
Behind the Scenes of the BPMN Extension Mechanism
Principles, Problems and Options for Improvement

Richard Braun
TU Dresden, Chair for Wirtschaftsinformatik, esp. System Development, 01062 Dresden, Germany

Keywords: Business Process Modeling, Language Extension, Enterprise Modeling, Meta Modeling, Meta Model
Extension, MOF, BPMN.

Abstract: The Business Process Model and Notation (BPMN) is a standard for modeling business processes that is
widely used and accepted both in academia and industry due to its well-defined meta model, its large set
of concepts and its extensibility. BPMN is one of very few modeling languages that provides an integrated
extension mechanism. However, the mechanism is not often implemented in research articles or in professional
practice. We suppose, that both syntactical and methodical aspects within the BPMN extension mechanism
may cause misunderstandings and uncertainty regarding its implementation. Therefore, we conducted an in-
depth analysis of the extension mechanism in order to rationally figure out problematic aspects. These aspects
are consolidated and compared to two existing BPMN extension methods. Based on that, a range of further
research topics is finally derived.

1 INTRODUCTION AND
MOTIVATION

The Business Process Model and Notation (BPMN) is
a very common modeling language for business pro-
cesses and widely used in professional practice (Chi-
nosi and Trombetta, 2012). BPMN is defined by the
Object Management Group (OMG) and additionally
specified as ISO standard (OMG, 2011b). The mod-
eling language provides a set of generic business pro-
cess elements, independent from a specific domain.
However, both in academia and industry, it is often
necessary to extend BPMN with custom concepts in
order to represent characteristics of a particular verti-
cal domain (e.g., health care or quality management).
Thus, it remains possible to both use the benefits of
BPMN as a general purpose process modeling lan-
guage (e.g., standardization, tool support and aware-
ness) and adapt the language to specific requirements
of a problem or a domain. BPMN is one of very
few modeling languages that provides a set of generic
extension elements within its meta model (see Fig-
ure 1). That extension mechanism is intended to en-
able the definition of extensions and ensure validity of
the BPMN core (OMG, 2011b).

However, only very few BPMN extensions base
on the mechanism, what hampers model interoper-
ability, comparability and replicability (Braun and Es-

swein, 2014). We assume, that both missing me-
thodical support and some syntactical obscurities lead
to these deficiencies. We therefore conducted an in-
depth analysis of the BPMN specification in order to
carve out problematic issues. Thus, we aim to foster
a discussion within academia regarding to a potential
improvement of the BPMN extension mechanism that
could finally lead to improvements in practice (e.g.,
better BPMN tool support for extensibility). This re-
search paper is understood as a research-in-progress
article, since we focus the current state of the art and
indicate some first points for improvement.

The structure of the article is as follows. Sec-
tion 2 provides an investigation of implicit extension
capabilities with BPMN. In detail, we looked for el-
ements that can be exploited for customization. Sec-
tion 3 presents the BPMN extension elements in de-
tail. While considering its elements, problematic as-
pects regarding to syntax and semantics are expli-
cated. The same procedure is applied to the extension
mechanism at all in Section 4. Afterwards, a table
of “problem notices” is presented and compared to
approaches from literature. Thus, a range of further
research topics is finally derived.

403Braun R..
Behind the Scenes of the BPMN Extension Mechanism - Principles, Problems and Options for Improvement.
DOI: 10.5220/0005329904030410
In Proceedings of the 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2015), pages 403-410
ISBN: 978-989-758-083-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

documentation
*

1

definition
1

1

Foundation

Base Element
id: String

extensionDefinitions
*

*

value
0..1

1

extensions
*

1

*

extensionAttribute
Definition
1

Foundation

ExtensionAttributeValueextensionValues
*

1

Foundation

ExtensionDefinition
name: String

Infrastructures

Definitions
typeLanguage: String
exporterVersion: String
expressionLanguage:
String
targetNamespace: String
exporter: String
name: String

extensionAttributeDefinitions
*

1

Foundation

Documentation
text: String
textFormat: String

valueRef
0..1

*

Foundation

ExtensionAttributeDefinition
type: String
isReference: Boolean
name: String

Foundation

Extension
mustUnderstand: Boolean

CMOF

Element

Figure 1: Excerpt of the BPMN meta model containing all
relevant classes and relationships of the extension mecha-
nism.

