
Supporting the Validation of Structured Analysis Specifications in the
Engineering of Information Systems by Test Path Exploration

Torsten Bandyszak1, Mark Rzepka2, Thorsten Weyer1 and Klaus Pohl1
1Paluno – The Ruhr Institute for Software Technology, University of Duisburg-Essen, Essen, Germany

2Protel Hotelsoftware GmbH, Dortmund, Germany

Keywords: Requirements Validation, Reviews, Structured Analysis, Data Flow Diagrams, Test Paths, Test Cases.

Abstract: Requirements validation should be carried out early in the development process to assure that the requirements
specification correctly reflects stakeholder’s intentions, and to avoid the propagation of defects to subsequent
phases. In addition to reviews, early test case creation is a commonly used requirements validation technique.
However, manual test case derivation from specifications without formal semantics is costly, and requires
experience in testing. This paper focuses on Structured Analysis as a semi-formal technique for specifying
information systems requirements, which is part of latest requirements engineering curricula and widely ac-
cepted practices in business analysis. However, there is insufficient guidance and tool support for creating
test cases without the need for using formal extensions in early development stages. Functional decomposition
as a core concept of Structured Analysis, and the resulting distribution of control flow information complicates
the identification of dependencies between system inputs and outputs. We propose a technique for automati-
cally identifying test paths in Structured Analysis specifications. These test paths constitute the basis for de-
fining test cases, and support requirements validation by guiding and structuring the review process.

1 INTRODUCTION

Early validation of requirements artifacts is a crucial
task in software engineering, since the costs for find-
ing and correcting defects is more expensive in later
phases (Boehm and Basili, 2001). Validating require-
ments aims at discovering requirements quality is-
sues, and assuring that stakeholders and requirements
engineers share the same understanding of the system
to be developed (Dzida and Freitag, 1998). To this
end, specification reviews or inspections are wide-
spread validation techniques usually involving re-
quirements engineers and stakeholders, e.g., domain
experts or users (Kotonya and Sommerville, 1998).

Creating test cases based on requirements can be
employed to support requirements validation. For in-
stance, perspective-based reviews (Shull et al., 2000)
from a tester’s point of view guide the reviewers in
creating a set of test cases. Test case definition re-
quires a deep understanding of the specification, and
thus helps identifying issues such as incorrectness,
ambiguities, inconsistencies, or incompleteness (Ko-
tonya and Sommerville, 1998; Denger and Olsson,
2005). However, unless formal specification lan-
guages and automatic test case generation techniques

are used, it also requires some experience in testing,
and might involve costs for training. Tester participa-
tion in reviews is advocated (Graham, 2002), but of-
ten not feasible, and poses challenges due to different
backgrounds (Uusitalo et al., 2008). Thus, it is desir-
able to facilitate test case generation from early, semi-
formal specifications by using tools, so as to reduce
the required knowledge and support stakeholders
without testing expertise.

In this paper, we focus on Structured Analysis as
proposed by DeMarco (1979), and do not consider
e.g. formal or real-time extensions. Structured Anal-
ysis is taught to professionals as part of widely ac-
cepted current requirements engineering curricula,
e.g. (IREB, 2012). The key concept of functional de-
composition, which has been adopted in many mod-
ern approaches, incorporates Data Flow Diagrams
(DFDs) to partition a system. Especially DFDs are
still widely used today (Pressman, 2010), and consti-
tute a commonly used notation for modeling infor-
mation systems (Giaglis, 2001). Both DFDs and func-
tional decomposition are recommended as best-prac-
tice techniques for business analysis (IIBA, 2009).

However, system partitioning results in a set of
processes and associated process specifications that

252 Bandyszak T., Rzepka M., Weyer T. and Pohl K..
Supporting the Validation of Structured Analysis Specifications in the Engineering of Information Systems by Test Path Exploration.
DOI: 10.5220/0005342102520259
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 252-259
ISBN: 978-989-758-097-0
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

are distributed among several abstraction layers,
which complicates the derivation of test cases (Roper
and Bin Ab Rahim, 1993; Roper, 1994). Particularly,
it is not easy to determine test paths through the entire
specification due to the incapability to express control
flow information in DFDs, and the lack of formal se-
mantics (Chen et al., 2005). Test paths are essential
for defining test cases since they identify data flow
paths from inputs to outputs of the system. On the
other hand, the separation of control and data flow
supports early functional decomposition, and reduces
redundancy among DFDs and corresponding process
specifications (DeMarco, 1979).

