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Abstract: Inverse lighting is a technique for recovering the lightenyvironment of a scene from a single image of an
object. Conventionally, inverse lighting assumes that@lpialue is proportional to radiance valug. the
response function of a camera is linear. Unfortunately,dvar consumer cameras usually have unknown and
nonlinear response functions, and therefore conventiometse lighting does not work well for images taken
by those cameras. In this study, we propose a method for sinedusly recovering the lighting environment
of a scene and the response function of a camera from a sigtgel Through a number of experiments using
synthetic images, we demonstrate that the performancergroposed method depends on the lighting dis-
tribution, response function, and surface albedo, andesddider what conditions the simultaneous recovery
of the lighting environment and response function workd.wel

1 INTRODUCTION In this study, we focus on single-image under-
standing under unknown camera properties, that is

Humans seem to extract rich information about an ob- @nother direction of generalization. Existing meth-
ject of interest even from a single image of the object. 0ds for single-image understanding assume that a sin-
Since the dawn of computer vision, understanding a 9!€ image is taken by an ideal camera and ignore the
single image is one of the most important and chal- €ffects of in-camera processing. They represent the
lenging research tasks. pixel values. of the image as a function with respect
The appearance of an object depends on the shapd® thg de§cr|pt|0ps of a sceneg. shape, reflectance,
and reflectance of the object as well as the lighting @"d lighting environment, and then recover some of
environment of a scene. From the viewpoint of physi- those descriptions from a s!ngle image. _On the other
cal image understanding, this means that the problemhand, we assume that a single image is taken by a
of single-image understanding results in recovering CONSumer camera and take in-camera processing in
those three descriptions of a scene from a single im- Particular tone mapping into consideration. We rep-
age. Unfortunately, however, such a problem is terri- resent the pixel values of the image as a function with
bly underconstrained; we have multiple unknowns but "€SPect to both the scene descriptions and the proper-
only a single constraint per pixel. Therefore, conven- {i€s of @ camera and camera setting, and then address
tional techniques such as shape from shading (Horn,the recovery of scene descriptions from a single im-
1986) assume that two out of the three descriptions 29€ under unknown camera properties.
are known and then recover the remaining one. Inverse lightingMarschner and Greenberg, 1997)
One direction of generalization of single-image is a technique for recovering the lighting environment
understanding is to recover two or three descriptions of & scene from a single image under the assumptions
from a single image. For example, Romeiro and Zick- that the shape and reflectance (or basis images) of the
ler (Romeiro and Zickler, 2010) propose a method for scene are known. Comparing with active techniques
simultaneously recovering the reflectance of an object using devices such as a spherical mirror (Debevec,
and the lighting environment of a scene from a sin- 1998) and a camera with a fish-eye lens (Sato et al.,
gle image of the object with known shape (sphere). 1999) placed in a scene of interest, inverse lighting
Barron and Malik (Barron and Malik, 2012) propose is a passive technique and therefore could recover the
a method for simultaneously recovering the shape, lighting environment from a given image taken even
albedo, and lighting environment from a single im- in the past, although it is applicable to scenes with

age. Those methods exploit the pridrs, the statisti- ~ relatively simple shape and reflectance.
cal models of those descriptions, and search the most  Conventionally, inverse lighting assumes that a
likely explanation of a single image. pixel value is proportional to a radiance value at the

652 Ohta S. and Okabe T..
Does Inverse Lighting Work Well under Unknown Response Function?.
DOI: 10.5220/0005344406520657
In Proceedings of the 10th International Conference on Computer Vision Theory and Applications (VISAPP-2015), pages 652-657
ISBN: 978-989-758-089-5
Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)



Does Inverse Lighting Work Well under Unknown Response Function?

corresponding point in a scene. The relationship be- ordinate system centered at the object. Hereafter, we
tween radiance values and pixel values is describedcall L(6, ) a lighting distribution.

