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Abstract: This position paper proposes a discussion of the need for a solid philosophical basis for mining sensor-data
based on phenomenology. Additionally it is proposed that, when considering cyber physical systems, the
solution of inverse problems is a prerequisite if the results are to have physical meaning. A prototype lexical
analysis tool for sensor-data is presented and its application to knowledge discovery in large mechatronic
systems is demonstrated.

1 INTRODUCTION

There are many different definitions for what consti-
tutes a cyber physical system (CPS) (Baheti and Gill,
2011; Geisberger and Broy, 2012; Spath et al., 2013a;
NIST, 2013; NIST, 2012; Park et al., 2012; IOSB,
2013; Spath et al., 2013b; Lee, 2008; Tabuada, 2006).
The most succinct and pertinent to this paper is the
definition given by the IEEE (Baheti and Gill, 2011)
and ACM1: A CPS is a system with a coupling of the
cyber aspects of computing and communications with
the physical aspects of dynamics and engineering that
must abide by the laws of physics. This includes sen-
sor networks, real-time and hybrid systems.

Mining sensor-data from such system and per-
forming knowledge discovery is significantly differ-
ent from mining static databases. The fundamental
question in any philosophy is:What is a valid source
of knowledge2 and how do we acquire this knowl-
edge?

Consequently, any person developing a data an-
alytics system which includes knowledge discovery
must answer this philosophical question and the phi-
losophy must be implemented within the software.
There is no avoiding the truth of this statement. Most
authors, however, do not explicitly address this issue
in sufficient depth. Fundamentally, there is no infor-
mation is the data stream itself. It is the association of
some form a model with the data and the parameters

1ACM/IEEE International Conference on Cyber-
Physical Systems (ICCPS) (iccps.acm.org)

2Sometime the word truth is used instead of knowledge.

of this model when applied to the data which reveal
the information. Or more precisely enable an infer-
ence with respect to the cause of the observation3.

Virtually all literature and standard works on data
mining, e.g., (Han, 2005, Chapters 2 and 3), deal with
data models, predominantly statistical data models,
as a means of revealing correlations. In the case of
mining sensor-data emanating from technical systems
we are observing data related to specific phenomena
which is influencing a system. In such cases if we are
to make any statement about the phenomena it is nec-
essary to consider the system model and not just data
models. Unfortunately, inverse problems associated
with such systems and sensor-data are not in general
addressed, see for example (Aggarwal, 2013) where
only data models are addressed.

If we are to perform sensor-data analytics, in a
manner such that the results have physical meaning,
i.e. obeying the laws of physics, then it will be nec-
essary to solve inverse problems in real time. Fur-
thermore, the use of multiple sensors in a large sys-
tem will require compact descriptions of complex
events. Humans use language to express complex
sensory experience and associated perceptions, since
a description of the sensory excitation would be too
longwinded and not understandable. But more im-
portantly, most of the information is to be found in
the common understanding of the word used; and is

3If we have no model there can be no information. The
numbers in a computer have no meaning. The attachment
of meaning to a number is fundamentally adding a model.
Many working in sensor networks do this implicitly, we pre-
fer to do it explicitly.

176 O’Leary P., Harker M. and Gugg C..
Sensor-data Analytics in Cyber Physical Systems - From Husserl to Data Mining.
DOI: 10.5220/0005328601760181
In Proceedings of the 4th International Conference on Sensor Networks (SENSORNETS-2015), pages 176-181
ISBN: 978-989-758-086-4
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



not to be found in the sensor-data, but is associated
with the sensor-data through the use of the word.

In thisposition paperwe wish to initiate a serious
and in depth discussion of the following issues:

1. Can the philosophy of phenomenology (Husserl
and Hardy, 1999; Merleau-Ponty, 2002) be a sup-
port during the design and partitioning of a sensor-
data mining system?

2. Do we need to consider the relevance of the de-
velopment of natural languages (Hmc, 2000, Ap-
pendices I and II) as a possible model for generat-
ing symbolic representations of sensor-data when
considering more complex events?

3. There is a very clear need to implement real-time
solutions of inverse problems if we are to extract
physically relevant information and knowledge.
Statistical data models are not sufficient.

