‘’) 
                Else return (“TI”) 
                End if 
        End if 
End if                          } 
Verify-eq-constraint ()  { 
If (mini=minj) & (݆݉ܽݔܽ݉=݅ݔ) then return (‘’TTC’) 
Else if [mini, maxi] ∩[minj, max] ≠∅ then return (‘’PTC‘’) 
        Else return ("TI”) 
        End if 
End if                             } 
Example:  
Ws4 and Ws5 are executed in parallel composite 
place P1 with local temporal constraints 
LC4=[min4,max4], LC5=[min5, max5] and a relative 
temporal constraint  

RC4-5= {Ws4, R (>l ⋀ <m), Ws5}. 
The following table presents some example of 
executing Check-relative-constraint-at-design-time 
algorithm 
 

min4  max4  min5  max5  R  l  m  LC(P1)  result 
 30  50  40  45  o  10  30  [50,75]  TTC 
 30  50  5  10  o  10  30  [15,40]  TI 
 5  20  10  15  eq  10  30  [10,20]  PTC 
 5  10  20  30  eq  10  30  [20,30]  TI 
 

The following algorithm checks if the client global 
constraint assigned to a composite place can be 
satisfied compared to the local constraint of each 
Web service. For the successful case, the outcome is 
“total or partial temporal consistency”, and for the 
unsuccessful case the outcome is “temporal 
inconsistency” 

ALGORITHM 2.  Check-global-constraint-at-
design-time algorithm 
GC= {-, ≬k c, CompositPlace} GC:  global constraint 
affected to a composite place CompositPlace 
LC: a set of local time constraint affected to a simple 
place (atomic Web service) or composite place (composite 
Web service) 
Each simple Place has a local temporal constraint 
affected by the service provider as a range LC= [minL, 
maxL] k 

Return (PTC: partial temporal consistency, TTC: total 
temporal consistency, TI: temporal inconsistency) 

 
k: the number of the time attribute k∈{0,1,2,3,4,5}. 
k=0→BTU="Year", k=1→BTU="Month", 
k=2→BTU="Day", k=3→BTU="Day of Week", 
k=4→BTU="Hour", k=5→BTU="Minute", 
k=6→BTU="Second" 
 
maxk  max_temporal_attributes () { 
maxk=0; 
For each simple_place do  

If maxk < simple_place. k then  maxk = k; 
End if 

And for 
Return maxk;                                  } 
Transform_to_interval (≬k c) {…………………..(5) 
If  ≬k=<k  c then return [0, c-1] 
If ≬k=≤k c  then return [0, c] 
If  ≬k=>k  c then return [c+1, +∞] 
If  ≬k=≥k  c then return [c, +∞] 
If  ≬k= >k c1  ∧ ≬k=<k  c2  then return [c1+1, c2-1]  
If  ≬k=>k c1  ∧ ≬k= ≤k  c2  then return [c1+1, c2]  
If  ≬k= ≥k c1  ∧ ≬k= <k c2  then return [c1,c2-1]  
If  ≬k= ≥k c1  ∧ ≬k= ≤k c2  then return [c1,c2]  
                                            } 
For each place do  

Maxk = max_temporal_attribut ()………(1) 
For each place.child do  

LC.child=[convert(minL,k,maxk), 
convert(maxL,k,maxk)]………(2) 

End for 
If (place = S) or (place=R)   
then LC.place= Somme (LC.child) ….(3) 
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And if 
If (place = P) then  
LC.place=[Max(minL.child),Max(maxL.child)]…..(4) 
And if 

End for 
 
[minL,maxL ]=LC(CompositPlace);  
[ming,maxg ]= Transform_to_interval (GC); 
If ([ming, maxg] ⊆ [minL, maxL]) then return (‘’TTC‘’) 
Else if [minL, maxL] ⊏ [ming, maxg] then return (“PTC‘’)   
         Else if (maxL>ming) then return (“PTC”) 
                  Else return ("TI"); 
                  End if  
        End if 
End if 
 
If (minL≥maxg) then return (“TI’’) 
Else return (‘PTI‘’); 
End if 
 (1) max_temporal_attributes () is a method that 
returns the largest temporal attribute affected to a 
simple place (atomic Web service) in the HSN 
network, i.e. The maximum value of the k variable. 
(2) Temporal attributes conversion of simple place 
to the value max_k in order to have a common time 
unit (BTU: Basic Time Unit). 
(3) And (4) calculation methods of local temporal 
constraints in a composites place.  
(5) The method Transform_to_interval ( ) converts 
temporal constraint to a temporal interval.  
 