There are reports that indicate the applicability of
DeMarco’s Structured Analysis for system testing but
do not provide details about the techniques that have
been applied. In addition to creating test cases for sin-
gle processes, these can be successively combined in
order to derive system-level test cases (Roper and Bin
Ab Rahim, 1993). However, to the best of our expe-
rience, the existing approaches do not provide suffi-
cient methodological guidance for deriving system-
level tests that consider all data flow paths specified
in the DFDs. Furthermore, there is a lack of automat-
able techniques that support automatic test case deri-
vation based on Structured Analysis. Our approach
addresses this gap by enabling automated steps in
identifying test paths.

Some authors focus on formal extensions of
Structured Analysis, e.g., DFDs enhanced with con-
trol flow semantics and conditions (Chen et al., 2005).
Functional scenarios, which are related to our under-
standing of test paths, can be derived based on these
formal specifications and then used to guide formal
inspections (Li and Liu, 2011). However, these ap-
proaches are not applicable to semi-formal modelling
languages such as DeMarco DFDs. It requires some
subsequent manual validation steps that can notably
be performed in reviews. Though both reviews and
test case creation are widely recognized requirements
validation techniques (Kotonya and Sommerville,
1998), there is little work on combining them, e.g.,
methodical guidance to support perspective-based
reading from the tester’s point of view (Shull et al.,
2000).

The contribution of this paper is twofold: First, we
present a review process model that illustrates how
test paths as the basis for test case creation can be
used in order to structure and guide requirements re-
views. Thereby, we combine testing and reviews as
requirements validation techniques in order to com-
plement e.g. perspective-based reading. Second, we
propose an automatable technique for exploring test
paths based on Structured Analysis (DeMarco, 1979).

To this end, we adopt a testability analysis technique
for integrated circuits (Robach et al., 1984), and apply
it to these semi-formal requirements artifacts. Our
technique involves transforming a Structured Analy-
sis specification into an intermediate model, i.e., an
Information Transfer Graph (ITG), to facilitate the
exploration of system-level test paths. Test path ex-
ploration merely considers the syntactic structure of
the requirements artifacts to address the lack of for-
mal semantics of the underlying specification lan-
guages. This is an advantage for validating early and
maybe incomplete requirements. An application ex-
ample illustrates our approach.

The remainder of this paper is structured as fol-
lows: Section 2 summarizes the fundamentals of our
approach. Section 3 reviews related work. Section 4
describes how our approach utilizes test paths for
guiding requirements reviews. Section 5 presents our
technique for exploring test paths in Structured Anal-
ysis specifications. Section 6 illustrates the applica-
tion of our approach. Section 7 concludes the paper.

2 FUNDAMENTALS

2.1 Requirements Validation and Test

Requirements validation aims at checking if a speci-
fication succeeds in establishing a common under-
standing of the system’s intentions (Dzida and
Freitag, 1998). Requirements reviews or inspections
are a commonly used requirements validation tech-
nique (Kotonya and Sommerville, 1998). A require-
ments review is a formal meeting in which a group of
stakeholders analyses and discusses requirements
documents in order to uncover defects and plan for
corrective actions (Kotonya and Sommerville, 1998).
Reviews can be guided by Perspective-based Read-
ing, which involves inspecting requirements from dif-
ferent stakeholder’s perspectives (Shull et al., 2000).

There is a strong relation between requirements
engineering and testing, and a need for better aligning
these two disciplines (Graham, 2002). In black-box
testing, test inputs and outputs are identified based on
the requirements without considering implementation
details (Roper, 1994), since the goal is to check if a
system’s behavior meets its requirements as expected
by the stakeholders. Hence, requirements should al-
low for deriving test cases and defining test criteria
that determine if a test is passed or failed
(ISO/IEC/IEEE, 2010). The creation of test cases is a
useful requirements validation technique, since prob-
lems in defining tests indicate, e.g., missing, ambigu-
ous, or incorrect information (Denger and Olsson,

Supporting�the�Validation�of�Structured�Analysis�Specifications�in�the�Engineering�of�Information�Systems�by�Test�Path
Exploration

253

2005). Here, the aim of creating test cases is to vali-
date the requirements rather than a system, as it is in
testing (Kotonya and Sommerville, 1998). A test case
specifies required test inputs, execution conditions,
and expected test results (ISO/IEC/IEEE, 2010). In
this paper, we focus on test paths as the basis for de-
fining test cases. In Model-Based Testing, a test path
is defined by a sequence of edges that connect initial
and final nodes in a graph, as a result of applying a
traversal algorithm (Nguyen et al., 2012). Test paths
are the basis for abstract test cases, which have to be
enhanced by adding specific test input data and ex-
pected results (Nguyen et al., 2012).

