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Abstract: In this paper, a novel interest point detector based on Local Zernike Moments is presented. Proposed 
detector, which is named as Robust Local Zernike Moment based Features (R-LZMF), is invariant to scale, 
rotation and translation changes in images and this makes it robust when detecting interesting points across 
the images that are taken from same scene under varying view conditions such as zoom in/out or rotation. 
As our experiments on the Inria Dataset indicate, R-LZMF outperforms widely used detectors such as SIFT 
and SURF in terms of repeatability that is main criterion for evaluating detector performance. 

1 INTRODUCTION 

In computer vision, general object detection 
framework is based on i) extracting interesting 
points in images, ii) describing regions around these 
points as feature vectors and iii) matching feature 
vectors in order to find corresponding points of the 
images. For instance, if there are two images of one 
scene containing a black car, by detecting interesting 
points that qualify the car itself in both images and 
searching for similarity between feature vectors 
extracted around these points through some distance 
metrics such as Euclidean or Mahalanobis, it's 
possible to say that the black car in first image exists 
in the second image as well. This point 
correspondence is also important for stereo vision, 
motion estimation, image registration and stitching 
applications to be able to match corresponding 
regions in images.  

Searching for corresponding points between 
images is a hard problem when these images are 
scaled, rotated and/or translated versions of each 
other. Under these geometric transformations, 
interesting points still need to be detected and 
matched with high repeatability score that is the 
correspondence rate of the interesting points 
detected between the images.  

A good interest point detector is expected to be 
invariant to geometric and photometric 
transformations, and also robust to background 
clutters and occlusions in image. Changes in scale, 
rotation and translation between the images are 
examples of geometric transformations whereas 

illumination change is an example of photometric 
transformations. Scale invariance problem is 
handled by building scaled samples of the image 
with Gaussian blurring and then applying the interest 
point detector to these samples. This stack of images 
is named as scale-space and it's widely used by well-
known methods such as Scale Invariant Feature 
Transform (SIFT) (Lowe, 2004) and Speeded-Up 
Robust Features (SURF) (Bay et al., 2008). Local 
characteristics of interest points make them invariant 
to background clutters and occlusions (Mikolajczyk 
and Schmid, 2004). The locality also provides 
translational invariance for interest point detectors 
because local regions move together in the image 
and thus information in a local region is preserved in 
case of image translation.  

In this paper, by extending our previous rotation-
invariant detector named as Local Zernike Moment 
based Features (LZMF) (Özbulak and Gökmen, 
2014), we propose a robust interest point detector 
that is invariant under scale, rotational and 
translational changes. Proposed method uses 
rotation-invariant Zernike moments locally in the 
bility scores for “Zoom&Rotationn order to detect 
interesting points and thus exhibits rotation and 
translation-invariant characteristics. For scale 
invariance, a scale-space is constructed from given 
image and interest point detector is applied to 
images in spatial and scale-space in order to detect 
interest points/keypoints. We name our interest point 
detector as Robust Local Zernike Moment based 
Features or R-LZMF shortly.  
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2 RELATED WORK 

In the literature, most of interest point detection 
schemas are based on corner or blob detectors 
because they are good candidates to be interesting 
points. One of the earliest interest point detector was 
developed by Harris et al. and named as Harris 
corner detector (Harris and Stephens, 1988). It 
searches for large intensity changes in spatial-space 
by sliding a window and detects such locations as 
corners. Harris detector is rotation-invariant but not 
scale-invariant.  

Andrew Witkin introduced the scale-space 
theory in his seminal work (Witkin, 1983) and 
showed that convolving an image with Gaussian 
filters of increasing sigma repeatedly exposes the 
structures in different scales and thus gives scale 
invariance characteristic to the detector building it. 
Lindeberg extended the work of Witkin and 
proposed automatic scale selection mechanism with 
scale normalized Laplacian-of-Gaussian (LoG) 
operator to detect blob-like structures in an image 
(Lindeberg, 1998). Lowe, in (Lowe, 2004), showed 
that LoG can be approximated by Difference-of-
Gaussian (DoG) that is the difference of two images 
convolved with Gaussian filters of consecutive 
sigma values. Lowe built DoG space for interest 
point detection and he presented a complete schema 
(detector and descriptor) named as Scale Invariant 
Feature Transform (SIFT).  