Example:  
Ws4 and Ws5 are executed in parallel composite 
place P1 with local temporal constraints LC4= [min4, 
max4], LC5=[min5, max5] and a global temporal 
constraint  GC = { -, (>C1 ⋀ <C2), P1}. 
The following table presents some example of 
executing Check-global-constraint-at-design-time 
algorithm 
 

 min4  max4  min5  max5  C1  C2  LC(P1)  result 
 30  50  40  42  40  45  [40,42]  TTC 
 30  50  40  45  40  45  [40,50]  PTC 
 30  50  40  45  10  20  [40,50]  TI 

4.3.7 Checking Temporal Consistency at 
Runtime 

This section presents the check-relative-local-
constraint-at-run-time algorithm for verifying 
relative and local constraint at run time in Web 
service composition 

ALGORITHM 3.  Check-relative-local-
constraint at run time algorithm 
LCi= [mini, maxi] ki: Local constraint affected to wsi with 
BTU=ki; 
LCj=[minj,maxj]kj : Local constraint affected to wsj with 
BTU=kj; 
RCi-j= {wsi, -, Rk (i-j) (>l ⋀ <m), wsj}: Relative constraint 

affected to composite place TCi-j between wsi and wsj with 
BTU=k (i-j); 
Bi, Ei: Begin and End execution of wsi; 
Bj, Ej: Begin and End execution of wsj; 
Return (LTC: Local temporal consistency, LTI: Local 
temporal inconsistency, RTC: Relatif temporal 
consistency, RTI: Relatif temporal inconsistency) 

 
If ((Ei-Biሻ	∈ [mini, maxi] )then return (“LTC ‘’) 
Else return (“LTI’’); 
End if 
If (Ej - Bj )∈ [minj, maxj] ) then return (“LTC‘’) 
Else return (“LTI’’); 
End if 
 
Switch (R)  

Case “b”: 
if (Bj  ∈ [Bi+mini+l, Bi+maxi+m]) then return 
(“RTC”) 

       Else return (“RTI’’);  
      End if  
break 
Case “m”:  

if (Bi=Ej) then return (“RTC”) 
Else return ("RTI);  
End if 

break 
Case “o”: 

 if ((Bj ∈ [Bi+l, Bi+m]) & (Ei<Ej) & (Ej∈ [Bi+l+minj, 
Bi+m+maxj]) ) then return (“RTC‘’)  
else return (“RTI’’);  
End if 

break 
Case “s”:  

if ((Bi=Bj) & (Ei <Ej)) then return (“RTC‘’) 
Else return (“RTI’’);  
End if 

break 
Case “d”:  

if ((Bi ∈[Bj+l, Bj+m])&(Ei <Ej)) then return 
(“RTC‘’) 
Else return (“RTI’’);  
End if 

break 
Case “f”:  

if ((Bj<Bi) & (Ei =Ej)) then return (“RTC ‘’) 
Else return (“RTI’’);  
End if 

break 
Case “eq”:  

if ((Bi =Bj )&(Ei=Ej)) then return (“RTC”) 
Else return (“RTI’’);  
End if 

break 
End switch    
 

Example:  
Ws4 and Ws5 are executed in parallel composite 
place P1 with local temporal constraints 
LC4=[min4,max4], LC5=[min5, max5] and a relative 
temporal constraint   
RC4-5= {Ws4, R (>l ⋀ <m), Ws5}. 

The following table presents some example of 
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executing Check-relative-local-constraint at run time 
algorithm 
 

min4 max4 min5 max5  R  l  m B4 E4 B5 E5  result 
 30  40  40  45  o  10 30 35 70 50 95  RTC, LTC 
 30  40  40  45  o  10 30 35 70 50 65  RTI,LTI 

5 CONCLUSIONS 

Verification of temporal constraints in Web service 
composition is an important way to ensure the 
exactitude and the reliability of composition. Our 
contribution proposes a modular approach for the 
modeling composition with time constraint while 
using Extend time unit system (XTUS) to represent 
the temporal periodicity of the services, Allen’s 
interval algebra and comparison operators (<, ≤, >, 
≥, =, ≠) to represent all types of temporal constraint 
in a time Petri net model. H-Service-Net model 
allows an incremental composition of services, as 
well as checking of temporal consistency at design 
time, during the execution and after each handling of 
exception in a simplified manner and allows 
reducing the quantity of stored data. Finally, we 
present an algorithm of checking temporal constraint 
at design and run time.  
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