4. There is a need for embedded simulation to im-
prove the overall efficiency of real-time sensor-
data mining.

To support our hypothesis we demonstrate results
from a prototype implementation of sensor-data min-
ing systems. The system is motivated by the Indo-
Asian model for phenomenology and implements the
real-time solution of inverse problems and embedded
simulation. The system has been applied to the anal-
ysis of two different large pieces of machinery.

2 THE POSITION

This section presents a discussion of the elements
contained within this position paper. These are the
main topics on which we wish to initiate an in depth
discussion.

2.1 Phenomenology

Phenomenology as a branch of physics is defined as:
a body of knowledge that relates empirical observa-
tions of phenomena to each other, in a way that is
consistent with fundamental theory, but is not directly
derived from theory. This is exactly what we wish to
do with data mining and knowledge discovery. How-
ever, statistical data models alone will not essentially
deliver results which are consistent with the funda-
mental theory of the system, since they make no at-
tempt to model the system being observed. Without
solving the inverse problems associated with the sys-
tem we can not guarantee consistency with the funda-
mental theory.

If we look closer at knowledge discovery we must
also consider phenomenology as a branch of phi-
losophy. Edmund Husserl4 is considered to be the
founder of the philosophy of phenomenology which
is normally defined as:the study of the develop-
ment of human consciousness and self-awareness as
a preface to or a part of philosophy. The ori-
gins, however, are much older in the 18th cen-
tury, the Swiss German mathematician and philoso-
pher Johann Heinrich Lambert applied the concept
to that part of his theory of knowledge that distin-
guishes truth from illusion and error. Phenomonology
was later extended by Martin Heidegger who intro-
duced the concepts of present-at-hand and ready-
to-hand. Which proposed that we gain all knowl-
edge only by studying our“average-everyday” un-
derstanding of the world gained from direct inter-
action with objects. Later Maurice Merleau-Ponty
with his best know work “Phenomenology of Percep-
tion” (Merleau-Ponty, 2002) analyzed how we per-
ceive as a result of experiencing phenomena, his con-
cept ofembodiment, with a little over simplification,
can be summarized as:we perceive phenomena first,
then reflect on them- quite the opposite to “I think
therefore I am”.

The East-Asian view of phenomenology, as sum-
marized by the five aggregates (five Skandhas, see
table 1) (Lusthaus, 2002) is quite different. It de-
scribes the path from sensory excitation to discursive
thought in five distinct steps, i.e. the five aggregates.
The aggregates are only recently finding reception in
the western cognitive sciences (Davis and Thompson,
2013)5. The five steps are interesting since the assen-

Table 1: Abbreviated presentation of the five aggregates
(skandhas) and their possible technical interpretation.

tation is that we are never in direct contact with ob-
jects in the world, but always in contact with a model
for the world; with which we are back with the inverse
problems and models for the system being observed.

It is beyond the scope of this text to enter the de-

4Edmund Husserl (1859-1938) graduated from the Uni-
versity of Vienna with a doctoral dissertation in theoretical
mathematics on the calculus of variations.

5Some care must be taken when considering this text
since it is a western interpretation of an East-Asian philoso-
phy which is based on contemplative practice. The authors
are scholars and not contemplatives.
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tails of the five Skandhas and how there are being re-
ceived within the cognitive sciences. It suffices to say,
that independent of their final truth or not, they do of-
fer a good basis for discussion on the partitioning of
a system and the suitability of which techniques at
which level in a cognitive system.

To summarize the issue of phenomenology:

1. system models are required and the correspond-
ing inverse problems must be solved if we are
to extract conclusions from sensor-data which are
based on physical systems.

2. there is much discussion on cognitive systems.
We believe it would be more appropriate to use
the termperceptive systems. Both the western and
eastern view is that perception is the product of
sensors activity and context, but not the product
of thinking. Thinking is the process which leads
to an understanding of the perceived.

The data-mining system presented later in this po-
sition paper implements the real-time solution of an
inverse problem for each and every sensor channel
and the possibility of an embedded simulation for ev-
ery actuator channel.

2.2 Natural Language

The Yogachara (Lusthaus, 2002)6 school asserts that
language is generated when repetition is cognised in
sensory data. It is the repetition which is considered to
be characteristic and not the thinking about the repe-
tition, this process leads to a naming. At this point we
may not understand but we do perceive. In this man-
ner the use of a word is considered to be a metaphor
which points at a sensory experience rather than de-
scribing the experience directly. Monosyllabic words
are considered to represent simpler sensory experi-
ences, while polysyllabic words tend to describe more
abstract experience which are commonly the result of
complex multi-sensory experience.