Mikolajczyk et al. proposed Harris-Laplace 
detector, which combines Harris detector with LoG 
operator, in (Mikolajczyk and Schmid, 2001). They 
used Harris detector to localize interest points in 2D 
(spatial-space) and LoG operator to find local 
maximum in 3D (scale-space). The reason of using 
Laplacian instead of Harris function in 3D is that 
Harris function can't reach to maximum in scale-
space frequently and this causes a few numbers of 
keypoints to be generated. Harris-Laplace detector 
was then extended in (Mikolajczyk and Schmid, 
2002, 2004) by determining the shape of the 
elliptical region with the second moment matrix. 
This schema was named as Harris-Affine detector. 
Hessian-Affine detector, which detects interest 
points based on the Hessian matrix in 2D space, was 
also proposed in (Mikolajczyk and Schmid, 2002, 
2004). Both Harris-Affine and Hessian-Affine 
detectors have significant invariance to affine 
transformations when compared with Harris-Laplace 
detector.  

Bay et al., in their schema named as Speeded-Up 
Robust Features (SURF) (Bay et al., 2008), used 
Hessian-based detector instead of Harris-based 

counterpart because Hessian function is more stable 
and repeatable. They preferred building scale-space 
of approximated LoG filters rather than image itself 
as opposed to SIFT and Harris-Laplace. Up-scaling 
the filters instead of down-scaling the image 
prevents aliasing problems occurred when sub-
sampling the image and this approach is also faster 
than SIFT because up-scaled filters are implemented 
with efficient integral image method.  

Rosten et al. developed a fast interest point 
detector and named it as Features from Accelerated 
Segment Test (FAST) in (Rosten and Drummond, 
2006). FAST tests each image pixel for cornerness 
by looking its 16 pixel-circular neighborhood and if 
some contiguous pixels in this neighborhood are 
brighter/darker than the pixel in test then it's 
detected as corner. This method also learns from 
image pixels by applying decision tree to increase its 
accuracy. Interest points detected by FAST are not 
multi-scale features, in other words, FAST is not 
scale-invariant. Oriented FAST and Rotated Brief 
(ORB), proposed in (Rublee et al., 2011), is a 
combination of FAST keypoint detector and BRIEF 
descriptor (Calonder et al., 2010). ORB modifies 
FAST to work with image pyramid for scale 
invariance and it also modifies BRIEF descriptor to 
make it rotation-invariant. Center Surround Extrema 
(CenSurE) is another scale and rotation-invariant 
interest point detector proposed in (Agrawal et al., 
2008). In CenSurE, a center-surround filter is 
applied to the image at all locations and scales, and 
Harris function is used for eliminating weak corner 
points. Leutenegger et al. proposed a rotation and 
scale-invariant key point detector named as Binary 
Robust Invariant Scalable Keypoints (BRISK) in 
(Leutenegger et al., 2011). BRISK uses a novel 
scale-space FAST-based detector for scale-invariant 
interest point detection and considers a saliency 
criterion by using quadratic function fitting in 
continuous domain.  

In (Özbulak and Gökmen, 2014), we proposed a 
rotation-invariant interest point detector by applying 
Zernike moment of ܣସଶ to the image locally in order 
to measure cornerness and sweeping up nearby 
edges by dividing Zernike moments ܣସଶ to ܣସ଴. We 
named it as Local Zernike Moment based Features 
(LZMF). Performance evaluation of LZMF with 
“Rotation” sequence of the Inria Dataset showed that 
our method outperforms well-known interest point 
detectors such as SIFT, SURF, CenSurE and 
BRISK. In this study, we extend our rotation-
invariant detector to be scale-invariant by building 
scale-space with optimal parameter settings.  
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3 ROBUST INTEREST POINT 
DETECTION 

In this section, we introduce our robust and local 
Zernike Moment (LZM) based interest point 
detector schema, R-LZMF. Zernike moments are 
described in Section 3.1 and Section 3.2 includes a 
general overview of the proposed detector. In 
Section 3.3, we show how the scale-space is built in 
order to yield the best scale-invariance performance 
with our detector.  

