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Abstract: Real time volume rendering of medical datasets using raycasting on graphics processing units (GPUs) is a 
common technique. Since more than 10 years there are two established approaches for realizing GPU ray 
casting: multi-pass (Kruger and Westermann, 2003) and single-pass (Röttger, et al., 2003). But the required 
parameters to choose the optimal raycasting technique for a given application are still unknown. To solve 
this issue both raycasting techniques were implemented for different raycasting types using OpenGLSL 
vertex and fragment shaders. The different techniques and types were compared regarding execution times. 
The results of this comparison show that there is no technique faster in general. The higher the 
computational load the more indicates the use of the multi-pass technique. 

1 INTRODUCTION 

In the last few years GPUs have become the most 
important means for direct volume rendering (DVR). 
Raycasting is the state of the art technique for 
realizing DVR on GPUs (Marques, et al., 2009), 
(Mensmann, et al., 2010). There are two basic 
approaches for realizing GPU raycasting: multi-pass 
and single-pass. These approaches differ in how they 
calculate the ray marching direction vectors. 

The multi-pass approach, as implemented by 
(Kruger & Westermann, 2003) works as follows 
when using OpenGLSL vertex and fragment 
shaders: 

A volume dataset is stored in the graphics 
memory as a 3-D texture. 3-D textures are indexed 
with texture coordinates 

(x_coord, y_coord, z_coord) ∈	[0.0, 1.0]. (1) 

The next steps are: 
Pass 1: The front facing faces of the volume 

bounding box are rendered to a texture with 3-D 
texture coordinates (1) as RGB-encoded color 
values. These coordinates are the ray start positions 
for the raycasting. 

Pass 2: The back facing faces of the volume 
bounding box are rendered to another texture with 
3-D texture coordinates (1) as encoded color values. 
These coordinates are the ray exit positions for the 
raycasting. Based on the coordinate information of 

passes 1 and 2, the ray directions can be calculated. 
The directions are rendered as color to another 3-D 
texture for use in the last pass. 

Pass 3: The raycasting is performed by a 
fragment shader casting each ray along the 
calculated direction through the volume using a 
given step size. 

The single-pass approach (Röttger, et al., 2003) 
uses only a fragment shader to calculate the ray 
entry and exit points and performs the raycasting 
(figure 1). The ray directions are calculated by 
subtracting the vertex position from the camera 
position. The ray entry positions are the positions of 
the front vertices. From here the raycasting performs 
like in pass 3 of multi-pass raycasting until the ray 
exits the volume. 

 

Figure 1: Single-pass raycasting (Movania, 2013). 

The advantage of single-pass raycasting is its 
simplicity. Due to the reduction of textures and 
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saving of many OpenGL calls regarding the volume 
bounding box creation, it should be faster than 
multi-pass raycasting. The disadvantage is the full 
computational load on the fragment shader 
(Venkataraman, 2009) which could slow down the 
raycasting. 

Different optimization techniques can be 
implemented to lower execution times (ETs). One of 
the most common techniques is the “Early Ray 
Termination” (ERT) (Matsui, et al., 2005). It was 
implemented because of its high potential of 
lowering the ET while being easy to realize in 
OpenGLSL. 

Currently the required parameters to choose the 
optimal raycasting technique for a given application 
are unknown. The comparison reported here shall be 
a first contribution to clarify this issue. 

2 MATERIALS AND METHODS 

Both raycasting techniques were implemented using 
C# and OpenGLSL 4.3 (with OpenGL4Net  
(Vanecek, 2014)). The engaged hardware consists of 
a notebook (Windows 7 SP1, Intel Core i5-4200M 
CPU, 2.5 GHz, 16 GB RAM) with an NVIDIA 
Quadro K3100M (driver version 312.32) graphics 
card. The raycasting is performed using an 
ultrasound image volume with 512×378×222 
grayscale values (8bit, unsigned integer), a voxel 
spacing of 0.42 mm×0.39 mm×0.63 mm and a 
viewport size of 1440×900. 

For the comparison three different raycasting 
types were implemented with and without ERT. 
1. “Minimum Intensity Projection” (MINIP) 

(Radiopaedia.org, 2014) - a simple rendering 
technique to visualize e.g. liver vessels in 
ultrasound volumes (figure 2) – as a technique 
with low computing time. 

2. Alpha Blending (Porter & Duff, 1984) as a 
technique with medium computing time. 

3. Gradient Calculation using the left and right 
neighbor of each pixel along the ray as a 
technique with high computing time due to many 
texture fetches. 

To measure the ET of the raycasting techniques the 
following steps were realized: 

1. Implement both raycasting techniques as 
described above. 

2. Implement in-application profiling using 
OpenGL “elapsed time queries” (Shreiner, et al., 
2013) 
a. Single-pass: At the end of each “paint”-call 

b. Multi-pass: At the end of the volume 
bounding box building and at the end of each 
“paint”-call 

3. Load the ultrasound dataset. 
4. Choose the raycasting type. 
5. Activate or deactivate ERT. 
6. Set the step size to a defined value from 0.001 to 

0.05 mm (table 1). 
7. Perform an arc shot with an angular step size of 1 

(= sum of 360 steps) and call “paint” after each 
angular step. 