2 IMPLICIT EXTENSIBILITY

Leveraging a modeling language for specific purposes
not always requires the definition of lightweight or
heavyweight extensions, since modeling languages
sometimes provide concepts that are intended for cus-
tom specification. Thus, we first consider such con-
cepts within BPMN in order to pose existing capabil-
ities beyond the extension mechanism. Sometimes,
it might be more favourable to use the following op-
tions instead of taking a sledgehammer to crack a nut
(extension mechanism).

2.1 Artifacts and External
Relationships

Artifacts are used to provide additional information
about a process. BPMN provides threeArtifacts by
default: Groups, Text Annotationsand Associations
(OMG, 2011a, p. 67). BPMN explicitly allows mod-
elers and modeling tools to add additionalArtifacts
for specific purposes (OMG, 2011a, p. 28). This op-
portunity allows augmentation of the BPMN (Atkin-

son et al., 2013) in the sense of specific domain con-
cepts or constructs for operations on BPMN models
such as model transformations. As stated, new types
can be added to a BPMN diagram, if sequence flow
rules and message flow connection rules are respected
(OMG, 2011a, p. 66). From a language point of view,
rules and constraints of BPMN are not affected by this
simple extension option. Moreover, the definition of a
new information view of the languages is facilitated.
Additionally, BPMN allows the integration of “a new
shape representing a kind of Artifact” (OMG, 2011a,
p. 8).

Problem Notice 1. Despite the flexibility of theAr-
tifact approach, there are some unconsidered issues.
First, it remains unclear what level of complexity a
customArtifact can have. This especially addresses
the issue of attributedArtifact types and relations be-
tween them. Actually,Artifacts are supposed to be
very simple objects getting their semantics primarily
from their assigned name. Second, it also remains
open, whether customArtifacts should be integrated
on meta level (M2) or model level (M1). While the
first one increases model exchangeability, the latter is
easier for integration within modeling tools.

BPMN also allows the integration ofArtifactsand
“elements expressed in any other addressable domain
model” (OMG, 2011a, p. 62). This is enabled by
the External Relationshipelement which represents
associations betweenArtifactsan external model ele-
ments. This simple mapping mechanism is intended
to facilitate traceability, model derivation and model
integration (OMG, 2011a, p. 63).

In consequence, BPMN provides two basal proce-
dures for domain-specific adaptions: First, newArti-
factscan be designed individually. Strictly speaking,
each customArtifact also leads to a new variation of
the BPMN meta model since newArtifact types need
to be integrated. Thus, such an extension would lead
to a minor, element-wise specialization of the BPMN
meta model. However, this is not clearly explicated
by BPMN as we stated above. Second, theExternal
Relationshipmechanisms provides the opportunity to
integrate BPMN models and models of other mod-
eling languages. Hence, the BPMN meta model re-
mains unmodified, but techniques like model weaving
need to be applied in order to realize model integra-
tion (Del Fabro and Valduriez, 2009).

2.2 Adapting the Concrete Syntax

Generally, BPMN is quite open for the customization
of the concrete syntax: “An extension SHALL NOT
change the specified shape of a defined graphical el-
ement or marker (e.g., changing a square into a tri-

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

404

angle, or changing rounded corners into squared cor-
ners, etc.)” (OMG, 2011a, p. 8). Further, adaptions
of the concrete syntax can also be used for the ex-
plication of specific semantics: For instance, coloring
elements can emphasize some categories. It is also
allowed to add markers to elements in order to em-
phasize specific sub types. As stated above,Artifacts
can be layouted individually.

3 EXPLICIT EXTENSIBILITY

BPMN provides an extension by addition mechanism
that ensures the validity of the BPMN core elements
while specifying additional constructs (OMG, 2011a,
p. 44). Figure 1 depicts the relevant meta model ex-
cerpt. Due to the fact, that the majority of BPMN ex-
tensions is not designed in conformity to the BPMN
meta model (Braun and Esswein, 2014), we provide
an analysis of BPMN extension capabilities by ana-
lyzing both syntactical and semantical aspects of the
four BPMN extension classes in detail. We also con-
sider relevant consequences for XML based model in-
terchange. Based on a rational discourse, some prob-
lematic (or even not clearly defined) aspects are stated
within problem notices. Finally, these statements are
summarized in a table and possible points for im-
provement will be suggested.