3.1 Zernike Moments 

In (Zernike, 1934), Fritz Zernike introduced a 
complete set of complex polynomials, named as 
Zernike polynomials, that are orthogonal on the unit 
disk ݔଶ + ଶݕ ≤ 1. Zernike polynomials are defined 
as:  

 ௡ܸ௠(ݔ, (ݕ = ௡ܸ௠(݌, (ߠ = ܴ௡௠(ߩ)݁௝௠ఏ (1) 

Where ܴ௡௠(ߩ) is the radial polynomial,	݊ is the 
order of polynomial, ݉ is the number of iteration, ߩ 
is the length of vector from origin to (x, y) and ߠ is 
the angle between ߩ and x-axis in counter-clockwise 
direction. There are some constraints on n and m 
parameters such as ݊ ≥ 0, n − |m| = even and |m| <= n. ܴ௡௠(ߩ) is defined as:  

 ܴ௡௠(ߩ) = ෍ (−1)௦ߩ௡ିଶ௦(݊ − !ݏ!(ݏ ൫௡ା|௠|ଶ ି௦൯! ൫௡ି|௠|ଶ ି௦൯!
೙ష|೘|మ
௦ୀ଴  (2) 

Teague introduced using Zernike polynomials as 
orthogonal image moments in (Teague, 1980) for 
two-dimensional pattern recognition. Given an 
image function of f(x, y), Zernike moment of order ݊ and repetition ݉ is defined as:  

௡௠ܣ  = ݊ + ߨ1 ඵ ,ݔ)݂ (ݕ ௡ܸ௠∗ ,ߩ) 	ݕ݀ݔ݀(ߠ
௫మା௬మஸଵ  (3) 

Where ∗ in ௡ܸ௠∗ ,ߩ)  denotes the complex (ߠ
conjugate. The formula in (3) is discretized in order 
to work with digital images of size MxN as:  

௡௠ܣ  = ݊ + ߨ1 ෍ ෍ ݂(݅, ,௜௝ߩ)∗ܸ(݆ ௜Δy௝ேିଵݔ௜௝)Δߠ
௝ୀ଴

ெିଵ
௜ୀ଴  (4) 

Where ݔ௜, ௝ݕ ∈ 	 [−1, ௜௝݌ ,[1 = ටݔ௜ଶ + ௜௝ߠ  ,௝ଶݕ = tanିଵ ௝ݕ ⁄௜ݔ  and Δݔ௜ = Δݕ௝ = 2/ܰ√2.  

As seen from (4), a Zernike moment, ܣ௡௠, is a 
measurement about the intensity profile of the whole 
image. It's also possible to project the local intensity 

profiles on to Zernike polynomials by fitting the unit 
circle on the pixels of the image. The image 
moments using Zernike moments in this way are 
named as local Zernike moments or LZM shortly. 
LZM presents a powerful description of local image 
region as it's successfully applied to face recognition 
problem in (Sariyanidi et al., 2012) and used for 
detection of low-level features such as step edges 
and gray-level corners in (Ghosal and Mehrotra, 
1997). In this paper, we use LZM representation to 
detect gray-level corners by convolving the image 
with LZM based operator, ௡ܸ௠௞ . ௡ܸ௠௞  is a ݇݇ݔ 
convolutional filter for Zernike moment of order ݊ 
and repetition ݉ and defined as:  

 ௡ܸ௠௞ (݅, ݆) = ௡ܸ௠(ߩ௜௝,  ௜௝) (5)ߠ

An image is convolved with ௡ܸ௠௞  as below:  

௡௠௞ܣ  (݅, ݆) = ෍ ݂(݅ − ,݌ ݆ − (ݍ ௡ܸ௠௞ ,݌) ೖషభమ(ݍ
௣,௤ୀିೖషభమ  (6) 

There is one real filter denoted as ܴ݁[ ௡ܸ௠௞ ] and 
one imaginary filter denoted as ݉ܫ[ ௡ܸ௠௞ ] for a 
Zernike moment of order ݊ and repetation ݉ 
because Zernike moments are complex. However, 
imaginary filter is discarded when there is no 
repetition (m = 0) and the image is only convolved 
with real filter.  