by aradiometric response functipand the above as- Specifically, we represent a lighting distribution
sumption means that the response function of a cam-L(6, @) by a linear combination of basis functions as
era is linear. Unfortunately, however, consumer cam- N

eras usually have nonlinear response functions in or- L(6,¢) = ) anlLn(6,9), (1)

der to improve perceived image quality via tone map- n=1

ping (Grossberg and Nayar, 2003). Therefore, con- wherea, andLn(8,¢) (n=1,2,3,...,N) are the coef-
ventional inverse lighting requires a machine-vision ficients and basis functions for lighting. Then, based
camera with a linear response function or radiometric on the assumption of known shape and reflectance,
calibration of a response function in advance. we synthesize the basis images,. the images of

~ Accordingly, we propose a method for recover- the object when the lighting distributions are equal to
ing the lighting environment of a scene from a single the basis functions for lightingn(8, ). We denote
image taken by a camera with an unknown and non- the p-th (p = 1,2,3,....,P) pixel value of then-th ba-
linear response function. Our proposed method alsosijs image byRp(Ln). According to the superposition

assumes that the shape and reflectance of an objecprinciple, thep-th pixel value of an input single image
are known, and then simultaneously estimates both|p (p=1,2,3,...,P) is described as

the lighting environment of a scene and the response N
function of a camera from a S|r_1gle_ image. Specm— lp= z InRp(Ln). )
cally, our method represents a lighting distribution as =

a linear combination of the basis functions for light- This means that we obtain a single constraint on the
ing and also represents a response function as a lineagyefficients of lighting per pixel.

combination of the basis functions for response, and Rewriting the above constraints in a matrix form,
then estimates those coefficients from a single image. e obtain
We conduct a number of experiments using synthetic
images, and investigate the stability of our method.

We demonstrate that the performance of our method Ip = Rp(Ln) ... an |,(3)
depends on the lighting environment, response func- . .

tion, and surface albedo, and show experimentally un-

der what conditions the simultaneous recovery of the I = Ra. (4)
lighting environment and response function from a gjnce theP x N matrix R is known and the number
single image works well. of pixels (constraintsp is larger than the number of

_ The main contribution of this study is twofold;  hasis functions (unknown$) in general, we can es-
(i) the novel method for simultaneously recovering timate the coefficients of lighting: by solving the
the lighting environment of a scene and the responseapove set of linear equations. Specifically, the coeffi-

function of a camera from a single image, and (i) em- cjents are computed by using the pseudo inverse ma-
pirical insights as to under what conditions inverse trix R+ as
lighting from a single image with an unknown re- " T 1aT
sponse function works well. a=RI=RRRI (5)
if Ris full rank, i.e. the rank ofR is equal toN.
This solution is equivalent to that of the least-square

2 INVERSE LIGHTING method;

P N 2
In this section, we explain the framework of in- a:arg”;'”zl [Ip_ Zlo(an(Ln)] - (6
verse lighting on the basis of the original work by e i

Marschner and Greenberg (Marschner and Green-Once the coefficients of lightinge are computed,
berg, 1997). Inverse lighting assumes that the shapeV€ &n obtain the lighting distribution by substituting
and reflectance of an object are known, and then re-them into eq.(1).

covers the lighting environment of a scene from a sin-

gle image of the object. We assume that the object is

illuminated by a set of directional light sources, and 3 PROPOSED METHOD

describe the intensity of the incident light from the di-

rection (6, @) to the object a4 (06,¢). Here,8 and@ In this section, we propose a method for simultane-
are the zenith and azimuth angles in the spherical co-ously recovering both the lighting environment of a
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scene and the response function of a camera from aconsumer cameras in order to improve perceived im-
single image taken under an unknown and nonlinear age quality and the pixel values converted by tone

response function. mapping are significantly different from the radiance
values as shown in Figure 1 (a) and (b). As men-
3.1 Representation of Lighting tioned in Section 1, the relationship between radiance
Distribution values and pixel values is described by a radiometric

response function. In general, the response function

depends on cameras and camera settings.
Our proposed method assumes that the shape of an | ot ;s denote a response function byand as-

gbjgct IS cocrjwlex ar:jd Lhe reflectancer?belysht_he L da_‘m'sume that a radiance valuids converted to a pixel
ertian model, and then recovers the lighting dis- y,51ye |’ py using the response function s= f(1).

