Development of an Automated System for Ex Vivo Measuring the Neuro Muscular Junction Functionality

Simona Pisu, Emanuele Rizzuto, Antonio Musarò, Zaccaria Del Prete

2015

Abstract

The loss of functional connection between muscle and nerve is a crucial biological mechanism involved in several neuromuscular diseases, as Amyotrophic Lateral Sclerosis (ALS). ALS is a neurodegenerative disease associated with motor neuron degeneration, muscle atrophy and paralysis. In this context, the aim of this work is to characterize the functionality of the communication between muscle and nerve in mouse models by the development of new automated experimental methodologies. We developed an ex vivo technique based on the comparison between muscle contractile response due to membrane stimulation and muscle contractile response due to nerve stimulation. Since this latter stimulation bypasses the neuronal signalling, any difference between the two contractile responses may be related to NMJ alterations. Once the system and the stimulation protocol were set we started investigating the SOD1(G93A) mouse, the most studied animal model of ALS. Preliminary results from the transgenic model are in accordance with the literature, showing muscle contraction defects and NMJ impairment.

References

  1. Aldrich, T. K., Shander, A., Chaudhry, I., and Nagashima, H. (1986). Fatigue of isolated rat diaphragm: role of impaired neuromuscular transmission. Journal of Applied Physiology, 61(3):1077-1083.
  2. Brooks, S. V. and Faulkner, J. A. (1988). Contractile properties of skeletal muscles from young, adult and aged mice. Journal of Physiology, 404:71-82.
  3. Del Prete, Z., Musarò, A., and Rizzuto, E. (2008). Measur- ing mechanical properties, including isotonic fatigue, of fast and slow MLC/mIgf-1 transgenic skeletal mus- cle. Annals of biomedical engineering.
  4. Derave, W., Van Den Bosch, L., Lemmens, G., Eijnde, B. O., Robberecht, W., and Hespel, P. (2003). Skele- tal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: effects of creatine treatment. Neurobiology of disease, 13(3):264-272.
  5. Dupuis, L., Gonzalez de Aguilar, J. L., Echaniz-Laguna, A., Eschbach, J., Rene, F., Oudart, H., Halter, B., Huze, C., Schaeffer, L., Bouillaud, F., and Loeffler, J. P. (2009). Muscle mitochondrial uncoupling dismantles neuromuscular junction and triggers distal degenera- tion of motor neurons. PloS one, 4(4):e5390.
  6. Fischer, L. R., Culver, D. G., Tennant, P., Davis, A. A., Wang, M., Castellano-Sanchez, A., Khan, J., Polak, M. A., and Glass, J. D. (2003). Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Experimental Neurology, 185(2):232-240.
  7. Gurney, M. E., Pu, H., Chiu, A. Y., Canto, M. C. D., Polchow, C. Y., Alexander, D. D., Caliendo, J., Hentati, A., Kwon, Y. W., and Deng, H. X. (1994). Mo- tor neuron degeneration in mice that express a hu- man Cu,Zn superoxide dismutase mutation. Science, 264(5166):1772-1775.
  8. Hegedus, J., Putman, C. T., Tyreman, N., and Gordon, T. (2008). Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. The Journal of physiology, 586(14):3337- 3351.
  9. Lee, Y. I., Mikesh, M., Smith, I., Rimer, M., and Thompson, W. (2011). Muscles in a mouse model of spinal mus- cular atrophy show profound defects in neuromuscu- lar development even in the absence of failure in neu- romuscular transmission or loss of motor neurons. De- velopmental biology, 356(2):432- 444.
  10. Ling, K. K. Y., Lin, M.-Y., Zingg, B., Feng, Z., and Ko, C.-P. (2009). Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PloS one, 5(11):e15457-e15457.
  11. Ngo, S. T., Baumann, F., Ridall, P. G., Pettitt, A. N., Henderson, R. D., Bellingham, M. C., and McCombe, P. A. (2012). The relationship between Bayesian motor unit number estimation and histological measurements of motor neurons in wild-type and SOD1(G93A) mice. Clinical Neurophysiology, 123(10):2080-2091.
  12. Personius, K. E. and Sawyer, R. P. (2006). Variability and failure of neurotransmission in the diaphragm of mdx mice. Neuromuscular disorders : NMD, 16(3):168- 177.
  13. Turner, B. J. and Talbot, K. (2008). Transgenics, toxicity and therapeutics in rodent models of mutant SOD1- mediated familial ALS. Progress in neurobiology, 85(1):94-134.
  14. Van Lunteren, E., Moyer, M., and Kaminski, H. J. (2004). Adverse effects of myasthenia gravis on rat phrenic diaphragm contractile performance. Journal of Applied Physiology, 97(3):895-901.
Download


Paper Citation


in Harvard Style

Pisu S., Rizzuto E., Musarò A. and Del Prete Z. (2015). Development of an Automated System for Ex Vivo Measuring the Neuro Muscular Junction Functionality . In Doctoral Consortium - DCBIOSTEC, (BIOSTEC 2015) ISBN , pages 36-41


in Bibtex Style

@conference{dcbiostec15,
author={Simona Pisu and Emanuele Rizzuto and Antonio Musarò and Zaccaria Del Prete},
title={Development of an Automated System for Ex Vivo Measuring the Neuro Muscular Junction Functionality},
booktitle={Doctoral Consortium - DCBIOSTEC, (BIOSTEC 2015)},
year={2015},
pages={36-41},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={},
}


in EndNote Style

TY - CONF
JO - Doctoral Consortium - DCBIOSTEC, (BIOSTEC 2015)
TI - Development of an Automated System for Ex Vivo Measuring the Neuro Muscular Junction Functionality
SN -
AU - Pisu S.
AU - Rizzuto E.
AU - Musarò A.
AU - Del Prete Z.
PY - 2015
SP - 36
EP - 41
DO -