The magnitude of Zernike moments is 
unchanged when an image is rotated by an angle of ߙ w.r.t. x-axis. This property gives Zernike moments 
rotation-invariant characteristic under image 
rotations, see (Khotanzad and Hong, 1990). The 
magnitude of Zernike moment is defined as:  

|௡௠ܣ|  = ඥ(ܴ݁[ܣ௡௠])ଶ +  ଶ (7)([௡௠ܣ]݉ܫ)

Where ܴ݁[ܣ௡௠] and ݉ܫ[ܣ௡௠] are local Zernike 
moment representations obtained by convolving an 
image with real and imaginary Zernike filters, ܴ݁[ ௡ܸ௠௞ ] and ݉ܫ[ ௡ܸ௠௞ ], respectively. As a note, ݉ܫ[ܣ௡௠] is zero and discarded when ݉ = 0.  

3.2 Interest Point Detection by LZM 

Our interest point detection method is applied in 
spatial (2D) and scale-space (3D). In spatial-space, 
input image is first converted to gray-scale and then ܮଶ-normalization is applied on the gray-scaled image 
to make proposed detector more robust to noise as 
we showed in (Özbulak and Gökmen, 2014).  

Before convolving the image with Zernike filter, 
a second normalization procedure is locally applied 
to the region where unit circle is fitted. The local 
intensity profile under this circle is fitted to standard 
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normal distribution with ߤ = 0 and ߪ = 1 in order to 
make proposed detector more robust to local 
illumination changes. This is similar to 
normalization procedure in Normalized Cross-
Correlation (NCC) and feature vector normalization 
in SIFT (Lowe, 2004).  

The input image is then convolved with Zernike 
filters, ସܸଶଽ  and ସܸ଴ଽ . Ghosal, in (Ghosal and 
Mehrotra, 1997), used Zernike filters with order of 
2, ଶܸଶ and ଶܸ଴, for his corner detection schema. In 
the experiments, however, we found that working 
with more complex orders such as 4 yields better 
results in terms of repeatability. In our method, the 
magnitude of Zernike moment of ܣସଶ, |ܣସଶ|, is used 
to measure the cornerness. A pre-defined corner 
threshold is applied to |ܣସଶ| response and the pixels 
that are higher than this threshold are considered as 
candidate interest points. The drawback of using 
Zernike moment of ܣସଶ is that it may respond to 
edges closer to corners. We suppress these nearby 

edges by dividing |ܣସଶ| to |ܣସ଴| as 
|஺రమ||஺రబ| and then 

thresholding 
|஺రమ||஺రబ| with a pre-defined nearby edge 

threshold. Candidate interest points passing this 
thresholding test are retained for further processing 
and the rest is discarded. So, in this way, interest 
points/keypoints, which are corners but not nearby 
edges, are considered. For proposed detector, corner 
threshold value of 0.51 and nearby-edge threshold 
value of 5, which were determined in our previous 
work by using “Rotation” sequence of the Inria 
Dataset, are used throughout the experiments.  

A further refinement procedure by Non 
Maximum Suppression is also applied to the 
detected interest points in spatial domain as follows: 
i) a 5x5 window is centered on each interest point, 
ii) the interest point is compared based on |ܣସଶ| with 
detected interest points in its 5x5 neighborhood, iii) 
the interest point is retained if its |ܣସଶ| response is 
the maximum or discarded otherwise. In this way, 
redundant interest points are swept out and more 
consistent interest points are retained.  
Candidate interest points detected in spatial-space 
are then examined in scale-space to eliminate weak 
ones, which don't reach local maximum in scale-
space, and to figure out characteristic scales of 
strong ones (see Section 3.3 for details). This 
analysis is realized in each octave of the scale-space 
as follows: For outermost scale levels of an octave, 
candidate interest points detected as a result of 
spatial analysis are directly retained without any 
scale analysis. For inner scale levels of an octave, a 
candidate interest point is compared with interest 
points detected in lower and upper scale levels based 

on |ܣସଶ|. This comparison again falls in 5x5 
neighborhood of the point in interest for adjacent 
scale levels. If |ܣସଶ| response of the interest point is 
the maximum among all interest points detected in 
lower and upper scale levels then the candidate 
interest point is considered as a real interest point. 
This kind of approach is also named as 3D Non 
Maximum Suppression. Here, R-LZMF has 
5x5x3=75-1=74 comparisons at most in spatial and 
scale-space and this check doesn't take time because 
it only compares the point in interest with detected 
interest points in 2D and 3D space, and stops 
comparison if one interest point in the neighborhood 
has higher |ܣସଶ|.  
3.3 Scale-Space 