]tCIrlbu_Uon of a scene OB the t&a&s cr)]f thg_dn‘fusef '®" Since the response function is monotonically increas-
ection components observed on the objectgur aCe'ing, there exists the inverse df i.e. an inverse re-

It is known that the image of a convex Lambertian  g,hq6 functiog. The inverse response function con-
obje_ct under an arbitrary I|ght|ng d|str|but|(_3n IS ap- yertsa pixel valué’ to a radiance valueas! = g(1'),
proxmaﬁcely represented by a linear c_omblnauon _Of and therefore has 255 degrees of freedom for 8-bit
9 basis images when low-order spherical harmonlcsimages_ Such a high degree of freedom makes the si-
Yim@®,¢) (1 =012, m= —|. [ +1...1 -1l)are  mytaneous recovery of a lighting distribution and a
used as the basis functions for lighting (Ramamoorthi \egn0nse function from a single image intractable.
and Hanrahan, 2901). For the sake of simplicity, we Accordingly, our proposed method uses an ef-
denote the spherical harmonids (8, ) by Ya(8, ), ficient representation of response functions by con-

wheren= (I +1)2—1 +m. . straining the space of response functions on the basis
_Substituting the spherical harmonics into eq.(1), @ sf the statistical characteristics. Specifically, we make
lighting distributionL (6, ¢) is represented as use of the EMoR (Empirical Model of Response) pro-
9 posed by Greenberg and Nayar (Grossberg and Nayar,
L(B,0) = Z anYn(6, ). 7 2003). They apply PCA to the dataset of response
n=1 functions, and show that any inverse response func-
tion is approximately represented by a linear combi-

In a similar manner to eq.(2), theth pixel value of . y )
a-(2), theth p nation of basis functions as

then-th basis image is represented as

M
3 I=9(1")=go(I) + 5 Bmgm(l’). (9)
=1 - .
. " _ . ~ Here, Bn and gm(l’) are the coefficients and basis
Note that the pixel valug, is equivalent to the radi-  functions for response. Since the inverse response
ance value when the response function of a camera isfunction is also monotonically increasing, the coef-

linear. ficients has to satisfy
The reason why the image of a convex Lamber- M

tian object under an arbitrary lighting distribution is / / / /
approximated by using low-order spherical harmon- ol )+r,;3mgm(' ) <9l +1)+H;Bmgm(' +1),

ics is that high-frequency components of a lighting (20)
distribution have nollittle contribution to pixel val- wherel’ =0,1,2,...,254 for 8-bit images.

ues. In an opposite manner, we cannot recover the

high-frequency components of a lighting distribu- 3.3 Simultaneous Recovery

tion from pixel values (Ramamoorthi and Hanrahan,

2001). This is the limitation of inverse lighting from  Substituting eq.(9) into the left-hand side of eq.(8),

diffuse reflection components. we can derive
9 M
3.2 Representation of Response go(lp) = 5 anRp(Yn) = 5 Bmgm(lp),  (11)
Function =t mt

i.e. a single constraint on the coefficients of lighting
The radiance values of a scene are converted to pixeland response per pixel. We can rewrite the above con-
values via in-camera processing such as demosaicingStraints in a matrix form as
white balancing, and tone mapping. In this study, we _ra [ @ 12
focus on tone mapping because it is widely used in 90 = (RG) 8 )’ (12)
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wherego = (go(11),9o(15),-+- ,9o(lp)) " and G is a -
P x M matrix; -
(@) (b)

G= _gn;(%) . (13)

If the P x (9+ M) matrix (R/G) is full rank, i.e. the - - -
(d) (e) ' ) )

rank of(R|G) is (9+ M), we can compute both the co-
efficients of the lighting distribution and those of the
response function by using its pseudo inverse matrix
in a similar manner to Section 2;

( 3 ) = (RIG)"g0. (14) ?

Figure 1. Recovered lighting distributions and response
function from a single image of an object under a single
directional light source.

This solution is equivalent to that of the least-
square method;

{a, B8} =argmin Table 1: The RMS errors of the estimated response func-
B tions.