2.2 Structured Analysis

Structured Analysis provides techniques for analyz-
ing and specifying software requirements. Structured
Analysis does not prescribe concrete documentation
and modeling languages. In this paper, we focus on
the modelling concepts and notations suggested by
DeMarco (1979), i.e., Data Flow Diagrams, Data Dic-
tionaries, and Process Specifications.

A Data Flow Diagram (DFD) is a directed graph
that consists of three types of nodes: processes, files,
and terminators. The nodes are connected via directed
edges, i.e., data flows representing the flow of data
items between processes. Processes transform incom-
ing data flows into outgoing ones, whereas files serve
as repositories for data. Terminators are entities in a
system's environment that provide input or receive
output data. DFDs do not express control flows, i.e.,
they neither specify process activation rules nor pro-
cess sequences. DFDs are used to decompose a sys-
tem into processes in a hierarchy of abstraction layers.
To this end, a process can be refined and described in
more detail in a separate DFD.

A Data Dictionary provides a static view; it de-
fines the data elements that are referenced by data
flows and files in a DFD. Data definitions specify
compositions of atomic or complex data elements us-
ing certain operators (e.g., aggregation or multiplic-
ity). A Data Dictionary is especially important for en-
suring consistency among hierarchized DFDs, i.e.,
"balancing" parent and child DFDs.

Process specifications (also called “mini specifi-
cations”), as proposed by DeMarco, are written in
structured natural language that comprises constructs
such as condition or iteration statements, reminiscent
of pseudo code. Since DFDs do not specify how pro-
cess inputs are transformed into outputs, the process
logic and control flow of each functional primitive
(i.e., low-level process not further decomposed) is de-
scribed separately in a process specification. Mini

specs can be represented in Control Flow Graphs.

2.3 Information Transfer Graph

The Information Transfer Graph (ITG) is a modeling
language for analyzing the testability of integrated
circuits designs (Robach et al. (1984), and formal data
flow design specifications of software (Le Traon and
Robach, 1997). In the following, we present the ITG
based on (Robach et al., 1984).

An ITG describes the possible flows of data
through a system. It can be formally described as a
bipartite, directed graph that consists of a set of places
and a set of transitions (the graph nodes) as well as a
set of edges, i.e., information flows. A place is either
a module representing a system component that pro-
vides some functionality, a source (input), or a trap
(output). By means of transitions, conditions of infor-
mation transfer are described. There are four different
modes of information transfer, as depicted in Fig. 1.
For example, the Selection mode means that infor-
mation is transferred through either one of the out-
going arcs of the first module, while the Distribution
mode forwards information to all succeeding mod-
ules. Hence, the ITG allows for representing data and
control flow (Le Traon and Robach, 1997).

Figure 1: ITG Concepts and Notation.

The modeling concepts described above allow for
identifying "flows", i.e., information transfer paths
from a certain set of inputs to a set of outputs (Robach
et al., 1984). Flows are sub-graphs, each representing
an independent function of the system (Robach et al.,
1984; Le Traon and Robach, 1997). To identify flows,
the semantics of modules and transitions have to be
considered. Places constitute “or” nodes while transi-
tions have the semantics of a logical “and”; i.e., a
transition requires all incoming information flows to
be present in order to proceed in the flow of control
(Le Traon and Robach, 1997). Any edge connected to
a transition belongs to a flow, while places can be
considered as branches and will consequently require
separate flows. In Fig. 1, an exemplary flow is high-
lighted in the ITG.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

254

3 RELATED WORK

Though both reviews and test case creation are widely
adopted requirements validation techniques, there are
few approaches that combine them. Perspective-
based reading from a tester’s viewpoint aids review-
ers in defining test cases and thereby inspecting re-
quirements specifications (Shull et al., 2000). Test-
Case-Driven Inspection (Gorschek and Dzamashvili-
Fogelström, 2005) utilizes test cases in requirements
reviews, involving testers who create and review
them together with stakeholders. In the following, we
summarize related work on testing and functional
path analysis, focusing on Structured Analysis.