Andrew Witkin introduced the scale-space concept 
in his seminal work (Witkin, 1983) to represent 
signals in different scale levels in order to show how 
signal behaviour changes from fine to coarse scales. 
He also showed that smoothing an image with 
Gaussian filters of increasing sigma has ability to 
suppress fine details and expose coarse structures. 
Koenderink, in (Koenderink, 1984), showed that 
Gaussian filter is the unique filter for building scale-
space. Lindeberg verified this uniqueness and 
proposed an automatic scale selection mechanism in 
order to find the characteristic scale of an interesting 
point in an image (Lindeberg, 1998). Characteristic 
scale is the scale level where an interest point 
detection function reaches local extremum in the 
scale-space. This is the moment an image point 
exhibits most interesting characteristic (cornerness, 
blobness etc.) in the scale-space. A description 
extracted from an interest point with characteristic 
scale size would be independent of same interest 
points detected in different scaled images.  

In this study, we build a scale-space for our 
rotation-invariant interest point detector proposed in 
our previous work to make it scale-invariant as well. 
The input image is repeatedly convolved with 
Gaussian filters of increasing sigma size for blurring 
and each blurred image constitutes a scale level, ݔ)ܮ, ,ݕ ,ݔ)ܮ .in the scale-space ,(ߪ ,ݕ  is defined (ߪ
as:  

,ݔ)ܮ  ,ݕ (ߪ = ,ݔ)ܩ ,ݕ (ߪ ∗ ,ݔ)ܫ  (8) (ݕ

Where ݔ)ܫ, ,ݔ)ܩ is the input image and (ݕ ,ݕ  is (ߪ
the 2D Gaussian function defined as:  

,ݔ)ܩ  ,ݕ (ߪ = ଶߪߨ12 ݁ି(௫మା௬మ)/ଶఙమ (9) 

We divide scale-space into octaves for efficient 
computation. An octave is a stack of scale 
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levels/layers, ݔ)ܮ, ,ݕ  with same resolution and ,(ߪ
sigma for each scale level is a constant factor of 
previous scale layer's sigma. An image in one octave 
is a sub-sampled version of an image in previous 
octave. When sigma in an octave is doubled, the 
image convolved with Gaussian filter of this sigma 
is halved in size and used as first scale layer of next 
octave. Here, sub-sampling is the key factor for 
computational gain.  

 
(a) 

 
(b) 

 
(c) 

Figure 1: Parameter evaluation for scale-space based on 
average repeatability: (a) Number of scale level 
performance for ݋ = ଴ݏ ,3 = 1.7. (b) Number of octave 
performance for ݈ = ଴ݏ ,2 = 1.7. (c) Initial sigma 
performance for ݋ = 4, ݈ = 2. 

There are some parameters that should be fine-
tuned in order to have a full coverage of scale-space. 
These are the number of scale levels in one octave 
(݈), the number of octaves in scale-space (݋) and 

initial sigma for first scale level of the first octave 
 ”We used Belledonnes images from “Zoom .(଴ݏ)
sequence of the Inria Dataset to figure out the 
optimum parameters for our detector. We first 
determined the number of scale layer under 
assumptions of ݋ = 3 and ݏ଴ = 1.7 and got the best 
average repeatability by using two scale levels (݈ =2), see Figure 1-a. In this case, however, 3D Non 
Maximum Suppression is not applied because 
outermost scale layers are the only scale layers to be 
used. We then searched for the optimum number of 
octaves with ݈ = 2 under assumption of ݏ଴ = 1.7 
and as seen from Figure 1-b working with 4 octaves 
݋) = 4) yields the best result in terms of average 
repeatability. As noted, using more than 4 octaves 
doesn't affect the performance. For initial sigma 
value, under ݋ = 4 and ݈ = 2, although the best 
repeatability performance is obtained with value of 
1.6 as seen in Figure 1-c, we had better performance 
with value of 1.8 (ݏ଴ = 1.8) in the experiments, so 
we use this value as initial sigma value. Thus, final 
parameter settings were determined as ݋ = 4, ݈ = 2 
and ݏ଴ = 1.8.  