3.1 Extension

The elementExtensionbinds and imports the entire
extension definition and its attributes to a BPMN
model definition. By doing so, all extension ele-
ments become accessible for BPMN elements (OMG,
2011b, p. 58). If the semantics of anExtensionneed
to be understood by a BPMN adopter in order to pro-
cess a BPMN model correctly, themustUnderstood
attribute is set to true. Otherwise, theExtensionre-
mains optional to BPMN definitions. Any BPMN def-
inition can be associated to multipleExtensions. Fur-
ther, anExtensionconsists of exactly oneExtension
Definition, that defines its actual content.

Semantics.TheExtensionclass is only the outermost
definition layer, without any concrete domain-specific
information.

XML. On XML level, the reference to theExtension
Definition is simply represented by theQNametype.
At this point, the XML specification disappears from
the scope of BPMN and refers to an external XML
specification.

3.2 Extension Definition

An Extension Definitionis a named group of new at-
tributes that can be used by BPMN elements. An
Extension Definitionis not inevitably a new element,
since it can also be intended as a single additional at-
tribute of a BPMN element. The only attribute of the
class is thenameattribute that denotes the group. The
particular characteristics of the new element or at-
tribute are defined byExtension Attribute Definitions.
A Base Elementcan reference anExtension Definition
multiple times. On the contrary, it is not intended to
specify,whatspecific BPMN element can access the
Extension Definition. Thus, actually all extensions are
accessible forall BPMN elements since each element
is a sub class ofBase Element. Also, a navigation
from theExtension Definitionto theBase Elementis
not possible.

Semantics.Name and container of the designed ex-
tension. Due to the fact, that theExtensionis asso-
ciated with exactly oneExtension Definition, an ex-
tension actually can be seen as exactly one new ele-
ment in the sense of a concept having attributes or a
concept that only stands for an additional attribute of
some BPMN element (a differentiation is only possi-
ble in context of the application). This new element
then can be referenced by several BPMN standard ele-
ments what emphasizes the additional character of the
extension mechanism. However, this provokes some
problems:

Problem Notice 2. Due to this constellation, it is
quite inconvenient to add complex extensions, since
it is necessary to first design allExtension Defini-
tions singularly and than add the relationships be-
tween them subsequently. Therefore, it remains un-
clear, whether anExtension Definitioncan also have
anExtension Attribute Definitionthat is typed by an-
other newExtension Definition. Actually, that should
be possible, since the type is specified as String. How-
ever, the specification should make this more clearer,
because a domain extension with - for instance - a set
of five elements requires a preloading of all fiveEx-
tension Definitionsin order to make the correspond-
ing Extension Attribute Definitionsavailable. More-
over, it would be better, to explicate the concep-
tual interrelations between the new elements in one
model. Currently, each of the exemplarily five ele-
ments would cause a particular extension model and
their conceptual interrelations would be barely ob-
vious. Further, it is currently not possible to depict
more complex relations between single extension ele-
ments such as aggregations or inheritances what ham-
pers expressiveness and the representation of domain
rules.

Behind�the�Scenes�of�the�BPMN�Extension�Mechanism�-�Principles,�Problems�and�Options�for�Improvement

405

Problem Notice 3. In the current extension mecha-
nism, each BPMN element can access allExtension
Definitions, since all BPMN types are sub classes
of Base Element. This leads both to missing sep-
aration of concern and to semantic irregularities, as
also elements that are not intended to be related to an
Extension Definition, can be related to them techni-
cally. In order to avoid such situations, it needs to
be specified, to which element anExtension Defini-
tion can be associated. This should also be consid-
ered on XML interchange level. Otherwise, the stated
under-specification could lead to semantically incor-
rect models.

Problem Notice 4. In the current version, BPMN
does not make a conceptual difference between
element-wise extensions (in the sense of definable
classes with own attributes that can be referenced by
other classes) and attribute-wise extensions (in the
sense of adding some attributes to standard BPMN
classes). While this should be syntactically correct,
it might provoke some conceptual confusion whether
the definition of new elements is allowed at all.

XML. BPMN specification states that this “type is
not applicable when the XML schema interchange is
used, since XSD Complex Types already satisfy this
requirement” (OMG, 2011b, p. 58). Hence, BPMN
excludes XML specification ofExtension Definitions
from its meta model and just refers to under-specified
XSD Complex Types. There is actually no deeper con-
trol of the extension structure (syntax) on XML level.