DeMarco (1979) focuses on deriving concrete test
inputs for single processes from data definitions in the
Data Dictionary, which is also used in Modern Struc-
tured Analysis (Yourdon, 1988), a real-time exten-
sion. Roper (1994) suggests applying this approach
only for small subsets of interacting processes to
avoid a large number of infeasible test paths. Roper
and Bin Ab Rahim (1993) propose a manual tech-
nique for deriving test cases from Structured Analysis
specifications. They consider each process in the low-
level DFDs separately, and then successively com-
bine these separate test cases to create system-level
test cases that consider transformations of system in-
puts into outputs or data stored in a file. Roper (1994)
propose to apply white-box data flow testing tech-
niques on DFDs, based on describing process trans-
formations in terms of consumed and produced data
flows.

McCabe and Schulmeyer (1985) propose to de-
rive test cases based on tracing functional dependen-
cies between processes of the DFDs on several ab-
straction levels to facilitate system and acceptance
testing. However, the identification of these depend-
encies is done manually, and the authors do not pro-
vide specific guidance. Emery and Mitchell (1989)
describe unit, integration, and system testing ap-
proaches based on complexity measures. They pro-
pose to identify dependencies between external out-
puts and inputs by merging low-level DFDs, and cre-
ating output-to-input mapping trees.

Other works focus on extensions of DeMarco’s
Structured Analysis, employing e.g., additional state
diagrams (Väliviita et al., 1997). Kan and He (1995)
present an approach for deriving Algebraic Petri nets
from Modern Structured Analysis specifications,
which can be used to formally verify the original
specification. In (Chen et al., 2005), an approach for
integration testing based on the formalized Condition
Data Flow Diagram (CDFD) is proposed. An algo-
rithm for automatically deriving functional scenarios,

which relate sets of input and outputs, from CDFDs
is presented in (Li and Liu, 2011). Functional scenar-
ios are generated using a depth-first search algorithm,
and serve as a guideline for inspections. In the inspec-
tion, each functional scenario is reviewed separately,
considering each involved operation and its integra-
tion (Liu et al., 2010).

In summary, existing approaches do not provide
comprehensive methodical guidance for utilizing test
artifacts in combination with requirements reviews,
as well as for automating the derivation of system-
level test cases from DeMarco’s Structured Analysis.
Regarding formalizations of Structured Analysis, ex-
isting work provides test case generation and scenario
identification techniques (Chen et al., 2005; Li and
Liu, 2011). Though the latter is designed to guide rig-
orous inspections (Liu et al., 2010) it does not aim at
supporting the creation of test cases. Nevertheless, all
these formal approaches are not suited to be applied
on early DeMarco Structured Analysis specifications
due to lack of formal semantics.

4 REQUIREMENTS REVIEWS
GUIDED BY TEST PATHS

Our technique for exploring test paths in Structured
Analysis artifacts (see Section 5), aims at supporting
requirements reviews. We propose to use test paths as
guidance for structuring the review process, comple-
mentary to perspective-based reading (Shull et al.,
2000). Test path exploration can be potentially auto-
mated so that the effort and the amount of required
testing experience will be significantly reduced,
which supports the review team in specifying test
cases to validate the specification. In addition to
checking requirements correctness, the explored test
paths may also uncover additional functionality, or
help identify missing requirements.

As this paper focuses on Structured Analysis
models, we define a test path as a (logical) sequence
of processes and data flows that connect sets of input
and output data elements. Thus, test paths determine
dependencies between produced outputs and required
inputs by orchestrating functions, and are comparable
to functional scenarios proposed by Li and Liu
(2011). In contrast to these scenarios, we use test
paths as templates for abstract test cases without con-
crete data, which will be analyzed in the review meet-
ing. Our proposed structure of a requirements review
based on test paths is depicted in Fig. 2.