In Figure 2, the interest points detected by R-
LZMF can be seen as red circles in some Laptop 
images of “Zoom&Rotation” sequence. In this 
figure, most of the interesting points detected in one 
image can be observed in other images as an 
indicator of how our detector is accurate in terms of 
repeatability.  

  

  

  

Figure 2: Interest points detected by R-LZMF for some 
Laptop images from “Zoom&Rotation” sequence. 
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4 EXPERIMENTAL RESULTS 

The Inria Dataset is used for performance evaluation 
of proposed detector. We used Asterix, Crolles, 
VanGogh image sets from "Zoom" sequences, and 
East_park, Laptop, Resid image sets from 
"Zoom&Rotation" sequences. "Zoom" sequence 
contains only scaled image sets and 
"Zoom&Rotation" image sets have scaled and 
rotated images. Image sets in both sequences have 
their own transformation matrices for repeatability 
evaluation although scale and rotation information 
about image sets are not provided. Therefore, x-axis 
in Figure 3 and Figure 4 show the image index 
instead of scale value or rotation angle. One can 
think of larger image index as larger scale and 
rotation angle.  

As proposed in (Schmid et al., 1998), the 
repeatability score is main criterion to evaluate 
performance of interest point detectors. The 
repeatability is a measurement of the point 
correspondence between two images that are 
transformed form (scaled, rotated or translated) of 
each other. A robust interest point detector is 
expected to detect the most of the same structures in 
two images even they are scaled, rotated or 
translated versions of each other. The repeatability 
score is evaluated as:  

ଵ,ଶݎ  = )ܥ ଵ݂, ଶ݂)min(݉ଵ,݉ଶ) (10) 

Where ܥ( ଵ݂, ଶ݂) is the number of corresponding 
points detected in both images, ݉ଵ and ݉ଶ are the 
numbers of the keypoints detected in first and 
second images respectively. 

 
(a) 

Figure 3: Repeatability scores for “Zoom” sequence: (a) 
Asterix. (b) Crolles. (c) VanGogh. 

 
(b) 

 
(c) 

Figure 3: Repeatability scores for “Zoom” sequence: (a) 
Asterix. (b) Crolles. (c) VanGogh (cont.). 

Repeatability performance of R-LZMF with 
image sets used for evaluation is plotted in Figure 3 
for “Zoom” sequence and in Figure 4 for 
“Zoom&Rotation” sequence. As seen from plots, R-
LZMF outperforms well-known detectors such as 
SIFT, SURF, CenSurE (STAR), BRISK and ORB 
for all image sets. We used OpenCV v2.4.8 to work 
with these detectors and applied them on the image 
sets with default parameter settings. As a note, 
throughout the experiments, we used our detector 
with same parameter settings as well: corner 
threshold=0.51, nearby-edge threshold=5, ݋ = 4, ݈ = ଴ݏ ,2 = 1.8. From the bar charts in Figure 5, it 
can be seen that R-LZMF has also the best 
performance in terms of average repeatability when 
compared with all other detectors.  
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(a) 

 
(b) 

 
(c) 

Figure 4: Repeatability scores for “Zoom&Rotation” 
sequence: (a) East_park. (b) Laptop. (c) Resid. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5: Average repeatability scores for: (a) Asterix. (b) 
Crolles. (c) VanGogh. (d) East_park. (e) Laptop. (f) Resid. 
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5 CONCLUSIONS 

In this paper, we proposed a novel interest point 
detector named as Robust Local Zernike Moment 
based Features or R-LZMF. This detector is based 
on local Zernike moments and invariant to geometric 
transformations such as scale, rotation and 
translation. We validated its robustness to these 
transformations by testing it with the Inria Dataset 
and reported that R-LZMF outperforms SIFT, 
SURF, CenSurE (STAR), BRISK and ORB for all 
image sets in the experiments. As a future work, we 
plan to analyse the performance of R-LZMF for 
affine transformation as well. Furthermore, we will 
extend R-LZMF to have a descriptor by using LZM 
again to utilize from its descriptive power so that it 
will be a complete schema (detector and descriptor) 
as in SIFT and SURF.  
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