3.3 Extension Attribute Definitions

As stated above, theExtension Attribute Definition
class defines the actual characteristics of an extension.
An Extension Attribute Definitionis specified by the
name and the type of the attribute. The corresponding
type must be given as string reference to the identifier
of the corresponding class. TheisReferenceattribute
indicates whether the attribute value is set directly or
by reference to the referred element.

Semantics. A list of attributes of a new element or
attribute.

XML. BPMN specification states that “this type is
not applicable when the XML schema interchange is
used; since the XSD mechanisms for supporting Any-
Attribute and Any type already satisfy this require-
ment” (OMG, 2011b, p. 59). This statement also in-
dicates that the XML based definition of an exten-
sion is out of the syntactical scope of BPMN. More-
over, implementing the specification depends totally
on the language engineer. In this case, it might be bet-
ter to keep it within some syntactical rules of BPMN

in order to avoid semantically incorrect models (see
above).

3.4 Extension Attribute Value

TheExtension Attribute Valuesclass can be used for
the specification of concrete attribute values. If the
correspondingisReferenceattribute of theExtension
Attribute Definitionis set of false, the attribute value is
given directly. Otherwise, a reference to the targeted
class needs to be given (OMG, 2011b, p. 59). A spe-
cific meta modelElementis addressed in both cases.
The statedElementclass is one of the most generic
classes within the Complete Meta Object Facility
(CMOF) on level M3. On that meta meta model level,
Packages, FeaturesandClassifiers(OMG, 2014) in-
herit from theElementclass. Classifiers are speci-
fied into ClassesandData Types. Thus, both com-
plex types (e.g., BPMN elements) and primitive data
types (e.g., Strings) can be referenced byExtension
Attribute Values.

Semantics. A list of typed attributes of a new ele-
ment.

Problem Statement 5. While understanding the se-
mantics of theElementreference, the syntax is not
accurate at this point, since the BPMN specification
integrates an element that is specified on level M3
(within CMOF) and not on level M2 as BPMN is
(see Figure 2). In the current version, the extension
meta model violates the separation of abstraction lay-
ers (type instance relation). Also, BPMN does not
provide clear evidences on the relation between basic
concepts and the corresponding meta meta level (M3).
Actually, each abstraction level is realized by type in-
stance relations. Nonetheless, this is quite clear for
the most classes (e.g., namespaces or associations), it
is confusing regarding to the extension classes, since
MOF already provides a basal extension mechanism
and we cannot detect any correspondence to that in
BPMN (OMG, 2014, p. 23).

3.5 Mechanism in General

As stated above, BPMN defines elements that should
facilitate the design of vertical or domain-specific ex-
tensions. By providing elements on meta level M2 the
instantiated extensions are actually located on model
level M1 due to the “instance of” relation. However,
an application of the extension requires another in-
stantiation step regarding to the creation of the actual
extension instances on level M1. This instantiation
sequence collides with the strict four layer architec-
ture of the OMG. Respectively, a new “intermediate
layer” is created, which contains the standard meta

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

406

extensionAttributeDefinitions
*

1

extensionValues
*

1

CMOF

Element

Foundation

Base Element
id: String

Abstraction Problem: CMOF::Element from Level M3

Foundation

Documentation
text: String
textFormat: String

valueRef
0..1

*

M2

Foundation

ExtensionAttributeValue

value
0..1

1

extensions
*

1

extensionDefinitions
*

*

M2

M3

Foundation

ExtensionDefinition
name: String

M2
Infrastructures

Definitions
exporter: String
exporterVersion: String
targetNamespace: String
expressionLanguage:
String
name: String
typeLanguage: String

Foundation

ExtensionAttributeDefinition
name: String
type: String
isReference: Boolean

Foundation

Extension
mustUnderstand: Boolean

documentation
*

1

M2

M2M2

definition
1

1

*

extensionAttribute
Definition
1

M2

Figure 2: Abstraction problem: The classCMOF::Element
originally comes from level M3, while all other classes are
from the BPMN definition on level M2.

model and its new extension meta model elements
(could be referred as “M1.5’, see Figure 3). Never-
theless, the BPMN mechanism is principally feasible,
its application should be clearly explained, since the
CMOF::Elementrelation speaks against this assump-
tion (see above).