P 9 M 2 Case | A B C D E

z go(lg,)—z GnRp(Ln)+ z Bmdm(lp) (15) RMSE | 0.09 0.10 054 0.04 0.13

p=1 n=1 m=1

Since the response function is monotonically increas- Of 0ur proposed method. We can see from eq.(12) and
ing, we solve eq.(15) subject to eq.(10). We used the eg.(14) that the stability ofogr method is descr_lt_)ed by
MATLAB implementation of the trust-region reflec- the full rankness of the_ matrigR|G) or the condition
tive algorithm for optimization. In the experiments, number of the pseudo inverse mat(iX(G)*.
we setM = 5. Once the coefficients of lighting and Each column of the sub-matrRR corresponds to
those of respons@ are computed, we can obtain the @ basis image of an object illuminated by spherical-
lighting distribution and response function by substi- harmonics lighting. It is known that the basis images
tuting them into eq.(7) and eq.(9). are orthogonal to each other if the surface normals
In order to make the simultaneous recovery of Of the object distribute uniformly on a unit sphere
lighting and response more stable, we can incorpo- because spherical harmonics are orthonormal basis
rate the priors of lighting distributions and response functions on a unit sphere (Ramamoorthi and Han-
functions into the optimization. For example, we can fahan, 2001). Intuitively, inverse lighting works well
add the smoothness term with respect to the responsdor spherical objects but does not work for planar ob-

function jects. In this study, we assume spherical objects and
255 ¥g(1") 2 therefore the sub-matriR is full rank.
WZ [ 372 ] (16) Each column of the sub-matri® corresponds to
I=1 I'= 7t an eigenvector of response functions, and therefore

to eq.(15), wherav is a parameter that balances the the columns are orthogonal to each other if the pixel
likelihood term and the smoothness term. In our pre- values in a single image distribute uniformly from 0 to
liminary experiments, we tested some simple priors 255. Intuitively, the simultaneous recovery of lighting
and found that we often need to fine-tune the param- distribution and response function works well when
eters of the priors according to input images. There- the histogram of the pixel values is uniform. Because
fore, we do not use any priors in this study and investi- the pixel values in the image of a spherical object de-
gate the stability of the linear least-square problem in pend on the lighting distribution of a scene, the re-
eq.(15) with the linear constraints in eq.(10) instead. sponse function of a camera, and the surface albedo
of the object, we demonstrate how the performance
of our method changes depending on the lighting dis-

4 EXPERIMENTSAND tribution, response function, and surface albedo.
DISCUSSION CaseA:
In Figure 1, we show images of a sphere under a

In this section, we conduct a number of experiments single directional light source with a linear response
using synthetic images, and investigate the stability function (a) and with a nonlinear response function
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Figure 2: Results when only the lighting distribution is-dif  Figure 3: Results when only the response function is differ-
ferent from Figure 1. ent from Figure 1.

(b). The histogram of the pixel values in the tone- performs the conventional mthod. I_n addition, (g)
mapped image (b) is shown in (c). Figure 1 (d) shows shows that t_he response function estlmgted by using
the lighting distribution estimated from the linear im-- oUr method is similar to the ground truth in some de-
age (a) by using the conventional method assuming a9r€e.

linear response function (see Section 2). Here, the  Those results demonstrate that the performance of
lighting distributionL (8, ) is represented by a 2D our method depends ‘on lighting distributions. - Al-
map whose vertical and horizontal axes correspond though the performance of our method is not perfect,
to the zenith angl® and azimuth anglep respec-  OUr method works well for both the case A and the
tively. Figure 1 (e) and (f) show the lighting distri- ~ case B, and outperforms the conventional method.
butions estimated from the tone-mapped image (b) caseC:

by using the conventional method and our proposed | Figure 3, we show the results when only the re-
method respectively. In Figure 1 (g), the solid and sponse function is different from Figure 1. Compar-
dotted lines stand for the ground truth and estimated jng (e) and (f) with (d), it is clear that our method
response function by using our method. does not work well. In addition, (g) shows that the

We can see that the lighting distribution estimated response function estimated by using our method is
by using our proposed method (f) looks more sim- completely different from the ground truth.
ilar to (d) than that estimated by using the conven- Those results demonstrate that the performance of
tional method (e). Since inverse lighting based on dif- our method depends also on response functions and
fuse reflection components cannot estimate the high-that our method does not work well for the case C.
frequency components of a lighting distribution as The histogram of the pixel values in the tone-mapped
mentioned in Subsection 3.1, (d) is considered to image (c) shows that the range of pixel values is sig-
be the best possible result. Therefore, those resultsnificantly reduced due to the tone mapping. Compar-
demonstrate that our method works better than theing Figure 1 (g) with Figure 3 (g), we can see that the
conventional method for the tone-mapped image. In simultaneous recovery works well when the inverse
addition, (g) demonstrates that the response functionresponse function is convex upwaid. expands the
estimated by using our method is similar to the ground range of pixel values, but does not work well when it
truth in some degree. The root-mean-square (RMS)is convex downwardi.e. shrinks the range of pixel
errors of the estimated response functions are shownvalues.
in Table 1. )