Based on the automatically generated test paths,
the stakeholders will check if the respective

Supporting�the�Validation�of�Structured�Analysis�Specifications�in�the�Engineering�of�Information�Systems�by�Test�Path
Exploration

255

Figure 2: Review Process Supported by Test Paths.

combinations of input and output data flows, as well
as the involved processes represent a valid system use
case and desired functionality. To this end, they suc-
cessively take each particular test path as a guideline,
and focus on the involved subset of processes that are
syntactically related. The stakeholders should first ex-
amine the system-level transformation. Then, each
process involved in the test path is checked against
the stakeholder intentions, so as not to overlook inter-
mediate steps. Process transformations can be recog-
nized in the sets of input and output data of a certain
process, as documented in the test path.

If this analysis results in identifying an unintended
functionality, it must be checked whether the original
specification actually allows for executing that partic-
ular test path. Our test path exploration technique (cf.
Section 5) merely considers the structure and does not
take into account the semantics of the specification.
Due to this purely syntactical approach some of the
resulting test paths might prove to be infeasible. For
instance, branching conditions in the process specifi-
cations may prevent certain sequences of processes.
However, we argue that the identification and analy-
sis of both feasible and infeasible paths supports the
detection of defects in the specification. The stake-
holders will review the control flow, as well as the
statements and conditions of the involved process
specifications to check if an undesired path is feasi-
ble. In order to improve readability by simplicity, it is
desirable to restructure the specification (e.g., pro-
cesses and data flows in the DFD, or the control flow
of process specifications) so that infeasible test paths
are avoided already on a syntactical level. Any syn-
tactical issue discovered during the automatic test
path exploration (such as process executions that
merely consume inputs) also provides valuable hints
for revising the specification.

For each valid and desired test path, the reviewers
continue by defining a testing procedure and a related
test input sequence in order to specify more concrete
system usage scenarios. This is required since the test
paths only specify a logical order of exercised pro-
cesses. Based on these abstract test cases, concrete in-
put test data and expected outputs are added in order
to create concrete test cases. This step requires a more

thorough review than for feasibility checks, but can
again be focused or guided by proceeding along one
particular test path at a time. Thereby – besides also
inspecting the Data Dictionary – it is assured that each
desired test path can be triggered as a test case with
appropriate instantiated inputs. Conditional expres-
sions that are in conflict with the feasibility of a de-
sired path will be uncovered by reviewing each in-
volved process specification, and require respective
corrections. Furthermore, if the specification lacks in-
formation or precision to derive test data, these issues
can also be found by creating test cases (cf. Section
2.1). The resulting test cases can later be reused for
system and acceptance testing.

5 TEST PATH EXPLORATION

Our approach can be characterized as bottom-up since
the starting point is the set of low-level primitive pro-
cesses. Therefore, we first need to expand all the
DFDs into a single DFD containing all the primitive
processes (cf. DeMarco, 1979). Based on the control
flow graph of each primitive process in the expanded
DFD, process transformations (i.e., relations between
input and output data flows) can be identified. Similar
to Roper and Bin Ab Rahim (1993), we assume that
consuming input and producing output data is explic-
itly indicated by referencing data flows, and traverse
the graph w.r.t. the branch coverage criterion. This al-
lows us to focus on the syntactical and structural con-
trol flow aspects of the mini specification, and ignore
its informally described semantics.

For each resulting transformation path, we docu-
ment the resulting process transformation as a 2-tuple
consisting of the sets of data flows that are consumed
and produced by the process, respectively. Note that
multiple transformation paths may lead to the same
transformation. A transformation is valid if neither
the input nor the output data set is empty. Invalid
transformations indicate insufficient testability of the
mini specification, and are sorted out to be analyzed
separately in the validation review (cf. Section 4).

Based on the set of valid transformations of a
primitive process, an ITG (cf. Section 2.3) is created
for each process separately, which reflects both data
flow and control flow aspects of the underlying mini
specification. The control flow aspects are implicitly
given by the process transformations, each one repre-
senting a set of transformation paths, i.e., sequences
of statements that carry out this transformation.

An exemplary result of applying our algorithm for
creating a process ITG based on a set of process trans-
formations, which is not explained in detail due to

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

256

space limitations, is illustrated in Fig. 3. A process
ITG represents the process transformations extracted
from the respective mini specification. The ITG deri-
vation is carried out for each primitive process.

Figure 3: ITG Derivation Example for a Single Process.