If BPMN aims to provide an extension on level
M2, the problems are getting more severe, since
BPMN is defined on level M2 and cannot provide any
mechanism of the level it is defined on. Rather, there
either needs to be an application of MOF extension
capabilities in the form of clear instances or any kind
of overwriting of the M3 definitions regarding exten-
sibility.

Problem Notice 6. Currently, it is not clear whether
BPMN aims to provide an extension mechanism sim-
ilar to the lightweight UML profile mechanism (M1)
or a heavyweight meta model extension (M2). Evi-
dences for both approaches can be found.

3.6 XML Serialization

As mentioned above, BPMN specification reveals
deviations in regard of the XML interchange for-
mat. Generally, MOF specifies the XMI metadata

interchange format in order to ensure serialized in-
teroperability (OMG, 2014). Also the instances of
MOF (meta models on level M2) should make use of
XMI. However, BPMN propagates a dedicated XML
schema what leads to various conceptual problems
(Stroppi et al., 2011, p. 2).

Problem Notice 7. The extension mechanism is not
very well included into the BPMN XML schema since
the definition of the extension is outsourced to a sepa-
rate XML schema without any further specification of
its structure. Consequently, BPMN also states that if
XML schema interchange is used, bothExtension At-
tribute DefinitionandExtension Attribute Definition
Valuecannot be applied (see above). Rather, it is in-
tended to extend the concerning BPMN classes with
the XSD AnyAttributeandAny type. Thus, we ob-
serve also a break between the MOF based BPMN
meta model and its XSD based serialization! These
aspects could lead to uncertainty regarding to the ex-
change of extension data between two modeling tools,
for example.

4 METHODOLOGICAL ASPECTS
AND RELATED WORK

4.1 Methodological Aspects

Despite the fact that BPMN provides a well-defined
extension interface, a procedure model for the
straightforward development of extensions is missing.

Problem Notice 8. BPMN does not provide any
methodological guidance. Especially, there is no sup-
port for the issue of comparing new domain-specific
elements with standard BPMN elements in order to
identify reasonable need for extension and ensure the
required check whether the elements do not contradict
the semantics of other BPMN elements.

Problem Notice 9. Besides to the customization of
the concrete syntax of single items, it remains open,
how the concrete syntax of extension elements should
be exchanged through BPMN Diagram Interchange
(OMG, 2014, p. 367). Also, there is no consideration
of new diagrams in the sense of views or presentations
based on extended elements.

4.2 Related Work

Only very few research articles address extensibility
of BPMN. In the following, the approaches of Stroppi
et al. (2011) as well as Braun and Schlieter (2014) are
discussed against the background of the stated issues.

Behind�the�Scenes�of�the�BPMN�Extension�Mechanism�-�Principles,�Problems�and�Options�for�Improvement

407

Foundation

Extension

instance of

M2

instance of

name = "Expacted Lifetime"

type = "Integer"

isReference = false

«Base Element»

Activity

Foundation

ExtensionDefinition

M2

«Resource Type Value, Extension Attribute Value»

Production Machine

«Extension Definition»

Resource

M1.5M1.5

name = "Resource Type"

type = Resource Type Value

isReference = true

instance of

M1.5«Extension Attribute Value, Resource Type Value»

Hardware

M 1

Foundation

ExtensionAttributeValue

M1.5

M2

instance of

instance of

M1

instance of

«Extension Attribute Definition»

Expacted Lifetime

M1.5

M2

«Extension Attribute Definition»

Resource Type

Foundation

ExtensionAttributeDefinition

«Extension»

Resource Extension

«Activity»

Milling Work Piece

M 2

M1

Abstraction Conflict: Sub Layer M1.5

M2

M1.5

instance of

instance of

M2

(M1.5)

«Resource Extension»

Resource Extension

instance of

«Resource»

Milling Machine
Expacted Lifetime = 10
Production Machine Type = "Production Machine"

Foundation

Base Element

M1

Figure 3: A simple extension example yields that the instantiation of BPMN extension meta model elements leads to a de
facto sub layer (denoted “M1.5”) that causes irregularities from the perspective of meta model layers. The example depicts
the creation of a simple resource extension containing an element with two attributes.