CaseD:

CaseB: In Figure 4, we show the results when the image of

In Figure 2, we show the results when only the light- & textured sphere under four directional light sources
ing distribution is different from Figure 1. Specif- 1S used. Comparing (e) and (f) with (d), we can see
ically, a single directional light source and a uni- that our methoo_l _vvorks better than the conventional
form ambient light are assumed. Comparing the light- Method. In addition, (g) shows that our method can
ing distributions estimated by using the conventional €Stimate the response function accurately.

method (e) and our proposed method (f) with the best

possible result (d), we can see that our method out-
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5 CONCLUSION AND FUTURE
WORK

In this study, we extended inverse lighting by tak-
ing an unknown and nonlinear response function of a
camera into consideration, and proposed a method for
simultaneously recovering the lighting environment
of a scene and the response function of a camera from
a single image of an object. Through a number of
experiments, we demonstrated that the performance
of our proposed method depends on the lighting dis-
S T tribution, response function, and surface albedo, and
@ addressed under what conditions the simultaneous re-
Figure 4: Recovered lighting distributions and response covery works well.
function from a single image of a textured object under four One of the future directions of this study is to in-
directional light sources. corporate sophisticated priors in order to make the si-
multaneous recovery more stable. Another direction

Z is to make use of other cues such as specular reflec-
tion components and cast shadows in order to recover
high-frequency components of a lighting distribution.

ACKNOWLEDGEMENTS

A part of this work was supported by JSPS KAK-
ENHI Grant No. 26540088.

o REFERENCES

Figure 5: Results when only the surface albedo is different ) o
from Figure 4. Barron, J. and Malik, J. (2012). Shape, albedo, and illumi-

nation from a single image of an unknown object. In
Proc. IEEE CVPR201,%ages 334-341.

Casg E: Debevec, P. (1998). Rendering synthetic objects into real
In Figure 5, _We_ShOW the res‘,“ts when only the sur- scenes: bridging traditional and image-based graphics
face albedo is different from Figure 4. Comparing (e) with global illumination and high dynamic range pho-
and (f) with (d), we can see that our method does not tography. InProc. ACM SIGGRAPH'98pages 189—
necessarily work well. In addition, (g) shows that the 198.

response function estimated by using our method de-Grossberg, M. and Nayar, S. (2003). What is the space
viates from the ground truth to some extent. of camera response functions?  Rvoc. IEEE

Those results demonstrate that the performance of ~ €VPR2003pages 602-609.
our method depends also on the surface albedo of anHorn, B. (1986).Robot vision MIT Press.
object and that our method works better for textured Marschner, S. and Greenberg, D. (1997). Inverse lighting
objects. The effects of texture can be explained as for photography. IrProc. IS&T/SID Fifth Color Imag-
follows. First, non-uniform albedo makes the distri- g Conf_erencepages 262-265. )
bution of pixel values diverse. Second, more impor- Ramamoorthi, R. and Hanrahan, P. (2001). A signal-
tantly, two pixels with similar surface normals but dif- processing framework for inverse rendering.Piroc.

! . . ACM SIGGRAPH'O1lpages 117-128.

ferent reflectance \_/alues_yleld a s_trong constraint on Romeiro, F. and Zickler, T. (2010). Blind reflectometry. In
the response function. Since the irradiance values at Proc. ECCV2010pages 45-58.
the pixels with similar surface normals are also simi- Sato, I., Sato, Y., and Ikeuchi, K. (1999). Acquiring a radi-
lar to each other, the radiance values converted from ance distribution to superimpose virtual objects onto a
the pixel values at those pixels by using the inverse real scenelEEE TVCG 5(1):1-12.
response function should be proportional to their re-
flectance values.

657