8. Repeat step 5 ten times to have a sum of 3600 
(single-pass) respectively 7200 (multi-pass) 
profiling values per step size. 

9. Average the ETs and add them to table 1. 
10. Repeat step 4 to 9 for every raycasting type. 

 

Figure 2: Ultrasound volume visualization (MINIP) of 
liver vessels. 

3 RESULTS 

The results of the ET measurements for the three 
raycasting types can be seen in tables 1 to 3. To 
show the change of ET ratio, the quotients of multi-
pass ETs divided by single-pass ETs were 
calculated. 

Table 1: MINIP ET (times in milliseconds). 

MINIP 
step 
size 

[mm]

single-pass multi-pass quotient 

raycast ERT raycast ERT raycast ERT 

0.001 226.3 180.4 126.0 101.4 0.6 0.6

0.002 118.7 99.1 78.6 67.8 0.7 0.7

0.005 49.3 43.8 47.6 43.3 1.0 1.0

0.01 26.6 23.5 36.8 33.7 1.4 1.4

0.02 15.5 14.1 30.5 28.4 2.0 2.0

0.05 8.6 8.6 27.9 26.0 3.2 3.0
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Additionally the ETs and quotients of the MINIP 
results are shown exemplary in figure 3 (without 
ERT) and in figure 4 (with ERT). 

As explained in the introduction the multi-pass 
raycasting consists of building the geometry first 
before executing the raycasting itself. Due to the fact 
that the geometry building remains almost constant 
at about 0.5 to 0.6 milliseconds it is not included 
separately in the tables and figures. (The multi-pass 
execution times are the sum of all passes.) 

 
Figure 3: ETs over step sizes (MINIP, without ERT) and 
the quotient of multi-pass divided by single-pass times. 

Table 2: Alpha Blending ET (times in milliseconds). 

Alpha Blending 
step 
size 

[mm] 

single-pass multi-pass quotient 

raycast ERT raycast ERT raycast ERT 

0.001 275.2 147.3 117.2 76.3 0.4 0.5

0.002 146.2 81.9 73.6 52.2 0.5 0.6

0.005 63.0 38.0 44.7 37.1 0.7 1.0

0.01 33.8 21.0 35.0 31.8 1.0 1.5

0.02 18.3 12.5 28.7 28.5 1.6 2.3

0.05 9.8 8.4 26.8 26.4 2.7 3.1

Table 3: Gradient Calculation ET (times in milliseconds). 

Gradient Calculation 
step 
size 

[mm] 

single-pass multi-pass quotient 

raycast ERT raycast ERT raycast ERT 

0.001 369.5 52.2 408.5 159.1 1.1 3.0

0.002 194.5 31.1 240.0 101.6 1.2 3.3

0.005 83.5 17.3 123.5 66.4 1.5 3.8

0.01 46.6 13.6 77.2 52.7 1.7 3.9

0.02 27.0 11.0 53.3 44.0 2.0 4.0

0.05 13.3 9.5 37.0 36.1 2.8 3.8

Figure 4: ETs over step sizes (MINIP, with ERT) and the 
quotient of multi-pass divided by single-pass times. 

4 DISCUSSION 

The results show that the ERT can lower the ET up 
to about 14% in the best case (Gradient Calculation, 
single-pass, step size 0.001). At worst the ERT had 
no influence on the ET (MINIP, single-pass, step 
size 0.05). Hence the implementation of an ERT is 
always advisable. 
Furthermore the results show that the single-pass 
implementation produces lower ETs than the multi-
pass one at step sizes larger than about 0.005 mm for 
the MINIP (with and without ERT) and 0.01 mm for 
the Alpha Blending (with and without ERT). 
For the Gradient Calculation the results show that 
the single-pass raycasting produces lower ETs for 
the whole measurement. But the quotient reveals 
that the multi-pass raycasting would produce lower 
ETs for even smaller step sizes. 

Smaller step sizes lead to higher computational 
load for the fragment shader. As remarked in the 
introduction the full computational load of the 
fragment shader is the disadvantage of the single-
pass technique. When this load reaches a certain 
value the performance lead changes from single-pass 
technique to multi-pass technique. 

Therefore, the reported comparison shows that 
there is no general performance advantage for one of 
the raycasting techniques. The ET of the respective 
technique depends on the computational load of the 
fragment shader and on the chosen raycasting type. 

Further work is addressed to the determination of 
the exact parameters that define which raycasting 
technique should be preferred for which task. 
Additionally the influence of more optimization 
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techniques (e.g. empty space skipping, culling 
techniques) and the used graphics card will be 
investigated. 
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