Once a separate ITG is derived for each primitive pro-
cess of the specification, the next step is to combine
these ITGs in order to represent the whole system
specification. Starting with one arbitrary ITG, all the
other ones are successively integrated, which eventu-
ally yields the complete ITG. Relations between ITGs
can be easily identified by means of data nodes, since
an internal data flow is represented by multiple data
nodes in different ITGs. This allows for merging two
data nodes that are part of two ITGs into one in many
cases. In contrast to the literature on the ITG, we also
model intermediate data nodes that represent internal
data flows between modules.

Furthermore, our approach covers data flows con-
nected to files. Since processes might not write or
read a complete record, but only parts of its composi-
tion, a further distinction is required. In this case, the
composition of the data items in the file is looked up
in the Data Dictionary so that data refinements can
also be modelled via a transition. In contrast to (Roper
and Bin Ab Rahim, 1993), this allows us to identify a
more comprehensive set of test paths, which we argue
can be useful in validation reviews. Note that internal
data nodes might be misinterpreted as system inputs
or outputs if, e.g., an atomic data element is stored
exclusively while only composite data elements are
read from the file (cf. Section 6).

The composite ITG expresses both the data flow
and the control flow perspective on the entire system,
and is used for test path exploration, i.e., paths that
represent transformations performed by the overall
system. To this end, we utilize the concept of “flows”,
i.e., sub-graphs of an ITG (cf. Section 2.3). For each
output data node, graph traversal is applied back-
wards (i.e., in the opposite direction of information
flow), by taking into account the different semantics
of places and transitions. Multiple incoming infor-
mation flow edges of a module or data node are han-
dled as disjoint branches. Incoming and outgoing
edges of a transition are traversed concurrently, i.e.,
all these connected edges will eventually be part of

the respective flows (Robach et al., 1984). In the case
of multiple outgoing edges of a transition, additional
forward traversal is applied in order to identify the
connected output data nodes. Thus, our approach
identifies sets of related in- and outputs, in contrast to
(Emery and Mitchell, 1989). This may result in iden-
tifying the same flow based on different traversal
starting points so that redundant flows must be elimi-
nated. According to Le Traon and Robach (1995), a
loop in the ITG will be represented by two flows; one
flow exercises the loop while the other passes it by.

Since we aim at facilitating the validation of a
Structured Analysis specification, test paths should be
represented independently of the ITG, which is only
an intermediate artifact. We suggest using a table in
which the logical order of the involved processes is
expressed (see example in Table 1 below). In contrast
to scenarios, test paths constitute the basis for test
case creation (cf. Section 4), and neither express tem-
poral sequences of functions nor specific sequences
of providing input data to the system.

6 APPLICATION EXAMPLE

For initial evaluation, we applied our technique for
exploring test paths described in Section 5 to a simple
example, i.e., a fictional Structured Analysis specifi-
cation of a library information system (LIS). The LIS
specification comprises three levels of abstraction,
i.e., the context diagram is decomposed into four sys-
tem processes (level 0), one of which is further de-
composed. Fig. 4 shows the expanded DFD.

Figure 4: Expanded DFD of the LIS Example.

Fig. 5 shows the ITG that represents the entire system
as a result of combining all the ITGs for the six prim-
itive processes shown in the expanded DFD in Fig. 4.

An exemplary flow is highlighted, which has been
identified via flow analysis.

Supporting�the�Validation�of�Structured�Analysis�Specifications�in�the�Engineering�of�Information�Systems�by�Test�Path
Exploration

257

Figure 5: Complete ITG and Exemplary Flow.

This exemplary flow constitutes one potential test
path as a result of applying our technique. Three dif-
ferent output data nodes (i.e., Lending	refusal, Lend‐
ing	status and Receipt) can be the starting point for
identifying this flow. Note that Lending	status is ac-
tually no output data node, since it can be traced back
to a data flow that saves information to a file, which
is never read exclusively. Similarly, User	data actu-
ally represents a data flow read from a file, since the
corresponding file does not have any incoming data
flows. In Table 1 we show how the exemplary test
path can be documented. External inputs and outputs,
i.e., data flows between the system and its context, are
distinguished from internal ones. In Fig. 4 this exem-
plary test path is highlighted in the expanded DFD.