4.2.1 Stroppi et al. (2011)

Stroppi et al. (2011) define a model-transformation
based procedure model for the methodical develop-
ment of valid BPMN extensions models. Their proce-
dure model consists of mainly three steps: First, the
domain is conceptualized by defining a Conceptual
Domain Model of the Extension (CDME) as UML
class diagram. Second, the CDME is transformed into
a valid BPMN extension model (BPMN+X) by using
UML stereotypes and a set of transformation rules
for several model element constellations. Third, the
BPMN+X model its transformed into a XML Schema
Extension Definition Model, whereby the following
matchings are applied:Extensionto xsd:schema, Ex-
tension Definitionto xsd:group, Extension Attribute
Definition to xsd:complexTypeDefinitionand Exten-
sion Attribute Valueto xsd:simpleTypeDefinition. Ob-
viously, the approach of Stroppi et al. (2011) provides
a well-defined and consistent approach that tackles
the problem of missing methodical support and XSD
generation. Nevertheless, we see some minor short-
comings (or better points for improvement) regarding
to this approach:

First, the authors state that a BPMN extension is
a direct instance of the BPMN meta model. As we
have already argued in Section 3.5, this is not the case
since the extension model is actually an instance of
the new meta model variant on level “M1.5”. Thus,

MOF

CMOF

Core

«merge»

Profiles
«merge»

Profile

AuxiliaryConstructs

Superstructure

«merge»«merge»«merge»

Basic Constructs

Infrastructure Library

Abstractions

«merge»

«import»

EMOF

«merge»

Figure 4: Excerpt of the MOF that indicates that MOF does
not merge theProfile package. Strictly speaking, it is con-
sequently not possible to apply the profile mechanism.

an extension model is only an indirect instance of the
BPMN meta model. Stroppi et al. (2011) implic-
itly tackle this issue by adapting the profile mecha-
nism from UML to the BPMN extension meta model,
what leads to the creation of a M2profile model (in the
sense of the their BPMN+X model). Although, this
is a suitable technique, the application of the profile
mechanism to either MOF or BPMN is actually not
permitted by the MOF specification. The (not re-
ally obvious) reason is, that MOF does not import
or merge theProfile package fromInfrastructure Li-
brary (see Figure 4). Only theUML Superstructure
imports theProfile package and is able to apply the

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

408

Problem Notice Stroppi

et al. (2011)

Braun and

Schlieter

(2014)

Possible Improvements and

Further Research

1 Artifacts on M1 or M2? − − • Clear statement in specification needed

2 Complex extension models ! (!) • Extending the method of Stroppi et al.

(2011) for specific relation types

• Perhaps, integration of OCL is helpful for

specific dependencies

3 No specification of the extended

Base Element sub class

" (") • Update of the extension meta model or

explication of conditional statements (OCL)

for element specification

4 Clear distinction between element

extension and attribute extension

" (") • Update of the extension meta model

5 Conflict of level abstraction

CMOF::Element

! (!) • Update of the extension meta model

6 Extension instantiation enforces

intermediate level (M1.5)

! (!) • Clear statement in specification needed

• Option 1: Profile mechanism according to

Stroppi et al. (2011) with MOF update

• Option 2: Changing level M3 / meta meta

model extension capabilities

7 Missing specification of extension

XML interchange

! (!) • Generic as well as sufficient specification of

a serialization format

8 Lack of methodological guidance ! " • Consideration of domain analysis

(preparation of extension design)

• Integrated meta model, adaption of

techniques from model comparison and

model transformation

• Formulation of extension guidelines/ patterns

9 Unclear interchange of concrete

extension syntax

− − • Generic techniques for concrete extension

syntax specification and exchange (re-use of

BPMN DI basics!)

" (solution proposed) ! (solution partially proposed) − (neither considered or solved)

Figure 5: Summary of the noticed problems and possible topics fur further investigation.

mechanism. In contrary, MOF provides only a basal,
element-wise “name value pair” extension opportu-
nity (OMG, 2014, p. 23).

Second, the method lacks in terms of a de-
tailed analysis and consideration of the domain since
it is an engineering driven approach that empha-
sizes stereotype definitions and transformation rules
(Stroppi et al., 2011). Besides, an extension of the
CDME model in terms of using further relation types
(e.g., navigable associations, aggregations or com-
pensations) should be considered in order to design
more complex domain models on a conceptual level.
Stroppi et al. (2011) present rules for the transforma-
tion of inheritances to basic associations by adding in-
herited attributes to the sub class. Similar rules need
to be defined for further relation types that are needed
for expressive domain models.