When designing symbolic representations for
sensor-data which should enable complex symbolic
queries, see for example (Lin et al., 2003), we should
consider the metaphoric nature of the symbols and as-
sociate human readable text with the symbols. This
will facilitate greatly the process of knowledge dis-
covery and support the automatic generation of de-
rivedpolysyllabicsymbols by combination of events,

6Yogachara is a philosophical school founded by Va-
subandhu and Asanga in the 4th century in India. It was
carried to China where it was adopted and known under the
name Chan. A part of the philosophy is associated with the
Tridhatu, i.e., the relationship between the realms of body,
language and mind.

each of which was associated with a single channel
sensor-data.

As will be seen later we propose a method of
symbolic representation which at the scanner level
consists of tokens and predicates extracted from the
sensor data. The tokens and predicates can then be
combined to define syntax. This opens the door to
using concepts such as those embodied inLex and
Yacc(Johnson, 1975) to enable BNF definitions for
the sensor-data analysis7 and queries. With this the
step has been made from natural language to com-
puter implementable language.

2.3 Inverse Problems and Embedded
Simulation in Real-time

The details of a method and framework for the imple-
menting real-time solutions to inverse problems and
embedded simulation can be found in (O’Leary and
Harker, 2012) and the required automatic code gener-
ation in (Gugg et al., 2014). For this reason we shall
not go into more detail on the method at this point.
The solution approach requires the application of a
linear differential operator to the data stream.

3 THE PROTOTYPE
IMPLEMENTATION

In this section we present the initial design and imple-
mentation of a prototype sensor-data mining system
motivated by the position presented in this paper.

3.1 Single Channel Lexical Analyzer

The schematic diagram for the single channel lexical
analyzer (SCLA) is shown in Figure 1. It consists of
a linear differential operator (LDO) which is applied
to the sensor data stream. Each sensor channel has
its own linear operator associated with it. The LDO
can be used either to implement the solution to an in-
verse problem or to an embedded simulation, i.e. it
can solve ODEs in both a forward and an inverse man-
ner. The lexical analysis element corresponds to sym-
bol aggregate approximation (SAX) (Lin et al., 2003).
However, it is not applied directly to the sensor data
but to the processed sensor data. As an extension of
the SAX approach k-means clustering is applied to
the processed signal to identify repetitive clusterings

7It is important to differentiate between markup lan-
guages for sensor data, e.g. sensorML, and markup for the
sensor-data analysis and queries.
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Figure 1: Schematic of the single channel lexical analyzer.

of values8. Each cluster is assigned a symbol and a
human readable text describing the meaning of this
cluster. Finally the lexical compression generate the
tokens and predicates, i.e. each persistent symbol is
replaced by a single token with a length predicate and
pointer which link the token to its start and end po-
sitions in the real data. This enables backtracking of
the symbolic queries to real sensor data values.

The SCLA can be defined in a simple structure
and an array of such structures is used to manage the
definitions of all signals and lexical analyzers. In this
manner the implementing is not in the form of ded-
icated code, but as a generic processing engine. Its
input is the set of sensor-data and the lexical defini-
tions and it returns the token-tables for each SCLA
and their combinations. In this manner applying the
system to a new machine only required the definition
of a new set of SCLA parameters and combinations.

3.2 Multi Channel Lexical Analyzer

The schematic for the muiti-channel lexical analyzer
is shown in Figure 2. The outputs of the SCLAs are
grouped according to their relevance to specific op-
erations. The token tables are merged automatically,
and the statistics for each token combination are com-
puted during this task. This enables the identification
of repetitive events, events which are seldom and of
events which do not occur. The output is itself once
again a token table. This is the first level of automatic
knowledge discovers, since it characterizes the opera-
tions of the machines.

Symbolic queries are implemented as regular ex-
pressions which are applied to the token tables and
their predicates. In this manner specific sequences of
events can be located. The lexical compression im-
plicitly implements dynamic time warping (DTW),
and there is a positive semi definite distance metric
associated with the tokens and their predicates. This
ensures that it is possible to do sequence similarity
measurements.