In the subsequent review supported by test paths
(cf. Section 4), the exemplary test path will be manu-
ally reviewed by stakeholders. Focusing first on the
sets of system inputs and outputs, the reviewers will
find that the respective system functionality repre-
sents a valid and desired use case. Consequently, they
will continue with a more thorough review to define
a concrete process sequence and concrete test data to
invoke this system behavior and observe expected
outputs. Here, a set of books that constitute a Lending	
request are evaluated. To check their lending status

(e.g., “reserved”), the Catalogue file is read. The set
of books includes both lendable and not lendable
books, so that at least one Lending	refusal, as well as
some Receipt for a successful lending is created. The
user also has to be authenticated, which requires a
Login	request as well as reading the User	data file.
The test path also involves the process of maintaining
the catalogue, since books need to be recorded in the
library’s Catalogue file before they are available for
lending. This process is exercised twice in a loop,
meaning that the catalogue is empty first, so that sub-
sequent updates involve reading the file. To validate
this scenario, the reviewers will review each involved
process specification in order to specify a real test
case that covers this system behavior.

7 DISCUSSION

In this paper, we proposed an approach that fosters
the early requirements validation of Structured Anal-
ysis specifications by combining testing and review
techniques. We sketched an automatable technique
for exploring test paths in Structured Analysis speci-
fications consisting of different artifacts on several
abstraction layers. We especially address the gap of
support for creating test cases based on these semi-
formal specifications. Test paths are the basis for de-
fining (abstract) test cases, and can be used for guid-
ing and structuring specification reviews to uncover
incorrect requirements. Our test path exploration
technique is especially suited for early requirements
validation since it merely considers the syntactical
structure of the artifacts and does not take into ac-
count their informally specified semantics.

Our overall approach is scalable as it comple-
ments manual review processes with automated test
path exploration, and supports time-consuming test
case creation. It is particularly difficult to manually
identify dependencies between global in- and outputs
across many DFD levels manually. The test path ex-
ploration algorithm involves some steps whose com-
putation can be simplified. For instance, the complex-
ity of identifying process transformations in mini
specifications with iterations can be reduced by

Table 1: Exemplary Test Path.

Order Process Internal inputs Internal outputs System inputs System outputs
1 3 ∅	 ሼCatalogueሽ ሼCatalogue	updateሽ ∅	
2 3 ሼCatalogueሽ	 ሼCatalogueሽ ሼCatalogue	updateሽ ∅	

1 ሼUser	dataሽ	 ሼLoginሽ ሼLogin	request,	User	dataሽ	 ሼLogin	confirmationሽ
3 2.1 ሼCatalogue,	Loginሽ	 ሼLending	confirmation,	

Lending	statusሽ
ሼLending	requestሽ ሼLending	status,	

Lending	refusalሽ
4 2.2 ሼLending	confirmationሽ	 ∅ ∅ ሼReceiptሽ	

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

258

considering loop bodies separately, since the focus is
on the structural aspects. Transformation paths found
in loop bodies can be successively combined with the
ones identified from the superstructure in order to
avoid path coverage issues.

Though our test path exploration technique partic-
ularly suits data flow oriented Structured Analysis, it
can, in principle, be applied to other modeling lan-
guages, such as UML Activity Diagrams or BPMN.
To cover approaches that merely focus on control
flow, using the ITG as a simple model to explicitly
specify the transfer of data may be an option.

REFERENCES

Boehm, B., Basili, V.R., 2001. Software Defect Reduction
Top 10 List. In IEEE Computer, vol. 34, no. 1, pp. 135-
137. IEEE.

Chen, Y., Liu, S., Nagoya, F., 2005. An Approach to Inte-
gration Testing Based on Data Flow Specifications. In
1st Int. Colloquium Theoretical Aspects of Computing,
LNCS 3407, pp. 235-249. Springer.

DeMarco, T., 1979. Structured Analysis and System Speci-
fication, Prentice-Hall. Englewood Cliffs.

Denger, C., Olsson, T., 2005. Quality Assurance in Re-
quirements Engineering. In Engineering and Managing
Software Requirements, pp. 163-185. Springer.

Dzida, W., Freitag, R., 1998. Making Use of Scenarios for
Validating Analysis and Design. In IEEE Trans. Softw.
Eng., vol. 24, pp. 1182-1196. IEEE.

Emery, K.O., Mitchell, B.K., 1989. Multi-Level Software
Testing Based on Cyclomatic Complexity. In Proc.
Nat. Aerospace and Electronics Conf., pp. 500-507.
IEEE.

Giaglis, G.M., 2001. A Taxonomy of Business Process
Modeling and Information Systems Modeling Tech-
niques. In Int. J. Flexible Manufacturing Systems, vol.
13, pp. 209-228. Springer.