4.2.2 Braun and Schlieter (2014)

Braun and Schlieter (2014) outline an integrated pro-
cedure model for the design of BPMN extensions
and extend the approach of Stroppi et al. (2011)

by the analysis of the domain and its conceptual-
ization. Therefore, the authors proclaim an initial
domain requirements analysis step in order to iden-
tify requirements of the general modeling approach.
Based on these requirements, a decision on the suit-
ability of BPMN is made. Afterwards a domain on-
tology should be designed in order to prepare the con-
ceptual domain model and set a base for the so-called
equivalence check. This check covers an examina-
tion of each required domain concept against standard
BPMN concepts and their semantics in order to de-
rive a rational decision whether a concept needs to
be added or not (Braun and Schlieter, 2014). How-
ever, the proposed method is still under research and
more detailed information on the semantical equiva-
lence check is necessary.

5 PROBLEM CONSOLIDATION
AND FURTHER RESEARCH

Figure 5 summarizes the analyzed problem state-

Behind�the�Scenes�of�the�BPMN�Extension�Mechanism�-�Principles,�Problems�and�Options�for�Improvement

409

ments and compares each of them against the back-
ground stated in Section 4.2. Some assessments re-
garding the approach of Braun and Schlieter (2014)
were greyed out since the authors mostly re-use the
approach of Stroppi et al. (2011). Also, possible
points for improvement or aspects for further research
are given. These aspects should be understood as first
inspirations for further investigation.

All in all, we see two main directions for improv-
ing the current struggle with BPMN extensions. The
first one addresses revising and updating parts of the
BPMN meta model in order to remedy the examined
problems, obscurities and ambiguities. Consequently,
this would also require an review of the capabilities
of MOF regarding the profile mechanism. However,
changing such standards is indeed very hard to im-
plement. Thus, the second option constitutes further
development as well as enhancement of the approach
of Stroppi et al. (2011) regarding to the mentioned
aspects. Beyond, also questions of meta model ver-
sion management and its respective instances need to
be considered in order to ensure reasonable BPMN
model comparison. Also, it seems to be promising to
examine possible consequences of BPMN extensions
relating to executable BPEL extensions (Kopp et al.,
2011).

ACKNOWLEDGEMENT

This research was funded by the German Research
Foundation (DFG) within the research project “SFB
Transregio 96”. The author is grateful for the funding
and the research opportunities.

REFERENCES

Atkinson, C., Gerbig, R., and Fritzsche, M. (2013). Model-
ing language extension in the enterprise systems do-
main. In 17th IEEE International Enterprise Dis-
tributed Object Computing Conference, pages 49–58.

Braun, R. and Esswein, W. (2014). Classification of
domain-specific bpmn extensions.Lecture Notes of
Business Information Processing, 147:42–57.

Braun, R. and Schlieter, H. (2014). Requirements-based
development of bpmn extensions: The case of clinical
pathways. InIEEE 1st International Workshop on the
Interrelations between Requirements Engineering and
Business Process Management, pages 39–44.

Chinosi, M. and Trombetta, A. (2012). Bpmn: An intro-
duction to the standard.Computer Standards & Inter-
faces, 34(1):124–134.

Del Fabro, M. D. and Valduriez, P. (2009). Towards the
efficient development of model transformations using

model weaving and matching transformations.Soft-
ware & Systems Modeling, 8(3):305–324.

Kopp, O., Görlach, K., Karastoyanova, D., Leymann, F.,
Reiter, M., Schumm, D., Sonntag, M., Strauch, S.,
Unger, T., Wieland, M., et al. (2011). A classification
of bpel extensions.Journal of Systems Integration,
2(4):3–28.

OMG (2011a).Business Process Model and Notation, Ver-
sion 2.0.

OMG (2011b).Unified Modeling Language, Infrastructure,
Version 2.4.1. OMG.

OMG (2014).Meta Object Facility (MOF) Core Specifica-
tion, Version 2.4.2.

Stroppi, L. J. R., Chiotti, O., and Villarreal, P. D. (2011).
Extending bpmn 2.0: Method and tool support. In
Business Process Model and Notation, pages 59–73.
Springer.

MODELSWARD�2015�-�3rd�International�Conference�on�Model-Driven�Engineering�and�Software�Development

410