The final stage of the MCLA is the generation of
a dictionary. Since all symbols are associated with

8K-means clustering was chosen because the histogram
exhibits clear peaks and the data is well modelled by a sum
of gaussian distributions.
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Figure 2: Schematic of the multi channel lexical analyzer.

human readable text it is possible to generate dictio-
nary entries automatically which explain the mean-
ing of tokens derived from combining single token
tables. The combination of multiple tokens is con-
sidered akin to the formation of polysyllabic words.

4 DEMONSTRATION

The method has been applied to a number of different
machines to evaluate the feasibility. Here we present
the results of the application of the system to a large
scale reclaimer, see Figure 3.

4.1 SCLA Demonstration

The slewing data from the machine is used to demon-
strate a simple single channel lexical analyser. The
data channel consists ofn = 840000 samples. We
are interested in determining the rate of change of
slewing, i.e., the speed and direction of slewing. For
this reason the linear differential operator implements
a regularizing differentiation (O’Leary and Harker,
2010). The slew data and the result of the compu-
tation are shown in Figure 4.

Figure 3: The large scale reclaimer used to demonstrate the
concepts presented in this paper.
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Figure 4: Top: the slew data and bottom: the rate of change
of slew. The data consists ofn = 86225 samples, a day’s
production sampled atts = 1s.
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Figure 5: Histogram of the rate of change of slew. This is
used to identify the levels for the symbolic aggregate ap-
proximation.

During the exploratory phase of operation, a k-
means clustering is applied of the histogram for the
rate of slewing, see Figure 5. For simplicity of
demonstration three clusters are used and assigned the
symbols[1,2,3] with the associated human readable
texts [slewing-left, no-slewing, slewing-right].

The generated token table for the slew data now
enables symbolic queries. The result of a sym-
bolic query for an interrupted right slew movement
is shown in Figure 6.
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Figure 6: A symbolic query for an interrupted right slewing
of the machine, abbreviated as right-stop-right. The occur-
rences of the query in the data are marked in red.

4.2 MCLA and Knowledge Discovery

Here we demonstrate the implementation of SCLAs
for the slew, long-positionand tonnageof this ma-
chine, each with a different LDO, see Figure 7 for a
visual representation. Then the token tables for the

three channels are merged automatically to identify
more complex machine operations.

The data set hasn= 86225 samples for each sen-
sor, i.e. a full day of operation samples atts= 1s. The
combined token table hasm= 578 entries, only these
entries need to be searched during a symbolic query
- this corresponds to a very high degree of compres-
sion. Additionally the system generates a statistical
analysis for the identified tokens, see Table 2. It can
be seen that certain combinations of events never oc-
cur, this is knowledge discovery.

To get a measure for performance data was taken
from a second machine with a sampling timets =
20ms. The data acquisition was started att1 = 22−
Jan− 201410 : 39 : 09 and stoppedt2 = 24− Jan−
201422 : 18 : 17, that is for a time period of approxi-
mately 60 hours. The generation of the token table for
a single channel requiredtc = 0.84sec this includes
the solution of the inverse problem. A symbolic query
on this data set required betweentq = 20. . .30msde-
pending on the query. This computation was per-
formed on a 2.4GHzdual core processor.

Figure 7: Three SCLA channels and the automatically gen-
eratedvocabularyfor the combination of these channels.
This is only for a small zoomed portion of the data. The data
set hasn = 86225 samples for each sensor, i.e. a full day
of operation samples atts = 1s. The combined token table
hasm= 578 entries, only these entries need to be searched
during a symbolic query.

5 CONCLUSIONS

It is concluded that the concepts of the philosophy of
phenomenology are of great support when designing
sensor-data analytics, data mining and knowledge dis-
covery systems. If complex events are to be automat-
ically discovered and identified it will be necessary to
consider the use of language to implement metaphoric
abbreviations, i.e. terms which abbreviate the descrip-
tion of complex sensorial events. Furthermore, it has
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Table 2: Statistical summary of the result of merging the
token tables forslew, long-positionandtonnage. Note some
operations are automatically identified as not occurring.

been argued that the solution of inverse problems is
indispensable if the results are to have physical mean-
ing. The demonstration of the application of the sys-
tem to a large mechatronic system has demonstrated
the functionality of the concept.

The issue of scale space has still not been ad-
dressed. That is, there are features which are relevant
at different time scales: some are relevant in millisec-
ond ranges and some in hours. We are presently in-
vestigating a structured decimation of the data.
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