Gorschek, T., Dzamashvili-Fogelström, N., 2005. Test-case
Driven Inspection of Pre-project Requirements – Pro-
cess Proposal and Industry Experience Report. In Re-
quirements Engineering Decision Support Workshop.

Graham, D., 2002. Requirements and Testing – Seven
Missing-Link Myths. In IEEE Softw., vol. 19, issue 5,
pp. 15-17. IEEE.

IIBA, 2009. A Guide to the Business Analysis Body of
Knowledge (BABOK® Guide), International Institute of
Business Analysis. Toronto.

IREB, 2012. Syllabus IREB Certified Professional for Re-
quirements Engineering – Foundation Level, Version
2.1, Int. Requirements Engineering Board.

ISO/IEC/IEEE, 2010. Systems and software engineering –
Vocabulary, ISO/IEC/IEEE 24765, First Edition.

Kan, C.-Y., He, X., 1995. Deriving Algebraic Petri Net
Specifications from Structured Analysis – A Case
Study. In Information and Software Technology, vol.
37, issue 8, pp. 411-434. Elsevier.

Kotonya, G., Sommerville, I., 1998. Requirements Engi-
neering – Processes and Techniques, John Wiley &
Sons. Chichester.

Le Traon, Y., Robach, C., 1995. Towards a Unified Ap-
proach to the Testability of Co-Designed Systems. In
Proc. 6th Int. Symp. Software Reliability Engineering,
pp. 278-285. IEEE.

Le Traon, Y., Robach, C., 1997. Testability Measurements
for Data Flow Designs. In Proc. 4th Int. Software Met-
rics Symp., pp. 91-98. IEEE.

Li, M., Liu, S., 2011. Automatically Generating Functional
Scenarios from SOFL CDFD for Specification Inspec-
tion. In Proc. IASTED Int. Conf. Software Engineering,
pp. 18-25. ACTA Press.

Liu, S., McDermid, J.A., Chen, Y., 2010. A Rigorous
Method for Inspection of Model-Based Formal Specifi-
cations. In IEEE Trans. Reliab., vol. 59, issue 4, pp.
667-684. IEEE.

McCabe, T.J., Schulmeyer, G.G., 1985. System Testing
Aided by Structured Analysis – A Practical Experience.
In IEEE Trans. Softw. Eng., vol. SE-11, pp. 917-921.
IEEE.

Nguyen, C.D., Marchetto, A., Tonella, P., 2012. Combining
Model-Based and Combinatorial Testing for Effective
Test Case Generation. In Proc. 2012 Int. Symp. Soft-
ware Testing and Analysis, pp. 100-110. ACM.

Pressman, R.S., 2010. Software Engineering – A Practi-
tioner’s Approach, McGraw-Hill. New York, 7th ed.

Robach, C., Malecha, P., Michel, G., 1984. CATA – A
Computer-Aided Test Analysis System. In IEEE Des.
Test Comp., vol. 1, pp. 68-79. IEEE.

Roper, M., 1994. Software Testing, International Software
Quality Assurance Series, McGraw-Hill. London.

Roper, M., Bin Ab Rahim, A.R., 1993. Software Testing
Using Analysis and Design Techniques. In Software
Testing, Verification and Reliability, vol. 3, issue 3-4,
pp. 165-179. Elsevier.

Shull, F., Rus, I., Basili, V., 2000. How Perspective-Based
Reading can Improve Requirements Inspections. In
IEEE Computer, vol. 33, issue 7, pp. 73-79. IEEE.

Uusitalo, E.J., Komssi, M., Kauppinen, M., Davis, A.M.,
2008. Linking Requirements and Testing in Practice. In
16th IEEE Int. Requirements Engineering Conf., pp.
265-270. IEEE.

Väliviita, S., Tiitinen, P., Ovaska, S.J., 1997. Improving the
Reusability of Frequency Converter Software by Using
the Structured Analysis Method. In Proc. IEEE Int.
Symp. Industrial Electronics, vol. 2, pp. 229-234. IEEE.

Yourdon, E., 1988. Modern Structured Analysis, Prentice-
Hall. Englewood Cliffs.

Supporting�the�Validation�of�Structured�Analysis�Specifications�in�the�Engineering�of�Information�Systems�by�Test�Path
Exploration

259

